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Cyclotomic Extensions

We've discussed the cyclotomic polynomials

¢p(X) =

P—1
Sl x 1
x—1

and that the roots are pt" roots of unity C;i: where

2mi 2T 2T
(p=er =cos(—) + isin(—
: (25 + isin(2)
which are distributed equidistantly around the unit circle, dividing it up
into equal size arcs.

And this is the origin of the term 'cyclotomy’ which is the act of
subdividing a circle in such a fashion.
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For example, if p =5 we have 5 roots of unity distributed around the
circle at multiples of 27/5 (72 degrees).

y
1
2 €
C5 P
5 o
0] 55 X
Cg, ,,.4
Cs

And for |ntegers n which are not prime necessarily, we can still define the
basic ntf root of unity ¢, = es" where ¢t for t from 0 to n—1 are
distributed around the unit circle and are the roots of x”7 — 1.
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In somewhat greater generality, we can define the so-called circle group
T={e|0<6<2r}

where /% = cos(6) + isin(6) also lie on the unit circle, and indeed T is the
unit circle since every solution (x,y) of x> + y? = 1 has the form
x = cos(#) and y = sin(f) for 6 € [0, 27).

What's of greater interest is the fact that T is a group under

multiplication since
eieleieg — ei(01+92)

where, the sum (61 + 62) of elements of [0,27) are added mod 27, which
is readily seen to be closed and associative, and where €® = 1 is the
identity and the inverse of e/ is e/,
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The group T is, of course, uncountably infinite but it is of interest since
for every n, the group T contains a cyclic subgroup of order n, namely

£ 27 e .
(e'"n ) and the fact that it is of order n is that

(eiT)k — ok

. 2 : : :

which means that |e'n | = n since k = n is the smallest value which makes
"27” an even multiple of 27.

It's also interesting to note that (e”) is infinite cyclic exactly when 6 is an
irrational multiple of 27.
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Recall from basic group theory that if (o) is a cyclic group of order n that

k| = —"— so that |o¥| = n if and only if gcd(k, n) = 1.
ged(n,k)

That is k € U(n) the group of units mod n, and since |U(n)| = ¢(n)
where ¢ is the Euler ¢-function we have that (o) has ¢(n) generators.

Definition

For (¢,) where (, = e’ we call such a generator CX (for k € U(n)) a
n

primitive ntf root of unity.
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th

The importance of the definition of primitive n'” roots of unity lies in how

it's used to define cyclotomic polynomials in general.

Definition

For n > 1 an integer, the n" cyclotomic polynomial is

o) = [ x-¢5)

keU(n)

which is of degree |U(n)| = ¢(n).

We note, that for n = p (prime) we have that U(p) = {1,...,p — 1}
which yields

Op(x) = (x = Gp)(x =) (x =BT =xPT 4 x4 1

which is our original set of examples.
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So what if nisn't prime?
° C1:e¥ =1s0®1(x) =(x—1)
=e'™ = -1, U(2) = {1} so ®»(x) = (x + 1)

2im
2

o (h=e

o P3(x)=x>+x+1

° C4:e¥ —e% =i, U(4) ={1,3} so
Pu(x) = (x —i)(x+i)=x>+1

0 Os(x)=x*+x3+ x4+ x+1

° (= e = 1+‘/j3 , U(6) = {1,5} where ¢ = 1_\2/?3 so
Pp(x) = x2 — x + 1 (Exercise!)
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So from the example ®,(x) = X=L and the fact that the roots of x" — 1

are exactly 1,(,,¢2,...,¢ L it's clear that ®,(x) | x" — 1 but, in fact, we
can say more.

: i2n o
Observe, for example, that given (1o = e’12, the primitive 12-th roots of
unity are (12,3, ({5, (13 and the remaining 12-th roots of unity are

2 3 4 6 8 9 10
1) C127 C12’ C127 C12’ C127 C127 12

and we notice some interesting facts about these non-primitive roots.
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chzzeT :Cﬁ
i2
Oszze%:g‘g
2
OC:?2:e2 :<2:—1
2
° (=G
° (=G =—i
° (§ =0

This leads to a rather interesting observation when one factors x2 — 1.

Timothy Kohl (Boston University) MAB42 Lecture April 23, 2025 10 / 20



X12

-1
(x = 1)(x = G2)(x = (R) (x — () (x — ¢T2) (x — (B2)(x — (E2)(x — (L) (x — CRa)(x — (T2)(x — (i9)(x — ¢z

(= 1) (x = G2)(x = (B)(x = ¢a)(x = Gi3) (x = GR)(x = G19) (x — () (x — &) (x — C)(x — ¢Fp) (x — (o)
—— ———

1(x) ®12(x) 6 (x) 4(x) d3(x) 2(x)

That is
X]'2 —1= ¢‘1(X) . ¢2(X) . ¢3(X) . ¢4(X) . ¢6(X) . ¢12(X)

and the significance of the numbers 1,2,3,4,6,12 is that these are all the divisors of n = 12.

Moreover,

12 = deg(x'? — 1) = deg(®1(x)) + deg(Pa(x)) + deg(P3(x)) + deg(Pa(x)) + deg(Ps(x)) + deg(P12(x))
=¢(1) + ¢(2) + 8(3) + ¢(4) + ¢(6) + $(12)

which is not a coincidence.
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Theorem

For n > 1, a positive integer

x"—1= H¢d(x)
d|n

where d | n means all the positive divisors of n.

Proof.

First, observe that any d* root of unity (for d | n) is a power of exactly one
nth root of unity.

This implies that ®4(x) has distinct linear factors from ®/(x) for d’ some
other divisor of n, i.e.

ng(q)d(X), q)d/(X)) =1 for d 7é d

Lastly, the roots of x” — 1 are exactly all the n distinct powers 1,¢,,...,¢ !
which, by the above observation, are roots of distinct ®,4(x) i.e. both
polynomials have the same roots and since both are monic, they must be
identical. (I
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As a bonus, we get the following nice formula:
n=7Y ¢(d)
d|n

which can be viewed as follows. If we let U(1) = {0} then for each d | n
we have SU(d) = {§u |u € U(d)} and we have that

Zo = ZU(d)
d

and so |Zn| = g1, [gU(d)] = 2g), [U(d)] = 220 &(d).
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For example, with n = 12 we have

U(l) ={0} = 12U(1) = {0}
U@)={1} = 6U(2) = {6}
UB)={1,2} = 4U(2) ={4,8}

U(4) ={1,3} = 3U(4) ={3,9}
u6) ={1,5} = 2U(6) = {2,10}

U(12) = {1,5,7,11} = 1U(12) ={1,5,7,11}

where one can see that the union of all these is Z1»,.
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And we know that ®,(x) = xP~1 + .- 4+ x + 1 € Z[x], but what about
®,(x) for composite n?

®,(x) € Z[x] for each n > 1.

PROOF: The proof is by induction on n. Consider first the fact that
®1(x) = x — 1 which is obviously in Z[x].
For n>1 we have x" —1 =[], ®4(x) which includes the factor for
d = n so that

x"—1=®,(x)f(x)

where

f)= I @

d|n and d<n

where inductively we can assume ®,4(x) € Z[x] which implies f(x) € Z[x]
and is monic, since each ®4(x) is monic.
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PROOF (continued): So we have that x” — 1 = ®,(x)f(x) where x" — 1,
®,(x) and f(x) (being a product of monic polynomials) is monic, and
x" —1,f(x) € Z[x], so why is ®,(x) € Z[x]?

This is actually an easy exercise in polynomial multiplication.

p q
If we have x" — 1= (Z a;xi)(z bix)) where a; € Z and ag = b, = 1
i=0 j=0
then the degree n — 1 = p + g — 1 coefficient of x” — 1 is 0 so
ap_lbq + apbq_l =0
i}
ap-1+bg-1=0
i}

bq_l = —ap-1 ¢ Z
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PROOF (continued)

And similarly the degree n — 2 = p + g — 2 coefficient is 0 and so

apbg—> + ap—1bg—1 + ap—2bg =0
+

bg—>+ap_1bg—1+ap-2=0
+

bq_g = —ap_lbq_l —ap—2 & Z

and continuing this way we deduce that all the coefficients b; are integers,
so ®p(x) € Z[x]. O
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We saw earlier that for each prime p the p-th cyclotomic polynomial
®,(x) is irreducible. In general we have.

For each n > 1, ®,(x) is irreducible (over Z) and therefore over Q too.

Before we prove this, we need a small technical fact.

Lemma

Let n > 1 be an integer and let p{ n be prime. Then ®,(x) € Zp[x] has
no repeated factors.

Proof

Since ®,(x) | x" — 1 and %x” —1=nx""1 then gcd(x" — 1,nx""1) =1
mod p since p 1 n.

Ergo, x" — 1 has no repeated factors, so neither does ®,(x). 0

| \
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PROOF (of Theorem)
Let ¢, = e’n and let f(x) = irr(¢n, Q) € Z[x]. We have then
®,(x) = f(x)g(x) for some g(x) € Z[x].

The roots of ®,(x) are ¢X for k € U(n) and every such k is a product of
prime numbers p where p 1 n, so we will show that for any root p of f(x)
and any p t n that P is a root of f(x).

(We note that uP is a root of ®,(x) so it's either a root of f(x) or g(x).)
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PROOF (continued): Let u be a root and let pt n be prime and suppose
g(uP) = 0 then p is a root of g(xP) and so f(x) | g(xP) in Z[x].

So now f(x) divides g(xP) = g(x)" in Zp[x] (which, recall is a UFD) so
(x

f(x) and g(x) have a common factor h(x) € Zp[x].
So h(x)? | ®p(x) in Zp[x] contradicting the lemma.

Thus g(uP) = 0 is a contradiction, so f(uP) = 0.

i.e. The roots of f(x) are the roots of ®,(x) so f(x) = ®,(x) and so
®,(x) is irreducible, i.e. ®,(x) = irr(¢p, Q). O
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