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The publication [1] contains error estimates for the NLS approximation for a quasilinear
water wave model where the right hand side looses only half a derivative when written as
a first order system. In order to control the solutions on the natural time scale of the
NLS equation the quadratic terms of the water wave model are eliminated with the help
of a normal form transform. The normal form transformation is of the form identity plus
a “small” term which looses half a derivative and this complicates the computation of
the inverse of the mapping. In [1], the inverse was constructed with the help of energy
estimates. However, one of these estimates contained an error which we correct here.

The model problem considered in [1] is given in Fourier space by

∂2t û(k, t) = −ω2(k)û(k, t)− ω2(k)(û ∗ û)(k, t), (1)

where ω(k)2 = k tanh k with ω(k) > 0 for k > 0 and ω(k) < 0 for k < 0. This equation was
chosen so that (1) and the water wave problem have the same linear dispersion relation
and such that the right hand side loses only half a derivative when written as a first order
system - again, having in mind the similar properties of the Lagrangian formulation of the
water wave problem.

In constructing the normal form transform in [1] we lost a factor i in the calculation
which makes it necessary to modify the argument for the inversion of the normal form
transform. The changes are as follows:

We write (1) as the first order system yields

∂tû(k, t) = iω(k)v̂(k, t), ∂tv̂(k, t) = iω(k)û(k, t) + iω(k)(û ∗ û)(k, t), (2)
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this system is transformed into

∂tÛ1(k, t) = iω(k)Û1(k, t) +

∫ ∑
m,n∈{1,2}

α̂1
mn(k)Ûm(k − `, t)Ûn(`, t) d`,

(3)

∂tÛ2(k, t) = −iω(k)Û2(k, t) +

∫ ∑
m,n∈{1,2}

α̂2
mn(k)Ûm(k − `, t)Ûn(`, t) d`

where α̂1
11(k) = O(

√
|k|) for |k| → ∞, for instance α̂jmn(k) = iω(k)/

√
2. (This system of

equations is equivalent to (13) in [1]. But we have chosen a transformation matrix with
real coefficients to make it easier to keep track of the factors of “i” in the subsequent
computation. By this choice the NLS approximation εΨ has only O(ε)-terms in the first
component which are of the form Ψ1 = Ψ+ + Ψ− where Ψ+ = Ψ− and where in Fourier
space Ψ̂± is concentrated in an O(ε)-neighborhood of the wave number ±k0. The error
εβϑR1 = Û1 − εΨ and εβϑR2 = Û2 +O(ε2) satisfies

∂tR̂1(k, t) = iω(k)R̂1(k, t) + 2ε

∫ ∑
n∈{1,2}

ϑ̂−1(k)α̂1
1n(k)Ψ̂1(k − `, t)ϑ̂(`)R̂n(`, t) d`+ h.o.t.,

∂tR̂2(k, t) = −iω(k)R̂2(k, t) + 2ε

∫ ∑
n∈{1,2}

ϑ̂−1(k)α̂2
1n(k)Ψ̂1(k − `, t)ϑ̂(`)R̂n(`, t) d`+ h.o.t.,

with ϑ̂(k) = min(ε + (1 − ε)|k|/δ, 1) (see (25) of [1]). In order to prove estimates on an
O(ε−2) time scale one eliminates the terms of O(ε) with a near identity change of variables,
namely

R̃j1 = Rj1 + εB+
j1

(Ψ, R) + εB−j1(Ψ, R) + h.o.t. , j1 = 1, 2 , (4)

where

B̂±j1(Ψ, R) =
2∑

j2=1

∫
b̂±j1;j2(k)Ψ̂±(k − `)R̂j2(`)d`, (5)

and where R̂j3 refers to the j3-th component of the error R̂. As shown in [1], the kernel

function b̂±j1;j2(k) has the form:

b̂±j1;j2(k) =
2P̂ 1(k)α̂j11,j2(k)

(iωj1(k)− iω1(±k0)− iωj2(k ∓ k0))
ϑ̂0(k ∓ k0)

ϑ̂(k)
(6)

with ω1,2(k) = ±ω(k), P̂ 1(k)ϑ̂0(k ∓ k0)ϑ̂−1(k) uniformly bounded for all k ∈ R, and with

α̂j11,j1(k) = O(
√
|k|) for |k| → ∞. (For the derivation of the formula see equation (52) and

the discussion leading up to it in [1].) The growth of the kernel function with k in (7)
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means that the the normal form transformation is unbounded on Sobolev spaces, and the
near identity change of variables cannot be inverted with the help of Neumann’s series. In
[1] it has been pointed out that an inversion is possible with the help of energy estimates if
the b̂±j1;j2(k) are purely imaginary. However, in [1], it was overlooked that α̂j11,j1(k) is pure
imaginary (see the remark following (3) above) and hence the kernel on the right hand side
of (6) is real-valued which means that the argument in [1] must be modified.

In order to extract the relevant terms in (7) we remark as in [1] that b̂±j1;j2(k) = O(1)
for |k| → ∞ if j1 6= j2 since in this case the numerator and denominator both grow at a
rate O(

√
|k|). Thus, the associated part of the normal form transformation is bounded

and we can concentrate on those terms with j1 = j2 which are the only ones leading to a
loss of smoothness. We next use the fact that

iωj1(k)− iω1(±k0)− iωj2(k ∓ k0)) = −iω1(±k0) +O(1/
√
|k|)

for |k| → ∞ and that P̂ 1(k) ϑ̂0(k∓k0)
ϑ̂(k)

− 1 has compact support. This means if we reconsider

the transformations (7), they can be written as

R̃j1 = Rj1 +

∫
b̂+j1(k)Ψ̂+(k − `)R̂j1(`)d`+

∫
b̂−j1(k)Ψ̂−(k − `)R̂j1(`)d`+ B(Ψ, R). (7)

where

b̂±j1(k) =
2α̂j11,j1(k)

−iω1(±k0)
= (−1)j1

√
2ω̂(k)

∓ω1(k0)
∈ R (8)

and B(Ψ, R) is a bounded transformation. The key observation is that b̂+j1(k) = −b̂−j1(k).
As a consequence we have∫

b̂+j1(k)Ψ̂+(k − `)R̂j1(`)d`+

∫
b̂−j1(k)Ψ̂−(k − `)R̂j1(`)d`

=

∫
b̂+j1(k)(Ψ̂+(k − `)− Ψ̂−(k − `))R̂j1(`)d`

= 2

∫
îb+j1(k)=̂(Ψ)(k − `)R̂j1(`)d`

Since =(Ψ), the imaginary part of Ψ, is real-valued and îb+j1(k) purely imaginary we are in
exactly the situation covered by the energy estimates in [1, Section 5] for the inversion of
the normal form transform. Hence, this modification shows that the normal form trans-
formation is invertible as claimed in [1]. Note that the statements of the theorems in [1]
are unchanged by this correction.
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