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Cyclotomic Extensions

We’ve discussed the cyclotomic polynomials

Φp(x) =
xp − 1

x − 1
= xp−1 + · · · + x + 1

and that the roots are pth roots of unity ζ ip where

ζp = e
2πi
p = cos

(2π

p

)
+ isin

(2π

p

)

which are distributed equidistantly around the unit circle, dividing it up
into equal size arcs.

And this is the origin of the term ’cyclotomy’ which is the act of
subdividing a circle in such a fashion.
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For example, if p = 5 we have 5 roots of unity distributed around the
circle at multiples of 2π/5 (72 degrees).

x

y

O

ζ15
ζ25

ζ35
ζ45

ζ55

2π
5

And for integers n which are not prime necessarily, we can still define the

basic nth root of unity ζn = e
2πi
n where ζtn for t from 0 to n − 1 are

distributed around the unit circle and are the roots of xn − 1.
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In somewhat greater generality, we can define the so-called circle group

T = {e iθ | 0 ≤ θ < 2π}

where e iθ = cos(θ) + isin(θ) also lie on the unit circle, and indeed T is the
unit circle since every solution (x , y) of x2 + y2 = 1 has the form
x = cos(θ) and y = sin(θ) for θ ∈ [0, 2π).

What’s of greater interest is the fact that T is a group under
multiplication since

e iθ1e iθ2 = e i(θ1+θ2)

where, the sum (θ1 + θ2) of elements of [0, 2π) are added mod 2π, which
is readily seen to be closed and associative, and where e0 = 1 is the
identity and the inverse of e iθ is e−iθ.
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The group T is, of course, uncountably infinite but it is of interest since
for every n, the group T contains a cyclic subgroup of order n, namely

〈e i
2π
n 〉 and the fact that it is of order n is that

(e i
2π
n )k = e ik

2π
n

which means that |e i
2π
n | = n since k = n is the smallest value which makes

k2π
n

an even multiple of 2π.

It’s also interesting to note that 〈e iθ〉 is infinite cyclic exactly when θ is an
irrational multiple of 2π.
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Recall from basic group theory that if 〈σ〉 is a cyclic group of order n that
|σk | = n

gcd(n,k) so that |σk | = n if and only if gcd(k , n) = 1.

That is k ∈ U(n) the group of units mod n, and since |U(n)| = φ(n)
where φ is the Euler φ-function we have that 〈σ〉 has φ(n) generators.

Definition

For 〈ζn〉 where ζn = e i
2π
n we call such a generator ζkn (for k ∈ U(n)) a

primitive nth root of unity.
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The importance of the definition of primitive nth roots of unity lies in how
it’s used to define cyclotomic polynomials in general.

Definition

For n ≥ 1 an integer, the nth cyclotomic polynomial is

Φn(x) =
∏

k∈U(n)

(x − ζkn )

which is of degree |U(n)| = φ(n).

We note, that for n = p (prime) we have that U(p) = {1, . . . , p − 1}
which yields

Φp(x) = (x − ζp)(x − ζ2p) · · · (x − ζp−1
p ) = xp−1 + · · ·+ x + 1

which is our original set of examples.
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So what if n isn’t prime?

ζ1 = e
2iπ
1 = 1 so Φ1(x) = (x − 1)

ζ2 = e
2iπ
2 = e iπ = −1, U(2) = {1} so Φ2(x) = (x + 1)

Φ3(x) = x2 + x + 1

ζ4 = e
2iπ
4 = e

iπ
2 = i , U(4) = {1, 3} so

Φ4(x) = (x − i)(x + i) = x2 + 1

Φ5(x) = x4 + x3 + x2 + x + 1

ζ6 = e
iπ
3 = 1+

√
−3

2 , U(6) = {1, 5} where ζ56 = 1−
√
−3

2 so
Φ6(x) = x2 − x + 1 (Exercise!)
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So from the example Φp(x) =
xp−1
x−1 and the fact that the roots of xn − 1

are exactly 1, ζn, ζ
2
n , . . . , ζ

n−1
n it’s clear that Φn(x) | x

n − 1 but, in fact, we
can say more.

Observe, for example, that given ζ12 = e
i2π
12 , the primitive 12-th roots of

unity are ζ12, ζ
5
12, ζ

7
12, ζ

11
12 and the remaining 12-th roots of unity are

1, ζ212, ζ
3
12, ζ

4
12, ζ

6
12, ζ

8
12, ζ

9
12, ζ

10
12

and we notice some interesting facts about these non-primitive roots.
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ζ212 = e
i2π
6 = ζ6

ζ312 = e
i2π
4 = ζ4 = i

ζ412 = e
i2π
3 = ζ3

ζ612 = e
i2π
2 = ζ2 = −1

ζ812 = ζ23
ζ912 = ζ34 = −i

ζ1012 = ζ56

This leads to a rather interesting observation when one factors x12 − 1.
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x12 − 1 =

(x − 1)(x − ζ12)(x − ζ212)(x − ζ312)(x − ζ412)(x − ζ512)(x − ζ612)(x − ζ712)(x − ζ812)(x − ζ912)(x − ζ1012 )(x − ζ1112 )

=

(x − 1)
︸ ︷︷ ︸

Φ1(x)

(x − ζ12)(x − ζ512)(x − ζ712)(x − ζ1112 )
︸ ︷︷ ︸

Φ12(x)

(x − ζ212)(x − ζ1012 )
︸ ︷︷ ︸

Φ6(x)

(x − ζ312)(x − ζ912)
︸ ︷︷ ︸

Φ4(x)

(x − ζ412)(x − ζ812)
︸ ︷︷ ︸

Φ3(x)

(x − ζ612)
︸ ︷︷ ︸

Φ2(x)

That is
x12 − 1 = Φ1(x) · Φ2(x) · Φ3(x) · Φ4(x) · Φ6(x) · Φ12(x)

and the significance of the numbers 1, 2, 3, 4, 6, 12 is that these are all the divisors of n = 12.

Moreover,

12 = deg(x12 − 1) = deg(Φ1(x)) + deg(Φ2(x)) + deg(Φ3(x)) + deg(Φ4(x)) + deg(Φ6(x)) + deg(Φ12(x))

= φ(1) + φ(2) + φ(3) + φ(4) + φ(6) + φ(12)

which is not a coincidence.
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Theorem

For n ≥ 1, a positive integer

xn − 1 =
∏

d|n
Φd(x)

where d | n means all the positive divisors of n.

Proof.

First, observe that any d th root of unity (for d | n) is a power of exactly one
nth root of unity.

This implies that Φd (x) has distinct linear factors from Φd ′(x) for d ′ some
other divisor of n, i.e.

gcd(Φd (x),Φd ′(x)) = 1 for d 6= d ′

Lastly, the roots of xn − 1 are exactly all the n distinct powers 1, ζn, . . . , ζ
n−1
n

which, by the above observation, are roots of distinct Φd (x) i.e. both
polynomials have the same roots and since both are monic, they must be
identical.
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As a bonus, we get the following nice formula:

n =
∑

d|n
φ(d)

which can be viewed as follows. If we let U(1) = {0} then for each d | n
we have n

d
U(d) = { n

d
u |u ∈ U(d)} and we have that

Zn =
⋃

d|n

n

d
U(d)

and so |Zn| =
∑

d|n |
n
d
U(d)| =

∑

d|n |U(d)| =
∑

d|n φ(d).
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For example, with n = 12 we have

U(1) = {0} =⇒ 12U(1) = {0}

U(2) = {1} =⇒ 6U(2) = {6}

U(3) = {1, 2} =⇒ 4U(2) = {4, 8}

U(4) = {1, 3} =⇒ 3U(4) = {3, 9}

U(6) = {1, 5} =⇒ 2U(6) = {2, 10}

U(12) = {1, 5, 7, 11} =⇒ 1U(12) = {1, 5, 7, 11}

where one can see that the union of all these is Z12.
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And we know that Φp(x) = xp−1 + · · · + x + 1 ∈ Z[x ], but what about
Φn(x) for composite n?

Theorem

Φn(x) ∈ Z[x ] for each n ≥ 1.

PROOF: The proof is by induction on n. Consider first the fact that
Φ1(x) = x − 1 which is obviously in Z[x ].
For n > 1 we have xn − 1 =

∏

d|n Φd (x) which includes the factor for
d = n so that

xn − 1 = Φn(x)f (x)

where
f (x) =

∏

d|n and d<n

Φd(x)

where inductively we can assume Φd(x) ∈ Z[x ] which implies f (x) ∈ Z[x ]
and is monic, since each Φd (x) is monic.
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PROOF (continued): So we have that xn − 1 = Φn(x)f (x) where xn − 1,
Φn(x) and f (x) (being a product of monic polynomials) is monic, and
xn − 1, f (x) ∈ Z[x ], so why is Φn(x) ∈ Z[x ]?

This is actually an easy exercise in polynomial multiplication.

If we have xn − 1 = (

p
∑

i=0

aix
i)(

q
∑

j=0

bjx
j) where ai ∈ Z and aq = bp = 1

then the degree n − 1 = p + q − 1 coefficient of xn − 1 is 0 so

ap−1bq + apbq−1 = 0

↓

ap−1 + bq−1 = 0

↓

bq−1 = −ap−1 ∈ Z
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PROOF (continued)

And similarly the degree n− 2 = p + q − 2 coefficient is 0 and so

apbq−2 + ap−1bq−1 + ap−2bq = 0

↓

bq−2 + ap−1bq−1 + ap−2 = 0

↓

bq−2 = −ap−1bq−1 − ap−2 ∈ Z

and continuing this way we deduce that all the coefficients bj are integers,
so Φn(x) ∈ Z[x ].
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We saw earlier that for each prime p the p-th cyclotomic polynomial
Φp(x) is irreducible. In general we have.

Theorem

For each n ≥ 1, Φn(x) is irreducible (over Z) and therefore over Q too.

Before we prove this, we need a small technical fact.

Lemma

Let n > 1 be an integer and let p ∤ n be prime. Then Φn(x) ∈ Zp[x ] has
no repeated factors.

Proof.

Since Φn(x) | x
n − 1 and d

dx
xn − 1 = nxn−1 then gcd(xn − 1, nxn−1) = 1

mod p since p ∤ n.
Ergo, xn − 1 has no repeated factors, so neither does Φn(x).
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PROOF (of Theorem)

Let ζn = e
2πi
n and let f (x) = irr(ζn,Q) ∈ Z[x ]. We have then

Φn(x) = f (x)g(x) for some g(x) ∈ Z[x ].

The roots of Φn(x) are ζkn for k ∈ U(n) and every such k is a product of
prime numbers p where p ∤ n, so we will show that for any root µ of f (x)
and any p ∤ n that µp is a root of f (x).

(We note that µp is a root of Φn(x) so it’s either a root of f (x) or g(x).)
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PROOF (continued): Let µ be a root and let p ∤ n be prime and suppose
g(µp) = 0 then µ is a root of g(xp) and so f (x) | g(xp) in Z[x ].

So now f (x) divides g(xp) = g(x)
p
in Zp[x ] (which, recall is a UFD) so

f (x) and g(x) have a common factor h(x) ∈ Zp[x ].

So h(x)2 | Φn(x) in Zp[x ] contradicting the lemma.

Thus g(µp) = 0 is a contradiction, so f (µp) = 0.

i.e. The roots of f (x) are the roots of Φn(x) so f (x) = Φn(x) and so
Φn(x) is irreducible, i.e. Φn(x) = irr(ζn,Q).
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