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Abstract

The rigorous approximation of long wavelength motions of fluids by a pair of uncoupled
Korteweg-de Vries equations is described. We then extend this result to study the motion
of the Fermi-Pasta-Ulam model of coupled nonlinear oscillators.

1 Introduction

Amplitude, or modulation, equations have found a host of uses in applied mathematics.
Typically, they are derived via a formal asymptotic analysis, and until recently there were
few rigorous results concerning their validity. In particular, in some circumstances, several
different equations have been derived as models for the same physical situation, and in the
absence of mathematical results justifying the approximations made in their derivations, it is
difficult to decide which (if any) of these equations actually provide accurate approximations
to the original problem.

Within the past decade, there has been a considerable advance in the understanding of
how one can justify a variety of modulation equations. In particular, the Ginzburg-Landau
equation and Nonlinear Schrédinger equation have been shown to provide accurate models in
a number of different circumstances [3], [15], [14], [10]. One case that has received particular
attention is the problem of counter-propagating waves. This involves systems which support
localized waves moving both to the left and the right, and in the physics literature there were
several different proposals for the form of the interaction term in the modulation equations
for these problems. In both [9] and [11], it was found that at least in certain circumstances,
the motion of the envelopes of these waves were described by a pair of uncoupled Nonlinear
Schrodinger equations, one for the left moving disturbance and one for the right moving dis-
turbance. Thus, to the degree of approximation usually considered in deriving the amplitude
equations, the left and right moving waves behave like “solitons” — they move through each
other without interaction.

Recently, building on work in [12], we began to study the analogous question for long
wavelength motions on the surface of an incompressible, inviscid fluid. On a formal level, the
study of amplitude equations for this problem dates back more than a century to the work
of Boussinesq and Korteweg and de Vries and has continued up to the present day. However,



surprisingly little was rigorously known about how well these various model equations actually
describe fluid motions. To the best of our knowledge, there are only two previous papers in
the literature that address this question. In [6], the authors show that for analytic initial
conditions that correspond to wave motion in only one direction the solutions of the Euler
equation can be approximated by the solution of the Korteweg-de Vries equation. However, a
very significant limitation of this work is that it applies only over very short time intervals —
time intervals so short that the KdV evolution is essentially trivial. Much closer to our work
in spirit is that of Craig [4]. Craig shows that for initial data corresponding to uni-directional
motion, the solutions of the water wave problem can be approximated by solutions of the
KdV equation for periods of time of the “correct” order of magnitude. (Here “correct” means
over times scales of the order one expects on the basis of the formal derivation of the KdV
equations.) Our work seeks to go beyond Craig’s results in several ways. Most importantly,
we wish to consider general long wave length initial data. On physical grounds one expects
that such initial data will evolve into two wave packets, one moving to the right and one
moving to the left. In light of the discussion of counter-propagating waves in the paragraph
above, we will focus in particular on how these two wave packets interact. For a further
comparison of our work with that of Craig, we refer the reader to [13].

To describe in more detail our results about the water wave problem, consider the irro-
tational motion of an incompressible, inviscid fluid in an infinitely long canal of depth one.
Choose coordinates z1 € R, and x5 in the bounded direction. Let the free surface be given
by I'(¢), and let Q(t) denote the domain occupied by the fluid at time ¢. In the parameter
regime we study, the fluid’s surface I'(¢) can always be written as the graph of a function
n(z,t). The velocity of the fluid u = (u1,us) satisfies Euler’s equations:

ou+ (u-V)u = —Vp+g(0,-1),
Veu = 0. (1)

where p is the pressure and g is the acceleration due to gravity. The boundary conditions
appropriate to these circumstances are that us = 0 on the bottom of the canal, the pressure
is constant on the free surface, and (1, u1,u9) is parallel to (¢,T'(¢)).
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Initial Conditions: The KdV equation is formally derived in the limit of long-wavelength
motion. To insure that the motion we study is of this form, we assume that the initial
conditions for the water wave problem are of the form:

-1 L

n(z,0) = €@ (ex) , ui(z,n(x,0),0) = DPy(ex) . (2)

Remark 1.1 It may not be clear that specifying the initial shape of the fluid surface and
the horizontal component of the velocity restricted to the initial surface is sufficient to lead
to a well posed problem. However, due to the incompressible and irrotational nature of the
flow, this turns out to be the case. Indeed, a by-product of our approximation theorem is



a long-time existence and uniqueness theorem for solutions of the water-wave problem with
long-wavelength initial data.

Let f(X,T) and g(X,T) be solutions of the pair of uncoupled KdV equations

orf = —sOf+ 50 Q)

1 3
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with initial conditions f = Z(®5 + ®;) and g = (P — 7).

In informal terms, our result says that the solution of the water wave problem can be
approximated by f and g, the solutions of two uncoupled KdV equations. To state our
result more precisely, we introduce the weighted Sobelev spaces H™(n), with norm given by
[l grmmy = 111+ | - [2)™2u(-)||gm. We also define C7* to be the set of functions which are

bounded along with their first n derivatives, with [lullcp = 77, ||6%u|| oo . We then have:

Theorem 1.2 Fix s > 5. For all Cy,Ty > 0, there exist Co, €y > 0 such that for all e € (0,¢),
the following is true. If [|(®1, ®2)|| gs+6(2)nms+10(2) < C1, then there exists a unique solution
to the water wave problem with initial conditions (2), and if f and g are the solutions of (3),
then one can approximate the solution of the water wave problem as:

sup ]|| ( 171 ) —Ef(e(- — 1), %) ( _11 ) — 2g(e(- + 1), 31) ( } ) HCg—l < Cyedl?

te[0,Tp /€3

Remark 1.3 In fact, our approximation result contains more information than described
here. To save space we have omitted stating the most detailed form of the result. For further
details we refer the reader to [13].

The proof of Theorem 1.2 is quite involved, in large part due to the difficulty of establishing
the existence and uniqueness of the solutions of the Euler equations. Rather than describe
the details of the proof of Theorem 1.2, we will describe in general terms the strategy for
proving such approximation theorems, and then work out in detail another case in which
the approximation property is similar but the existence theory is much simpler, namely the
Fermi-Pasta-Ulam model.

Acknowledgements: The research of CEW was supported in part by the National Science
Foundation through grant DMS-9803164.

2 A strategy for proving approximation theorems

In this section we describe the strategy used in [13], and then in the following section we
implement that strategy to prove an approximation theorem for solutions of the FPU model.

The general approach we use is due to Kirrmann, Schneider, and Mielke [14]. Suppose
that one wishes to study an evolution equation of the form

Owu = Lu + B(u,u) ,

for L a linear operator and B some bilinear term. We will study solutions of small amplitude
and suppose that by some formal analysis we have derived an approximate solution which we



believe to be close to the true solution. We measure the extent to which it is a good approxi-
mation by defining the residual to be the amount by which it fails to satisfy the equation, and
assuming that the residual is small. More precisely, suppose that our approximate solution
is €21, and that Res(e2¢) = €2(0pp — L — 2B(1),%)) = O(€7), for v > 2.

We then write the true solution of the problem as u = €29 + ¢ R. If we can show that R
remains of O(1) for the times of interest to us and if 8 > 2 then we can conclude that €23
really does provide a good approximation to the true solution. Substituting this form for u
into our original equation we see that R satisfies the equation:

R = LR+ 2¢B(4, R) + €’ B(R, R) + ¢ P Res(e*y) (4)
We must address three points in relation to (4).

1. First of all, we will be interested in very long times — here ¢t ~ O(1/e3). We will
choose norms such that the linear evolution ;R = LR preserves the norm, but even so,
it appears that the linear term 2¢2B (v, R) might cause R to grow uncontrollably over
these very long times. In both water wave problem in [13] and the FPU model below, we
exploit the form of the non-linearity and the fact that the approximating function 1 has
a “long-wavelength” nature to show that in fact, one can bound ||2¢2B (3, R)|| < Ce3||R||
in some suitable norm. This allows us to control the linear terms in the equation for
the required time interval.

2. Provided the other two conditions are met, we can control the evolution of the nonlinear
equation for R using standard “energy methods”, if 8 > 3. We will choose (8 to satisfy
this inequality.

3. Finally, we must ensure that the inhomogeneous term does not cause R to grow too
much. This we will enforce by making sure that the residual satisfies ||e = Res(e?y)|| <
Ce3. To prove this estimate, we take advantage of the fact that we can add to our
approximation €29 any terms of O(e*), with y > 2 without effecting the fact that the
true solution of the equation is approximated by €24 to leading order. By choosing
these higher order terms appropriately, we will find that we can insure that the residual
is small.

Provided that these three points are satisfied, then as explained in [14], (and exploited in
a number of other works [10], [11], [12]), an easy application of Gronwall’s inequality implies
that R~ O(1) for 0 < ¢t < O(1/€®), and the approximation theorem follows.

3 The Fermi-Pasta-Ulam model

The Fermi-Pasta-Ulam model (FPU) is a system of coupled, nonlinear, Hamiltonian ordinary
differential equations:

d2qj

= V(@) — ) = V(g0 ~ @) JeA, )

where A C Z, and V(q) is the potential function for the interparticle forces. The FPU model
was first studied numerically by Fermi, Pasta, and Ulam, [8] for a finite set of oscillators
in order to see how energy was spread through the various modes of the system by the
nonlinear coupling. To their surprise, they found that most trajectories did not “thermalize”



as expected, but rather exhibited an almost periodic motion. These observations proved
to be extremely fruitful. On one hand, they are related to the Kolmogorov-Arnold-Moser
(KAM) theory on the preservation of quasi-periodic motions in nearly integrable Hamiltonian
systems. On the other hand, in [16], Kruskal and Zabusky derived the KdV equation as a
formal approximation to the FPU model and in studying the KdV equation numerically
noticed the fact that solitary waves of that equation seemed to pass through each other
without interaction, which they suggested might explain the fact that the FPU model failed
to thermalize. This observation lead in turn to the discovery of the complete integrability
of the KdV equation. Zabusky and Kruskal had considered initial data corresponding to
uni-directional propagation in their derivation of the KdV equation as an approximation
to the FPU model. Considering initial data of more general form, Zakharov [17] formally
derived the Bousinesq equation as an approximating equation for the FPU lattice, and then
discovered that the Bousinesq equation was also completely integrable! A nice description of
the history of this model in provided by Bukowski [2]. Kruskal and Zabusky and Zakharov
both derived their approximating equations by considering a continuum limit of the FPU
model in which the lattice spacing approached zero. The justification of these approximations
has been considered in two different circumstances. First, for uni-directional motion, Schwarz
[7] studied a system of ODE’s related to the FPU model and showed that when solutions
of his system of ODE’s were appropriately rescaled, they approached solutions of the KdV
equation. Closer to our work is that of Bukowski [2] who showed that general motions of the
FPU system could be approximated by solutions of the Boussinesq equation for long (but
finite) time intervals in the continuum limit. Bukowski’s study is complicated by the fact
that the Boussinesq equation is ill-posed, so that one must restrict attention to solutions
that lie on the center-manifold of the Bousinesq equation. In this section we prove yet a
third approximation result for the FPU model. Namely, we show that just as in the case of
the water-wave problem, solutions of the FPU model can be approximated as a sum of the
solutions of two independent KdV equations, one corresponding to a wave packet moving to
the left and one corresponding to a wave packet moving to the right. We present the details
of this approximation theorem below because it illustrates many of the issues that arise in
the water-wave problem in a situation where there are far fewer technical complications to
obscure the main ideas.

We will study an FPU model with infinitely many oscillators, and so we take A = Z in
(5). In addition, we rewrite (5) in terms of the difference variables r(j,t) = g;4+1(t) — ¢;(?),
so that (5) becomes

Gir(j,t) = V'(r(G + L,1)) + V'(r(j — 1,1)) = 2V'(r(j,1)) , jEZ. (6)

One cannot expect that the KdV equations describe the FPU model under all circum-
stances, so one must study some asymptotic regime in order to prove this sort of approxima-
tion theorem. The one that is usually chosen is the “continuum limit” in which one changes
the lattice spacing in (5) from 1 to h, and then lets h tend to zero. A nice formal derivation
of the KdV equation as an approximation to the FPU model under this scaling is contained
in [1], while a rigorous description of how this leads to the Boussinesq equation is contained
in [2]. Note that this rescaling means that a typical structure in the KdV equation (like a
soliton, for example,) is spread out over many lattice sites of the FPU model. Another way
of achieving this is to keep the lattice spacing in the FPU model fixed at 1, but to rescale
the spatial variable in the KdV equation. This is the course we adopt here, in part because
it is closer to our approach to the water-wave problem and in part because it also allows us
to compare our results with those of Friesecke and Pego [5] who have used a similar rescaling



to show that the FPU model possesses travelling wave solutions which remain close for all
time to a suitably rescaled soliton of the KdV equation. We will refer to this as the “long
wavelength” limit of the FPU model, though at least at a formal level it is just another way
of looking at the continuum limit.

Let us begin with a formal investigation of the behavior of a “small, long-wavelength”
solution. That is, we will assume that the solution of (6) is of the form r(j,t) = €2R(ej, 1),
for R: R x R — R. If we insert this Ansatz into (6), and expand V and R with respect to e,
we find that to lowest order in ¢, the function R satisfies 92 R = ¢2V"(0)82R, from which we
conclude that at least formally, solutions of (6) split into left and right moving wave packets
travelling with speed ¢ = €4/V"(0). This leads to our first hypothesis.

Hypothesis 1 The potential V € C", with r > 5. Its second derivative satisfies V" (0) =
c? > 0 and its third derivative satisfies V"' (0) # 0.

This lowest order calculation leads us to make a more refined “guess” for the form of the
solution of (6). We will try to write

r(z,t) = Ef(e(z + ct), Et) + Egle(x — ct), 3t) + *p(ex,et) , €7, (7)

with f, g, and ¢ all functions from R x R — R. Here, f and g represent the left and right
moving wave packets, and the dependence on the very slow time scale €3¢ is included to allow
for the effects of the terms that were omitted in the lowest order calculation. The presence
of the €*$ term may be more mysterious. These are the “higher order terms” described in
point 3 of Section 2. We will choose ¢ in such a way to make sure that the residual of our
approximation is small — note that so long as it remains of O(1) we can choose it however we
wish without affecting the lowest order approximation of r by a sum of f and g.

If we now substitute (7) into (6), and expand with respect to € a straightforward compu-
tation shows that

eHAPPf(-, ) + 2%g(-, 2t)} + €{2c010of (-, €¥t) — 2¢010a9(-, €3t) + 02 (ex, et) } + O(€d)
= {2 f(- + 6,3t) + E2g(- + €, ) + *dlex + €, et) + Ef (- — €,€31)
+e2g(- — €, €%t) + ' Plex — €, et) — 2(e2f (-, €3t) + €2g(-, €3t) + e*p(ex, et))}
1
+§V”l(0){(62f(' +6,63t) + 2g(- +€,3) + *plex + ¢, €t))? + (2 (- — €, €31) (8)
+e2g(- — €,€°t) + ' plex — ¢ et))” = 2(* f (-, €*1) + g (-, €*t) + €' p(ew, et))?}
+%V””(0){(e2f(- +6,E3) +2g(- +e,3) + etdlex + e, et)) + (€2 (- — €, €3)
+e2g(- — €,€°1) + ' plex — €, €t))’ = 2(” f (-, 1) + g (-, €°t) + €' p(ew, 1))’}
+0(e%)
In the interest of saving space, we have abused notation here — when used as an argument

of f, - = €(x + ct), but when used as an argument of g, - = e¢(z — ct). We make a further
approximation on the right hand side of (8) by replacing

1 1 1
f( + €, €3t) = f(a €3t) + 681f(',€3t) + §€2a%f('7 63t) + 5636513]0(.,6375) + 164811]"("6375)

1
j:ae‘r’a%f(-, 1) + 0(°)



with similar expansions for g(- & ¢, €3t) and ¢(ez £ €, et). (This requires a certain amount of
smoothness in f and g which we make precise below.) If we insert these expansions into (8),
we find that all terms of order €* cancel and we are left with:

€8{2c0,00f — 2¢0,02g + 024} + O(€®)
= (P 50U + 150t + 0R) + SV OB+ g2+ 209} + O ()

If the “fg” term were not present on the right hand side of (9), then it would be immediately
apparent that f and g satisfy a pair of uncoupled KdV equations. While the presence of
this term makes it appear that there is an interaction, physically, since f and g are moving
in opposite directions, the length of time during which their product will be large will be
very small in terms of the slow time scale over which the KdV solutions evolve. Thus one
might expect that the effect of the fg term is much smaller than that of either f2? or g?. To
implement this physical intuition rigorously, we take advantage of our freedom to choose ¢.
Namely, given two solutions f and g of the KdV equation, we will choose ¢ to satisfy

B =02 + V" (0)3:(f9) (10)
That (10) has a well behaved solution is guaranteed by the following lemma.

Lemma 3.1 Fix Ty > 0 and suppose that f(-,€3t) and g(-,€3t) are elements of H*%1(2),
with s > 2 for all 0 <t < Tp/ €3. Then there exists a constant C; > 0 such that

sup ||¢(, et)]ms < Ci( sup ]”f('a€3t)||Hs+1(2))( sup |lg(, )| mori2))

tE[OaTO/CB] tE[O,T0/€3 tE[O,To/ES]
and [(O2¢(¢, et))dé = 0 for all t.
Proof: See Appendix 1. [ |

If we choose ¢ in (7) to have the properties stated in this lemma and repeat the calculations
leading to (9), we find that now we have:

5{2c01 00 f — 2¢0102g} + O(e®)
1 1 1
= SR ((Lolf + ole) + IVIO@ (2 + ) O ()
Thus, up to terms of O(e®), we see that the solutions r(j,¢) of the FPU model can be

formally approximated in the long-wavelength limit by €2 f(-, €3t) + €2¢(-, €3t) where f and g
solve the uncoupled KdV equations:

VIIIO
2w,f = otr+ o (12)
~ . V™ (0)
2009 = 5019+ ———90ig (13)
(14)

In the remainder of this section, we show how to make these formal arguments rigorous.

We first make two further hypotheses concerned with the initial conditions for (6). First
note that if we want long-wavelength (and small amplitude) solutions, we expect that r(j,0) =
€21 (ej) for some function ¥;. In addition, our formal computation leads us to expect that
the solutions r move with velocities of O(e), so we expect that 0y ~ O(e)r. Our next
hypothesis formalizes this intuition.



Hypothesis 2 Fix constants Cy,Cy > 0 and s > 2. We assume that there are functions ¥V,
and Uy with ||¥| gs+12np7(3) < Cw, (£ = 1,2) such that [|r(-,0) — € (e)]lp2(2) < Coe* and
||(9t7‘(-,0) — 63‘112(6-)”[2(2) S 0065.

Remark 3.2 Here the Hilbert spaces £?(m) are the discrete analogues of the weighted Sobolev
spaces, H™(n), introduced above. Specifically, ||r(-)||§2(m) =2 ezl + 52)™r(4)|?.

Finally we note that since r(j,t) = ¢j4+1(t) — ¢;(t), it is reasonable to assume that
> jez 0ir(3,0) = 0. Furthermore, if the initial conditions for the FPU model satisfy this
conditions, the equations of motion guarantee that it will be satisfied or all time ¢. Thus, our
final hypothesis is:

Hypothesis 3 Assume that the initial conditions for (6) satisty > . _, 0yr(j,0) = 0.

JEL
Remark 3.3 Combining hypotheses (2) and (3), with an easy argument involving the Fourier
transform of ¥y, it is easy to show that there exists a function ¥§ € H2? N H'(3), and a
constant Cy with [|[U§ — Uy grang7(3) < Cge? and [ U5(€)d¢ = 0. Furthermore, if E(n) =

Jop U5(6)dE, then ||| gr2ngr2) < CqllPallgr2nmr(s)-
We now state the main theorem of this section.

Theorem 3.4 Fix Cy,Ty > 0 and suppose that hypotheses 1, 2, and 3 all hold. Then there
exists €y, C1 > 0 such that for all € € (0,¢p), the solution of (6) satisfies

sup ||r(-t) = (€ f(e(- + ct), 1) + Eg(e(- = ct), €*t)) e < Cre™/?
t€[0,To/€%]

where f and g are solutions of (12) and (13) respectively, with initial contitions f(£,0) =
3(P1(8) +E(6)/c) and g(€,0) = 5(¥1(§) — E(€)/0)-

Remark 3.5 Note that Hypothesis 2 and Remark 3.3 guarantee that the initial conditions
for the KdV equations (12) and (13) are in H'2> N H"(2). sFrom the existing theory for the
KdV equation, one can show that for any Ty > 0, the solutions f(X,T) and g(X,T) of (12)
and (18) remain in H2NH"(2) for 0 < T < Ty. The details of this argument are included in
[18]. This is sufficient smoothness of f and g to make the preceeding formal derivation of the
KdV equations rigorous — in fact with more effort one could probably reduce these smoothness
requirements further.

Proof: At various points in the proof it is convenient to work in terms of Fourier transformed
variables. Note that if r : Z — R, we define (Fr) : [-m, 7] — C by (Fr)(p) = >_; e~ Pir(j).
It is often convenient to extend (F'r) periodically to the whole real line. One can invert the
Fourier transform by r(j) = 5 [" (Fr)(p)edp, and hence for a function # € L*([—m, 7)),
we define (F~17)(j) = o= [ #(p)e’P!dp. Defining A(p) = c/2 — 2cos(p), and (Fs)(p,t) =
(0:(Fr)(p,t))/A(p), we can rewrite (6) as the first order system of equations

O (Fr)(p,t) = Ap)(Fs)(p,t) (15)
0y (Fs)(p,t) = —%(F(V'(T(-,t))))(p,t) (16)

Remark 3.6 Hypothesis (3) guarantees that } . d;r(j,t) = 0, and hence that (Fs)(p,?) is
well defined at p = 0.



Remark 3.7 Note that A(p) defines a bounded, linear (but non-local) operator on £2(Z) via

(Ar)(j) = FTHAO)Fr) (D))

While A admits no simple expression, one has (A%r)(j) = ¢?(2r(j) —r(j +1) —r(j — 1)). Note
also that if r(j) = const., then Ar = 0.

We will also need to use the Fourier transform of functions whose domain is the real num-
bers rather than the integers. This we define by (Ff)(p) = [ e™* f(z)dz, with (F~' f)(p) =
o [ €% f(z)dz. Because of our method of approximating the function r(j,t) whose domain
is the integers by functions whose domain is the entire real line, it will be useful to have
a “truncation operator”, 7 : L?(R) — ¢?(Z), which we define by (Th) = F~*(x[_r,nFh),
where x[_r ] is the characteristic function of the interval [~m, 7]. Note that 7" has norm one.
If h € C°(R), the other natural way to represent it as a function on the integers is simply
by restricting its domain. That these two approaches yield similar results, at least for “long
wave-length” functions is guaranteed by the following lemma.

Lemma 3.8 Fix m > 1. There exists a constant Cy, > 0 such that if h(z) = H(ex), with
H € H™, then

1
1Plz = Thle < Cne™ 2| H | m

Proof: The proof is an easy exercise with Fourier transforms which we complete in Appendix
2 [

We will also need to estimate the action of A on “long-wavelength” functions.

Lemma 3.9 Suppose in the following that h(x) = H(ex), for H € H™, m > 2. Then one
has the following estimates.

e 2| M| (17)
e 2||H] (18)

1zl

<
ARzl <

Proof: Once again, this in an exercise in Fourier tranforms which we defer to the appendix.
|

Following the strategy outlined in Section 2, we write
r(t) = €9(j,t) + €°R(t) , jEZ (19)

where 9(z,t) = f(e(z+ct), ¥t) +g(e(z — ct), 3t) + e2p(ex, et) is actually defined for all z € R
— not just for j € Z. In like fashion, we write s as

s(G,t) = eZF*(ﬁxH,ﬂ(p)(fatw(-,t))))(j,t) +€725(j, 1) (20)

= (AT, 1) + €728(j,1) -

The reason for this somewhat complicated definition is as follows. The natural approximation
for (F's) would be €2(F(8;))(p)/\(p). However, we cannot be sure that that F(8;%)(0) = 0,
and hence we choose to approximate F'(9;1)(p) by (F0:(¥(p,t))). We see from its definition
that this quantity vanishes at p = 0 and hence ﬁ(]—" dt)(p,t) is well defined.



The proof of Theorem 3.4 is completed by showing that if R and S are of O(1) at time
t = 0, they remain so for all ¢ < Ty/€3. From (15), we see that R and S satisfy the system of
equations

AR(G,t) = (AS)G:1) + AT O))(G:1) - 0 (5:1)) (21)
08G.) = TA=ZAV(@y+PR)(1) - ETPEATTEWG (22

We will bound the solutions of (21) in the norm

IR, S)I* =Y (R(G)* + 5(5)%) + —V”' 0) Y %(,b)

JEZ JEZ

Remark 3.10 If f and g are in H*(2), it is easy to show that for all times 0 < ¢t < Ty/é€?,
there exists ¢; and co such that for e sufficiently small,

ci(|Blle + [Slle) < [I(R, S)]| < ca([[Rlle> +[S]le2)

so the ||(-,-)|| norm is equivalent to the £2 norm on each component. Note too that || R|[sx <
Rl e2-

If we define Resi(€2y) = €2(Tow(%))(4,t) — Ob(4,t)), and Resa(€29)) = —C%AV’(GQQﬁ) -
e2(8;A=1T 8,(x)), then again following the strategy outlined in Section 2, we can expand
V'(e?) + €"/2R) and rewrite (21) as

OR = AS+ e /2Resi(€2) (23)
2
&S = —AR- Q%V”’(())Asz + G(R, ) + € /2 Resy(e%h) (24)

where given any constant Cg, there exists a constant Cg, such that ||G(R,9)||2 < Ca(3||R]|p2+
¢"/2||R||%,), for all |R||;> < Ch.

;From Lemma 3.8, we see that if f and g are in H'', then ||Resi(e24)||,2 < Ce'3/2.
(To see why we apparently lose more derivatives than required by Lemma 3.8, note that
&of =5+ f(81f) € H®, and similarly for g.)

Turning to Resz(e2), Note that V/(€24) = V'(0) +c2eyp + 3V (0) (eyp)? + R3(evp)), where
R3 =~ (e0)® By Lemma 3.9, ||AR3||2 < Ce'®/2, and by Remark 3.7, AV'(0) = 0. Next note
that (€290)2 = e(f2+ g2 +2fg) +265(f + g)¢ + 3¢%. Again, using Lemma 3.9, we note that
IAQE(S + 9) + %) | < Ce™2.

The only remaining terms in Ress are —e?A(f + g + €2¢) — L A(f2+ g + 2fg) —
AT (02(f + g+ €2¢)). Recalling the formal calculations earlier i 1n | this section which lead
to the definitions of f, ¢ and ¢, we expect that these terms are small. That the formal
calculations are correct is guaranteed by the following lemma.

Lemma 3.11 If f and g are elements of H'* N H(2), and satisfy (12) and (18), and ¢ is
as in Lemma 3.1, then

64V"'(0)

52 A(fP+g°+2f9) = AT (B} (F+g+E )l < O/ (25)

I=€*A(f +g+€°9) ~

10



We will prove this lemma in Appendix 3, and continue here with the proof of Theorem 3.4.
The estimates in the preceeding paragraphs imply that the £2 norm of both Res; and Ress
can be bounded by Ce'3/2. With these estimates in hand, we differentiate the norm ||(R, S)||?
along a solution and find that

62
GRS =257 RGO T Resi(@)5,0) +2 3 G, Ol oz AV O/ R) Gt
J J
+G(RY) (1) + e—7/2Re52< )0, 1)

V0 YOG, R + SV0) . ORGIAS) 1)

jet
+e 2 Res1 (¢*9)(4,1)] -

Note that the terms involving the residues, Res; and Resy can be bounded by Ce3(||(R, S)||)-
Similarly, if we differentiate 1/ with respect to time, we pick up a factor of ¢, so that we can
bound |§V”’(O) > jez(0(4,1))S () t)?| < CE||(R,S)||?>. Given the estimates on G(R,1))
above, for any Cr > 0, we can find Cg > 0 such that we can bound the term involving G
by Ca(€3||R)|p + 67/2||R||§2)”(R, S)||, for all |R||;2 < Cg. Finally the two remaining terms of
O(€?) cancel.

Combining all the estimates in the previous paragraph, we see that for any Cr > 0, we
can bound

d 2
SR, )l

IA

Cie*[|(R, S)|* + Coc ?||(R, S)II* + C3€’||(R, S)]| (26)
CLé’ (R, )| + Coe™?||(R, S)II* + 2(Cae® + €|(R, 9)?)

AN

for all ||(R,S)|| < Cg. Applying Gronwall’s inequality to this estimate, we see that provided
the initial conditions (R(j,0),S(4,0)) are sufficiently small, the solutions (R(-,t),S(-,t)) of
(21) are bounded by 2C3 exp(C1Tp), for all 0 < t < Tp/e3. However, both components of the
initial conditions have small /2 norm by Hypothesis 2 and equations (19) and (20). Since
the £°° norm is bounded by a constant times the ||(-,-)|| norm, this completes the proof of
Theorem 3.4. |
Acknowledgements: The work of CEW was supported in part by the National Science
Foundation through grant DMS-9803164.

Appendix 1 Proof of Lemma 3.1
Recall that ¢ = ¢(&, 7) satisfies (10) which we rewrite as the first order system

O = Y
Op = 01+ V"(0)0%(fg) (27)

Taking Fourier transforms, and writing out the explicit form of the semi-group of the homo-
geneous part of the equation, we obtain the (Fourier transform of a) particular solution of

(27)
FOT) \ _ gy [T ~psinlolr ~ NFFa)Ps) ),
((fzp)(p,T) ) =V ‘0)/0 (—p%os(p(r—s))(f(fg))(p,s) )d

The first thing we see from this formula is that (F1)(0,7) = 0 for all 7, from which we
conclude that [(92¢)(¢,7)dé =0 for all 7.

11



Next note that since

(F$)(p.7) = V"(0) /0 " psin(p(r — ) (F(f9)) (p, 5)ds

we have
oG las < s T 0o (m
e / IF G5 omsnydr < Cr [ 1) nsadr
= 02/0 sup (g +|x—|—cs\) il +|:L‘1—cs|)2)d5
X S:E)PT 1F (s €28) [ mmr12) 9 (s € 8) | me1 (2
< G3l[f (- €28) |l pmer )9 (-5 €8) || rmei (o) (28)

The estimate in Lemma 3.1 follows immediately from (28).

Appendix 2 Proof of Lemmas 3.8 and 3.9
Proof: (of Lemma 3.8) By Parseval’s identity, we have

Mz = Thi = 5 [ 1(FRl2)@) — (F(TR) @) Pdp

-7

By explicit calculation one finds that (Fh|z)(p) = %ZHEZ(}"H)(’&TM), while (F(Th))(p) =
(Fh)(p) = 1(FH)(B) by definition. Thus,

1
=T = 5 [ Il S
n#0
Loy [0
2T

1+ |1%|2)m/2 (14 |p+2€7rn2 |2)m/2

+ 27n
DL 2T g

ni,n27#0

x[[(FH)( IIFH)(

P+ 2mny
P )ldp

p +2mn
€

C 1 1
c [#le < Ce™ 3
2, T TEPy (L4 [P

IA

Proof: (of Lemma 3.9)

1 K
bzl = o= [ II(Fhlz)(p)Pdp

27r _x

3 3 [ IEn I P gy

nl 11

c 1 1 2 -1 2
< = m < C m

ni1,n2
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where we used the observation of the previous paragraph to rewrite (Fh|z) in terms of (FH).
This completes the proof of (17) The proof of (18) goes along similar lines. One has

1 7T
ARzl = oy IA(p)(Fhlz)(p)|*dp
c? 4 p+2mn p+2mn
< 5 > /_W(%OS(p)—2)II(?H)(%)III(7H)(%)IGZP
ni,ni
c? 1 1
< En§1 (1 + [F2L2)(n=D/2 (1 4 [222[2)(m=1)/2
7T/6 2\ym—1 2
<[ (@eos(eq) = 2)(1 + )" FH@) o)
—7/e
< S 7 e+ @y FH(g) g < ClHIm

2me |

Appendix 3 Proof of Lemma 3.11
4y,
Consider the terms in (25) depending on f alone — i.e. —e2Af — MAf2 —e2A"Y(T o2 f)

2
Recalling that f = f(e(z + ct),€3t), and that f is a solution of (iCQ), we see that 97f =
2O f + 20,02 f + 902 f, where to save space, we have supressed the arguments of f.
From (13), we see that 402 f = 8% f + 0{(f?) +201(f (03 f + 01 f)). Taking Fourier transforms,
we see that if f € H'', we can immediately bound |[e#A=1802f||;2 < Ce'3/2, s0 we can ignore
this term. (Note that the powers of p in the Fourier transform of this expression cancel the
possible divergence coming from the 1/A(p) near p = 0.) To bound the remaining terms, note

that taking Fourier transforms we have

Feeng - O a0 + 200101) - (29)
Mo 1 2
A=) - “LFE) - 5 xnn- SR
nin)2
202 OEn - BP0 ()

Note that the factors of ()" occur because of the fact that f is a function of ez. Also, we
have abused notation again here in that since f is really a function of f(e(z + ct), €3t), we get
not Ff, but e~/ Ff. However these factors of absolute value one have no effect on the
final estimate so we have omitted them to avoid cluttering the notation unncessarily. Because
f is of “long wavelength” form, we can use the results of Appendix 2 to express F'f in terms
of Ff. ;{From this we see that we can rewrite

64VI” (O)

64 m
20+ L0 E) = ametENE) S

2c2 €

(FUPDED) +Eres

where by the same methods used in the proof of Lemma, 3.9 we have the estimate ||F~1E.|[,2 <
Ce'3/2, since f € H'!' (In fact, for this estimate, it would suffice for f to be in H.). Thus,
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ignoring &,¢s, we find we must bound

. 64 m i
|- @@ FENC + D F ) (30)
o L L OpENG) + el OUENC) - P )
Alp)" € € € 12¢ ¢ € € 2ce ¢’ N2 -]

Writing out the integral corresponding to this norm, and changing variables in the integral
from p to ¢ = p/e, we find that we must estimate

/e €3
6/ {(Aea)*[=e(F /) (@) = 55 V" (O)(F(F))(9)] (31)

—m/e

3.2 2 _ ﬁ 4 w 2 2
+e' g (Ff)a) = 50 (FNHQ) + —5—a (F 1))}/ Meq)"dg

Recall that (A(eq))? = 2¢?(1 — cos(eq)) = 2 ((eq)? — %(eq)4) + O(e%). But this means that
e5c?
(A(ea)*[=e(FN)(@)] + (€Pq® ~ Eq4)(7:f)(Q) = 0("¢°)(Ff)(a)
while

63 " 65 m
M) 0 F )9+ D2 F ) 0) = 0 F -

Since |%| < 10/c for g € [—m/e, 7 /€], we can bound (31) by Ce'®(||(1 + ¢*)*F f||2, +||(1 +
q2)2(.7-"]02)||%2 < C’eli‘?’(||f||fq8 + ||f||§18) Thus, so long as f € H® ¢ H'!, we have

64V"'(0)

oz Af2 — NN T2 < CB/2 .

| - €Af —

The terms involving g and ¢ are handled in a very similar fashion, which completes the proof
of Lemma, 3.11.

References

[1] M. Ablowitz and H. Segur. Solitons and the inverse scattering transform. STAM Studies
in Applied Mathematics. STAM, Philadelphia, 1981.

[2] John Bukowksi. The Boussinesq limit of the Fermi-Pasta-Ulam Equation. PhD thesis,
Brown University, 1997.

[3] Pierre Collet and Jean-Pierre Eckmann. The amplitude equation and the Swift-
Hohenberg equation. Comm. Math. Phys., 132:139-153, 1990.

[4] Walter Craig. An existence theory for water-waves and the Boussinesq and Korteweg-de
Vries scaling limits. Comm. Part. Diff. Equations, 10:787-1003, 1985.

[5] G. Friesecke and R. Pego. Solitary waves on FPU lattices I: Qualitative properties,
renormalization and continuum limit. Preprint: to appear in Nonlinearity, 1999.

[6] T. Kano and T. Nishida. A mathematical justification for Korteweg—de Vries equation
and Boussinesq equation of water surface waves. Osaka J. Math., 23:389-413, 1986.

14



[7]

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Jr. Martin Schwarz. Korteweg-de Vries and nonlinear equations related to the Toda
lattice. Advances in Mathematics, 44:132-154, 1982.

E. Fermi J. Pasta and S. Ulam. Studies of nonlinear problems, I. Technical Report Los
Alamos Rep, LA1940, Los Alamos, 1955. reproduced in Nonlinear Wave Motion, A.C.
Newell, ed. AMS, Providence, RI, 1974.

Robert Pierce and C. Eugene Wayne. On the validity of mean-field amplitude equations
for counterpropagating wavetrains. Nonlinearity, 8:769-779, 1995.

Guido Schneider. Error estimates for the Ginzburg-Landau approximation. Zeit. Angew.
Math. Phys. (ZAMP), 45:433-457, 1994.

Guido Schneider. Justification of mean-field coupled modulation equations. Proc. Roy.
Soc. Edinburgh Sect. A, 127:639-650, 1997.

Guido Schneider. The long wave limit for a Boussinesq equation. SIAM Journal of
Applied Mathematics, 58:1237-1245, 1998.

Guido Schneider and C. Eugene Wayne. The long wave limit for the water wave problem,
I: The case of zero surface tension. preprint, 1999.

P. Kirrmann G. Schneider and A. Mielke. The validity of modulation equations for
extended systems with cubic nonlinearities. Proc. R. Soc. Edin., 122A:85-91, 1992.

A. van Harten. On the validity of Ginzburg—Landau’s equation. J. Nonlinear Science,
1:397-422, 1991.

N.J. Zabusky and M.D. Kruskal. Interactions of solitons in a collisionless plasma and
the recurrence of initial states. Phys. Rev. Lett., 15:240-243, 1965.

V. E. Zakharov. On stochastization of one-dimensional chains of nonlinear oscillators.
Sov. Phys. JETP, 38:108-110, 1974.

15



