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Lecture 1: The Fermi-Pasta-Ulam model; introduction
and KdV approximation

Outline:

1. Models of coupled oscillators

2. Two main classes

(a) Models with on-site potentials; e.g. Frenkel-Kontorova or discrete NLS

(b) Models with only nearest neighbor coupling; e.g. FPU type models

3. Focus on:

(a) localized oscillations

(b) traveling waves

4. Numerical experiments of Kruskal and Zabusky and the discovery of solitons.

5. The formal approximation of the FPU model by the KdV equation

6. A general method of justifying approximations by modulation equations

7. Details of the approximation proof in the case of the FPU model.
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Lecture 2: Discrete Breathers

Outline:

1. Periodic solutions in nonlinear equations and discrete breaters

2. Periodic solutions in the linearized FPU model

3. Approaches for constructing discrete breathers in the FPU model:

(a) Variational Methods

(b) Methods based on the Implicit Function Theorem

i. Continue solutions from the “anti-integrable” limit, rather than the linear
problem

(c) Center-manifold methods

i. Toda’s “dual formulation” of the FPU equations.

ii. A dynamical systems on the space of loops

iii. Infinite dimensional map on the space of Fourier coefficients

iv. The equation on the center-manifold.

v. Possible multi-scale expansions for breathers.

Lecture 3: Traveling Waves in the FPU model

Outline:

1. The Toda Lattice

(a) Explicit form of the one and two-soliton solutions.

2. Traveling waves in more general FPU models

(a) Variational Approach

(b) Center-manifold Approach

(c) ”Renormalization” approach

3. The Friesecke-Pego renormalization approach

(a) Relation of the traveling wave profile to the KdV equation

(b) Stability of traveling waves

i. What kind of stability can one expect?

(c) Modulation equations

(d) Linear stability implies nonlinear stability
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Lecture 4: Counterpropagating two-solitons in the FPU
model

Outline:

1. Linear Estimates:

(a) Bäcklund Transformations for the Toda model.

(b) A perturbation argument for general FPU solitons in the KdV limit.

2. The two-soliton problem

(a) Localizing the perturbation

(b) Controlling the interaction

(c) Differences with stability problems

3. Statement of results

4. Sketch of proof
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