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Abstract

The stability of traveling wave solutions of scalar, viscous conservation laws is inves-
tigated by decomposing perturbations into three components: two far-field components
and one near-field component. The linear operators associated to the far-field compo-
nents are the constant coefficient operators determined by the asymptotic spatial limits
of the original operator. Scaling variables can be applied to study the evolution of these
components, allowing for the construction of invariant manifolds and the determination
of their temporal decay rate. The large time evolution of the near-field component is
shown to be governed by that of the far-field components, thus giving it the same tem-
poral decay rate. We also give a discussion of the relationship between this geometric
approach and previous results, which demonstrate that the decay rate of perturbations
can be increased by requiring that initial data lie in appropriate algebraically weighted
spaces.
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1 Introduction

The stability of traveling wave solutions to viscous conservation laws has been extensively
studied, due to an interest in both their applications and the mathematical phenomena
they exhibit [1], [2], [3], [4]. One important aspect of the stability analysis is that the
associated linear operator has continuous spectrum that is contained in the left half of the
complex plane but touches the imaginary axis at the origin. Thus, there is no spectral gap
between the stable (negative real part) and center (zero real part) parts of the spectrum.
This property prevents the direct application of standard tools in stability analysis, such as
invariant manifold theory.

Several different techniques have been developed in order to overcome this difficulty. For
example, in the context of parabolic, scalar equations, Sattinger analyzed the evolution of
perturbations in exponentially weighted spaces [5]. In these spaces, the essential spectrum of
the linear operator is shifted into the left half of the complex plane, thus creating a spectral
gap and resulting in exponential temporal decay of perturbations. More recently, Jones,
Gardner, and Kapitula developed a method for analyzing the stability of traveling waves of
scalar, viscous conservation laws in algebraically weighted spaces [1]. They directly analyze
the associated semigroup using detailed estimates on the resolvent operator, which they
obtain by extending the Evans function into the essential spectrum at the origin. By working
in appropriate algebraically weighted spaces, they obtain an algebraic temporal decay rate
of perturbations. Zumbrun and Howard obtained stability results for traveling waves of,
not necessarily scalar, viscous conservation laws [4]. They utilize the scattering structure
of the associated semigroup, decomposing it into “scattering” and “excited” modes that
are similar to our far-field and near-field components, respectively. This allows for sharp,
pointwise estimates, even inside regions of the essential spectrum, and leads to stability
with respect to certain algebraically weighed spaces.

In this paper, the stability of traveling wave solutions of scalar, viscous conservation
laws is investigated by decomposing perturbations into three components: two far-field
components and one near-field component. We find that we can apply geometric tools like
the invariant manifold theorems to obtain algebraic decay results similar to those of [1] and
[4]. The main advantage to using the decomposition described below, is that it provides
detailed information on the underlying structure that governs the decay of perturbations of
these traveling waves. For example, the far-field analysis illustrates the importance of the
speed and direction of the perturbation and its initial asymptotic spatial decay, and how
these two properties interact to determine the overall temporal decay rate of solutions to
the traveling wave. In addition, the method illustrates that it is possible to analyze different
pieces of the perturbation in different function spaces that are appropriate for the structure
of the linear operator in the corresponding regions of the spatial domain. This technique is
potentially relevant for other classes of equations, as well.
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The focus of this work is on equations of the form

∂tu = ∂2
xu− ∂xf(u), (1)

where u = u(x, t) : R × R
+ → R, and f : R → R is C2. A traveling wave solution,

φ(ξ) = φ(x− ct), of the above equation satisfies

0 = φ′′ + cφ′ − f ′(φ)φ′. (2)

In order to study the stability of the traveling wave, we will consider the evolution of
perturbations in the moving coordinate frame and investigate solutions of the form u(ξ, t) =
φ(ξ) + ṽ(ξ, t). The evolution of the perturbation ṽ is given by

∂tṽ = ∂2
ξ ṽ + [c− f ′(φ(ξ))]∂ξ ṽ − f ′′(φ(ξ))φ′(ξ)ṽ − ∂ξN(ṽ, ξ),

where
N(ṽ, ξ) = f(φ+ ṽ) − f(φ) − f ′(φ)ṽ. (3)

It this context, it is natural to study the evolution of the integrated form of perturbations
[1]. Define

v(ξ, t) =

∫ ξ

−∞
ṽ(y, t)dy. (4)

In order to work in reasonable function spaces, it will be required that
∫

ṽ(ξ, t)dξ = 0 for all
t ≥ 0. This need not place any additional restrictions on the allowable perturbations. To
see this, notice that for any solution to equation (1), ∂t

∫

u(ξ, t)dξ = 0. Hence,
∫

u(ξ, t)dξ =
∫

u(ξ, 0)dξ. Suppose that
∫

ṽ(ξ, 0)dξ =
∫

(u(ξ, 0)− φ(ξ))dξ = M 6= 0. If we were to instead
study the stability of the translated wave φ(ξ + δ), where

∫

(φ(ξ + δ) − φ(ξ)) dξ = M ,
then the new initial data would have zero mass. Thus, this transformation serves to fix
a particular translate of the wave, and we may assume without loss of generality that
∫

ṽ(ξ, t)dξ = 0.
We remark that this transformation removes the zero eigenvalue from the spectrum

of the linear operator. It also makes the operator more amenable to the decomposition
we employ below. For example, in the near-field analysis, section 4, it allows us to push
the entire spectrum into the left half plane to obtain exponential decay of the associated
semigroup.

The evolution of v is given by

∂tv = ∂2
ξ v + [c− f ′(φ(ξ))]∂ξv −N(∂ξv, ξ). (5)

The associated linear operator is

Lv = ∂2
ξ v + [c− f ′(φ(ξ))]∂ξv, (6)
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with asymptotic limits
L± ≡ ∂2

ξ + α±∂ξ = lim
ξ→±∞

L. (7)

Here we have defined α± ≡ limξ→±∞(c−f ′(φ(ξ)). It can be shown that, due to the dynamics
of the traveling wave (assuming it approaches its asymptotic limits at an exponential rate),
α− < 0 < α+. This also follows from the Lax entropy condition [1]. As a result, data will
be advected to the left near +∞ and to the right near −∞. Because of this fact, we will
use the terminology in [4] and refer to this operator as “inflowing”.

Inflowing operators typically have the property that the decay rate of solutions can
be increased by working in weighted function spaces. A nice intuitive explanation of this
property is given in [4]. Consider an equation for which data flows in toward zero at
a rate α in a weighted space: ||u||W = ||Wu||, where W = W (ξ) is a weight function
that increases as |ξ| increases. Any mass that the solution has near infinity will initially
experience a large weight, because W (ξ) is large when |ξ| is large. As information gets
transported in toward zero, the weight function decreases, thus causing the norm of the
solution to decay in the weighted space. This generally leads to a decay rate given roughly
by supξ W (|ξ|)/W (|ξ| + αt). Hence, exponential weights lead to exponential decay, while
algebraic weights lead to algebraic decay. These ideas are connected to the exponential
decay results of [5] and the algebraic decay results of [1].

In this paper, invariant manifolds are used to provide a geometric proof that the in-
flowing operator in equation (6) does in fact produce algebraic decay of perturbations to
the traveling wave in algebraically weighted L2 spaces. In addition, it gives very detailed
information about the way in which perturbations of the wave decay. The main ideas used
in the proof are as follows. We wish to exploit the fact that the asymptotic operators L±

not only determine that the operator is inflowing, but are also relatively easy to understand.
We will define the functions v+(ξ, t), v−(ξ, t), and vn(ξ, t) so that v+ represents the far-
field behavior of solutions near +∞, v− represents the far-field behavior of solutions near
−∞, and vn represents the near-field behavior of solutions. The evolution of v+ and v−

will essentially be governed by equation (5), but with the operator L replaced by L+ and
L−, respectively. The evolution of vn will be governed by the remaining parts of the linear
operator. Furthermore, in order to ensure that the asymptotic aspects of the equation are
isolated in the evolution of the far-field components, the near-field equation will include all
coupling between the three pieces of the perturbation.

The relation between the three components and the original perturbation v will be given
by

v(ξ, t) = W+(ξ)v+(ξ, t) +W−(ξ)v−(ξ, t) +Wn(ξ)vn(ξ, t), (8)
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where

W+(ξ) = e
α+

2
ξ|φ′(ξ)| 12

W−(ξ) = e
α−

2
ξ|φ′(ξ)| 12 (9)

Wn(ξ) = sech(ǫξ),

for an appropriate choice of ǫ. The weight function W+ approaches a constant at +∞ and
decays to zero exponentially fast as ξ → −∞. Similarly, W− approaches a constant at
−∞ and decays to zero exponentially fast as ξ → +∞. The function Wn decays to zero
exponentially fast as ξ → ±∞. Thus, the weights are chosen to isolate the appropriate
component of the perturbation in various regions of the spatial variable ξ.

Effectively, we analyze each component in an appropriate exponentially weighted space.
For example, suppose we were instead to define v(ξ, t) = W+(ξ)v+(ξ, t). Then we would
be analyzing the evolution of v in the exponentially weighted space defined by 1/W+,
which requires a minimum amount of exponential decay as ξ → −∞. By using all three
components simultaneously, as in equation (8), the full perturbation v need only have
polynomial decay at infinity.

The equations of evolution of the three components will be of the form

∂tv
+ = ∂2

ξ v
+ + α+∂ξv

+ − 1

W+
N(∂ξ(W

+v+), ξ)

∂tv
− = ∂2

ξ v
− + α−∂ξv

− − 1

W−
N(∂ξ(W

−v−), ξ) (10)

and
∂tv

n = Avn −N (v+, v−, vn, ξ) + F (v+, v−, ξ), (11)

where the linear operator A and the functions N and F will be discussed below. To
determine the asymptotic temporal behavior of the three components, we first analyze that
of v±. The spectrum of the linear operators in the equations for v±, L±, have spectrum
that lie on parabolas in the left half of the complex plane and touch the imaginary axis at
the origin (see figure 1a). As a result, we can not directly use invariant manifolds to study
their evolution. To overcome this, we will use a technique developed in [6] and [7] and apply
scaling variables to these two equations. If we define

v±(ξ, t) =
1√
t+ 1

w±(
ξ + α±(t+ 1)√

t+ 1
, log(t+ 1))

η± =
ξ + α±(t+ 1)√

t+ 1
, τ = log(t+ 1), (12)

then the evolution of w± is given by

∂τw
± = Lw± −N±(w±, η±, τ). (13)
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The linear operator in the above equation is given by

L = ∂2
η +

1

2
η∂η +

1

2
, (14)

where η = η±. We remark that these new spatial variables are natural in the sense that
they move with the perturbation, rather than with the wave, thus capturing the inflowing
nature of the linear operator. Furthermore, these scaling variable are useful because the
spectrum of L in the weighted L2 spaces

L2(m) ≡ {u : (1 + η2)
m
2 u ∈ L2} (15)

is given by (see figure 1b) [8], [7]

σ(L) =

{

λ ∈ C : Re(λ) ≤ 1 − 2m

4

}

⋃

{

−k
2

: k = 0, 1, 2, . . .

}

. (16)

Thus, for m > 1/2, there is a spectral gap between the stable and center parts of the
spectrum. If m is increased, the essential spectrum is pushed further into the left half
plane, revealing more isolated eigenvalues. As a result, we may use invariant manifolds to
determine the asymptotic decay rates of w±.
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Figure 1: a) The spectrum of the operators L±, given by Re(λ) = − (Im(λ))2

(α±)2
. b) The

spectrum of the operator L, for m = 3.

The eigenfunctions associated to the eigenvalues −k
2 are given by [8], [7]

ϕ0(η) =
1√
4π
e−

η2

4 , ϕk(η) = ∂k
η (ϕ0(η)). (17)
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If we take m > 2, for example, then we may construct a two-dimensional center-stable
manifold tangent at the origin to the subspace spanned by the eigenfunctions ϕ0 and ϕ1.
Any solution not on this manifold will decay with a rate given by O(e−

3
4
τ ) as τ → ∞.

Hence, an asymptotic expansion for w± is given by

w±(η, τ) = b±0 ϕ0(η) + b±1 e
− 1

2
τϕ1(η) + h(b±0 , b

±
1 e

− 1
2
τ ) + O(e−

3
4
τ ), (18)

where h is the function that defines the center manifold. Recall from equation (8) that
in order to see how the evolution of w± effects the evolution of v, we must determine the
evolution of the combined quantities W±v±. We focus on that of W+v+, as the other is
similar, and compute only the leading order term in the above expansion. We obtain

W+(ξ)v+(ξ, t) ∼ b+0
e

α+

2
ξ|φ′| 12√
t+ 1

ϕ0(
ξ + α+(t+ 1)√

t+ 1
)

= b+0
|φ′| 12

√

4π(t+ 1)
e
− ξ2

4(t+1) e−
(α+)2

4
(t+1).

Notice that the weight function has combined with the Gaussian φ0 to produce exponential
temporal decay. However, this is really a consequence of changing our point of view back
to the frame of reference of the traveling wave, ie by evaluating φ0 at the point (ξ+α+(t+
1))/

√
t+ 1. If we work in the frame of reference traveling with the perturbation, the (η, τ)

variables, then we get the detailed asymptotic expression for the form of the decay toward
the (stable) traveling wave given by (18). This emphasizes the importance of the choice of
function space in these stability studies.

Because each eigenfunction φk contains a Gaussian of this form, each term in the asymp-
totic expansion in (18) will also decay exponentially in time when evaluated in the frame
of reference moving with the wave. Hence, the evolution of the far-field components of the
perturbation will be governed by the higher order terms, which decay at a rate given by
O((t+ 1)−

5
4 ) in the original, unscaled variables. We remark that one must also check that

the component on the center manifold that results from the function h in equation (18) also
decays at this rate. We will address this issue in section 3 below.

Given the fact that the explicit terms in (18) decay much faster than is apparent at first

glance, one might also wonder if the decay rate of those grouped together in the O(e−
3
4
τ )

remainder is optimal. In fact, at least at the linear level, one can compute the eigenfunctions
associated with the elements of the essential spectrum of L (the shaded region in figure
1b) to verify that, even after combining them with the weight function W+, they decay
only algebraically in time, whether evaluated in the frame of reference moving with the
perturbation or the frame of reference moving with the wave.

More generally, one can increase the decay rate of perturbations by increasing the alge-
braic weight, ie increasing m. Rather than working in L2(m), however, below we will work
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in
H2(m) = {u : u, ∂ηu, ∂

2
ηu ∈ L2(m)}. (19)

The reason for this is that we will need a bit more smoothness in order to deal with the
nonlinearity. Because of the transformation in equation (4), it is natural to require one
derivative of the initial data. The second is used in our analysis so that, via the embedding
theorems, the derivatives of the functions are defined pointwise. This property will be
used in the near-field analysis in section 4. Thus, we obtain the following theorem on the
asymptotic behavior of the far field components.

Theorem 1.1 Fix any m > 1/2. Given any sufficiently small initial data v±(ξ, 0) = v±0 ∈
H2(m), the corresponding solution satisfies

||W±v±(t)||H2 ≤ C(v±0 )

(t+ 1)(
2m+1

4
−ǫ)

, (20)

for any ǫ > 0, where C(v±0 ) → 0 as ||v±0 ||H2(m) → 0.

We remark on the presence of the small constant ǫ in the above theorem. Due to the
location of the spectrum of the operator L (see equation (16)), one might expect decay at

exactly the rate (t+ 1)−
2m+1

4 . However, the estimates on the decay of the semigroup, when
projected onto the stable subspace, are not quite this strong (see [7]). Furthermore, the
invariant manifold theorem of Chen, Hale, and Tan [9] that we use to obtain this result
guarantees decay to the center manifold at a rate arbitrarily close, but not equal, to the
linear decay rates. Hence, even if the semigroup bounds held for ǫ = 0, the presence of the
nonlinearity could slightly weaken the result. We note that this rate is essentially the same
as that found in [1] (if one equates our m with their k), if one adjusts for the fact that we
work in weighted L2 spaces, rather than weighted L∞ spaces. However, in [1] it is required
that k ≥ 2, whereas here we need only m > 1/2, which allows for more slowly decaying
initial data.

In order to analyze the evolution of the near-field component, we will work in an expo-
nentially weighted space defined by the weight function 1/Wn. In this space, the spectrum
of the linear operator associated to the near-field component, A, is shifted off the imaginary
axis into the left half plane. The resulting linear semigroup decays exponentially in time.
Hence, the term in equation (11) that limits the asymptotic temporal decay of vn is the
inhomogeneity, F (v+, v−, ξ). This term is governed by the far-field components, and so it
decays algebraically in time. This results in algebraic decay of the near-field component,
and we see that it is effectively slaved to the far-field pieces of the perturbation. We obtain
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Theorem 1.2 Fix any m > 1/2. Given any sufficiently small initial data vn(ξ, 0) = vn
0 ∈

H2, the corresponding solution satisfies

||vn(t)||H2 ≤ C(vn
0 , v

+
0 , v

−
0 )

(t+ 1)(
2m+1

4
−ǫ)

, (21)

for any ǫ > 0, where C(vn
0 , v

+
0 , v

−
0 ) → 0 as ||v+

0 ||H2(m), ||v−0 ||H2(m), and ||vn
0 ||H2 → 0.

By combining these results, we see that the far-field components, and hence the asymp-
totic limits of the linear operator, really do govern the behavior, in the spaces H2(m), of
perturbations of the traveling wave.

Theorem 1.3 Fix any m > 1/2. Given any sufficiently small initial data v(ξ, 0) ≡ v0 ∈
H2(m), the corresponding solution of equation (5) satisfies

||v(t)||H2 ≤ C(v0)

(t+ 1)(
2m+1

4
−ǫ)

, (22)

for any ǫ > 0, where C(v0) → 0 as ||v0||H2(m) → 0.

An outline for the remainder of the paper is as follows. In section 2, we present the details
of the decomposition of perturbations into far-field and near-field components. Section 3
contains the analysis of the far-field components, including a proof of theorem 1.1. In the
fourth section, the evolution of the near-field component is investigated, and theorem 1.2 is
proven. Finally, in section 5, we explicitly carry out the decomposition for the example of
Burgers equation.

2 Decomposition of perturbations

We now state the details of the decomposition of perturbations. An expository explanation
follows. Define the far-field components v+(ξ, t) and v−(ξ, t) to be solutions of

∂tv
+ = ∂2

ξ v
+ + α+∂ξv

+ − 1

W+
N(∂ξ(W

+v+), ξ) (23)

∂tv
− = ∂2

ξ v
− + α−∂ξv

− − 1

W−
N(∂ξ(W

−v−), ξ), (24)

with initial data

v+(ξ, 0) = v−(ξ, 0) =
v(ξ, 0)(1 −Wn(ξ))

W+(ξ) +W−(ξ)
. (25)

In the above, W± and Wn are as defined in equation (9), N is as defined in equation (3), and
v(ξ, 0) is the initial data for the full perturbation v. We remark that, due to the dynamics of
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the wave, W+ +W− 6= 0 for all ξ, and the far-field weights satisfy the differential equations

W+
ξ =

1

2
[α+ − (c− f ′(φ))]W+

W−
ξ =

1

2
[α− − (c− f ′(φ))]W−. (26)

Define the near-field component vn(ξ, t) to be a solution of

∂tv
n = ∂2

ξ v
n + [2

Wn
ξ

Wn
+ (c− f ′(φ))]∂ξv

n + [
Wn

ξξ

Wn
+
Wn

ξ

Wn
(c− f ′(φ))]vn

−N (vn, v+, v−, ξ) + F (v+, v−, ξ),

(27)

where

N (vn, v+, v−, ξ) =
1

Wn
N(∂ξ(W

+v+ +W−v− +Wnvn), ξ) − 1

Wn
N(∂ξ(W

+v+), ξ)

− 1

Wn
N(∂ξ(W

−v−), ξ),

(28)

and

F (v+, v−, ξ) =
1

Wn
[W+

ξξ +W+
ξ (c− f ′(φ))]v+ +

1

Wn
[W−

ξξ +W−
ξ (c− f ′(φ))]v−. (29)

Note that N may, along with F , contribute some inhomogeneous terms to the near-field
equation. We will denote the linear operator in equation (27) by

Avn = ∂2
ξ v

n + [2
Wn

ξ

Wn
+ (c− f ′(φ))]∂ξv

n + [
Wn

ξξ

Wn
+
Wn

ξ

Wn
(c− f ′(φ))]vn

= ∂2
ξ v

n + [−2ǫ tanh(ǫξ) + (c− f ′(φ))]∂ξv
n

+ [ǫ2(tanh2(ǫξ) − sech2(ǫξ)) − ǫ tanh(ǫξ)(c− f ′(φ))]vn.

(30)

The initial data for the near-field component is

vn(ξ, 0) = v(ξ, 0). (31)

One can directly check that, if v+, v−, are vn defined in the above manner, then v as given
in equation (8) is a solution to equation (5) with the appropriate initial data.

This decomposition can be understood as follows. We want to define v+ and v− so
that the linear part of their evolution will be governed by the linear operators L+ and
L−, given in equation (7). In the far-field equations there should be no coupling with the
other components. If we simply substitute W±v± for v in equation (5), then the choice
of the weight functions W±, given in equation (9), is such that the advection coefficient
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in the resulting linear operator is exactly α±. There is an additional linear term of the
form [W±

ξξ + W±
ξ (c − f ′(φ))]v±/Wn. We do not want this term to remain in the far-field

equations, because then the scaling variables in equation (12) will not transform the linear
operator in the desired manner. As a result, these terms are included in the inhomogeneity
F in the near-field equation. Furthermore, we retain in the corresponding far-field equation
only that component of the nonlinearity that depends upon v+ or v−. This is to avoid
coupling in the far-field equations, so that the nonlinearity is relatively easy to understand
in terms of the scaling variables.

The linear part of the near-field equation is just the linear operator L in equation (6)
when expressed in the exponentially weighted space defined by the function 1/Wn. The
inhomogeneity F results from the linear parts of the far-field equations that differ from the
asymptotic operators L±, as explained above. The remaining term in equation (27), N ,
comes from the original nonlinearity N(∂ξv, ξ), after subtracting those parts which were
included in the far-field equations.

We now turn to the choice of ǫ in the weight function Wn. The idea is to pick ǫ so that
the linear operator A in equation (30) has spectrum contained entirely in the left half of the
complex plane with a nonzero distance to the imaginary axis. This will lead to exponential
temporal decay of the associated semigroup, which can be used to control the remaining
terms in the equation that involve vn. The inhomogeneity F is controlled by the far-field
components. Therefore, if v± decay only algebraically, the inhomogeneity will limit the
decay of vn, thus determining its asymptotic behavior. Additional care must be taken in
the choice of ǫ, due to the factor 1/Wn in the functions N and F . We will return to this
issue in section 4, below.

3 Analysis of the far-field components

We now determine the behavior of the far-field components. The details will be carried out
for v+ only, as those of v− are similar. The equation of evolution of v+, as given in equation
(23), is

∂tv
+ = ∂2

ξ v
+ + α+∂ξv

+ − 1

W+
N(∂ξ(W

+v+), ξ). (32)

We will use a slightly modified version of the scaling variables given in equation (12). This
is to elucidate the effect of the nonlinearity on the dynamics within the center manifold,
which we construct below.
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Define the scaling variables (η, τ) and w(η, τ) to be

v+(ξ, t) =
1

(t+ 1)
1
2
−σ
w(
ξ + α+(t+ 1)√

t+ 1
, log(t+ 1))

η =
ξ + α+(t+ 1)√

t+ 1
, τ = log(t+ 1). (33)

The equation of evolution of w is

∂τw = (L − σ)w − e(
3
2
−σ)τ

W+(e
1
2
τη − α+eτ )

N(e−(1−σ)τ∂η(W
+w), e

1
2
τη − α+eτ ), (34)

where the linear operator is L = ∂2
η + 1

2η∂η + 1
2 . As mentioned in section 1, the spectrum

of this operator in the space L2(m) is known.

Proposition 3.1 [8], [7] Fix m ≥ 0 and let L be the linear operator in L2(m), defined on
its maximal domain. Then the spectrum of L is

σ(L) =

{

λ ∈ C : Re(λ) ≤ 1 − 2m

4

}

⋃

{

−k
2

: k = 0, 1, 2, . . .

}

.

Moreover, if m > 1
2 and if k = 0, 1, 2, . . . satisfies k + 1

2 < m, then λk = −k
2 is an isolated

eigenvalue with multiplicity 1. (See figure 1b.) Furthermore, suppose m > 1
2 is fixed. Then

for k = 0, 1, 2, . . . , k + 1
2 < m, the eigenfunctions ϕk associated to the eigenvalues λk are

ϕ0(η) =
1√
4π
e−

η2

4 , ϕk(η) = ∂k
η (φ0(η)). (35)

We wish to construct, for any fixed m > 1
2 , a center-stable manifold with dimension given

by the greatest integer less than or equal to m + 1
2 . To do so, we will apply the invariant

manifold theorem of Chen, Hale, and Tan [9]. As mentioned above, we will work in H2(m)
and use the additional smoothness to deal with the nonlinearity in section 4. As a result,
we will need to satisfy the assumptions of [9] in H2(m). We remark that, in this space, the
spectrum of L remains as in proposition 3.1.

In order to show that the hypotheses of this theorem are satisfied, we will need some
properties of the linear operator L and the semigroup it generates.

Proposition 3.2 [7] The linear operator L is the generator of a strongly continuous semi-
group on the space H2(m) for any fixed m ≥ 0. In addition, let 1 ≤ p ≤ q ≤ ∞, m ≥ 0,
and T > 0. Then for any α ∈ N and 0 < τ ≤ T there exists a constant C such that

||bm∂α(eLτf)||Lp ≤ C

a(τ)
1
2
( 1

q
− 1

p
)+ α

2

||bmf ||Lq , (36)

where b(η) = (1 + η2)
1
2 and a(τ) = 1 − e−τ .
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Note that, due to the form of the scaling variables in equation (33), ξ = ξ(η, τ), and
hence the nonlinearity in equation (34) is dependent on the temporal variable τ . The
invariant manifold theorem in [9] is directly applicable to autonomous equations, and so we
define a new dependent variable y ∈ [0, 1] via

τ = log

(

2 − y

y

)

. (37)

Equation (34) can then be written

∂τw = (L − σ)w −N+(∂η(W
+w), η, y)

∂τy = −y +
1

2
y2, (38)

where

N+(∂η(W
+w), η, y) =

e(
3
2
−σ)τ(y)

W+(e
1
2
τ(y)η − α+eτ(y))

N(e−(1−σ)τ(y)∂η(W
+w), e

1
2
τ(y)η − α+eτ(y))

τ(y) = log

(

2 − y

y

)

. (39)

In order to apply the invariant manifold theorem of [9], we will need the following assumption
on the nonlinearity N+.

Assumption 1 Fix T > 0 and m > 1/2. For any w ∈ C0([0, T ], H2(m)) define

R(τ) =

∫ τ

0
eL(τ−s)N+(w(s))ds. (40)

Then R(τ) ∈ C0([0, T ], H2(m)), and there exists a C(m, r0, T ) such that, if w1, w2 ∈
C0([0, T ], H2(m)) with sup0≤τ≤T ||wi(τ)||H2(m) ≤ r0 , then the corresponding integral terms
satisfy

sup
0≤τ≤T

||R1(τ) −R2(τ)||H2(m) ≤ C(m,T, r0) sup
0≤τ≤T

||w1(τ) − w2(τ)||H2(m).

Furthermore, the constant C(m,T, r0) → 0 as T → 0 and as r0 → 0.

We remark that this assumption is less strict than, for example, requiring that the non-
linearity be Lipschitz in H2(m), as the action of the semigroup has a smoothing effect.
However, in verifying this assumption for a particular nonlinearity, the semigroup cannot
absorb both of the derivatives, as there would then be too many factors of the function a(τ)
in the denominator of the bound in equation (36). Typically, the semigroup can absorb

13



one derivative, and the other derivative must be absorbed by the nonlinearity itself. For
example, the action of the semigroup is explicitly known [7]:

(eLτf)(η) =
e

τ
2

√

4πa(τ)

∫

R

e
−

(η−y)2

4a(τ) f(ye
τ
2 )dy, (41)

where a(τ) = 1 − e−τ . Thus, using integration by parts in the above expression, one can
write

||∂2
η

∫ τ

0
eL(τ−s)N+(w(s))ds||L2(m) = ||

∫ τ

0

(

∂ηe
L(τ−s)

)

(

∂ηN
+(w(s))

)

ds||L2(m), (42)

and obtain the bound in assumption 1 using this expression and properties of N+. (See the
example in section 5, in particular lemma 5.1.)

Consider now a slightly modified version of equation (38), in which the nonlinearity is
cut off outside of a small neighborhood of zero inH2(m). This is necessary so that the size of
the Lipschitz constant of the nonlinearity can be made small by choosing this neighborhood
to be small. Let χr0(w) : H2(m) → R

+ be a smooth function satisfying χr0(w) = 1 if
||w||H2(m) ≤ r0 and χr0(w) = 0 if ||w||H2(m) ≥ 2r0. We remark that such a function exists
because H2(m) is a Hilbert space [10]. The equation for which a center-stable manifold will
be constructed is

∂τW = L+W + N+(W, η), (43)

where

W =

(

w
y

)

, L+ =

(

L − σ 0
0 −1

)

, N+(W, η) =

(

−χr0(w)N+(w, η, y)
1
2y

2

)

. (44)

Proposition 3.3 Given any sufficiently small r0 and sufficiently small w(ξ, 0) ∈ H2(m),
there exists a solution to equation (43) satisfying w(τ) ∈ C0([0,∞), H2(m)).

Proof Consider the integral form of solutions to equation (43),

W (τ) = eL
+τW (0) +

∫ τ

0
eL

+(τ−s)N+(W (s))ds. (45)

Using the fact that the linear operator L is the generator of a strongly continuous semigroup
and assumption 1, local existence can be proven via a contraction mapping argument.
Global existence will then follow due to the presence of the cutoff function χr0 . More
specifically, a solution can fail to exist globally only if it becomes unbounded in norm in
finite time. But, if the solution were to leave a ball of radius 2r0 in H2(m), then the
nonlinearity would become zero. The evolution would then be governed only by the linear
operator, and hence the solution cannot blow up in finite time. �

In order to apply the invariant manifold theorem of [9], we will need the following
proposition.
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Proposition 3.4 Let Φr0
1 be the semiflow associated to equation (43) at time τ = 1. Then,

if r0 > 0 is sufficiently small, the semiflow can be decomposed as

Φr0
1 = Λ + R,

where Λ is a bounded linear map, and R is a globally Lipschitz map such that Lip(R) ≤
C(r0), where C(r0) → 0 as r0 → 0. Furthermore, R is C1 with R(0) = DR(0) = 0.

Proof Consider equation (45) for fixed τ = 1, and define

Λ = eL
+(1), R =

∫ 1

0
eL

+(1−s)N+(·)ds.

By proposition 3.2, Λ is a bounded linear map on H2(m), and by assumption 1, R is a
globally Lipschitz map with Lip(R) ≤ C(r0), where C(r0) → 0 as r0 → 0. To see that
R(0) = DR(0) = 0, note that

sup0≤s≤1 ||R(W (s))||H2(m)

sup0≤s≤1 ||W (s)||H2(m)
→ 0 as sup

0≤s≤1
||W (s)||H2(m) → 0.

�

As a result of proposition 3.4, the hypotheses of the invariant manifold theorem in [9] are
satisfied. Roughly speaking, the spectral structure and semigroup bound in propositions 3.1
and 3.2 provide the necessary linear structure, while proposition 3.4, which relies on assump-
tion 1, provides control over the interaction between the semigroup and the nonlinearity.
We refer to [9] for the details.

Thus, if we fix some m > 1
2 , then we are guaranteed the existence of a center-stable

manifold. The dynamics on this manifold may be determined as follows. The main idea
is to show that the nonlinearity does not significantly alter the dynamics that result from
the linear operator. Heuristically, this is due to the fact that N+ depends on W+v+ in a
nonlinear fashion. In particular,

e(
3
2
−σ)τ

W+
N+(e−(1−σ)τ∂η(W

+w)) ≈ e(
1
2
+σ)τW+(e

1
2
τη − α+eτ )||w||2 ≤ C||w||2

for all 0 ≤ τ <∞. This is true because, for all values of η except η∗ ≡ α+e
τ
2 , we have that

(e
1
2
τη − α+eτ ) → −∞ as τ → ∞, and W+(ξ) → 0 as ξ → −∞. The point η∗ → ∞ as

τ → ∞. This “bad” point should be taken care of by the fact that w ∈ H2(m), and hence
decays rapidly as ξ → +∞. As as a result, for large τ the nonlinearity N+ will be small in
some sense (for small w) and will not affect the leading order dynamics on the center-stable
manifold.
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To see this rigorously, we determine the dynamics on the center-stable manifold. We
will use the projection operators associated to the operator L, which have an explicit form.
They are defined in terms of the Hermite polynomials [7]

Hj(η) =
2j

j!
e

η2

4 ∂j
η(e

− η2

4 ), (46)

which are the eigenfunctions of the adjoint operator L∗ = ∂2
η − 1

2η∂η and satisfy

∫

Hi(η)ϕj(η)dη = δij .

In general, for any k < m− 1
2 , the projection onto the k-dimensional center-stable subspace

is given by

(Pcf)(η) =
k
∑

j=0

(∫

Hj(ζ)f(ζ)dζ

) 1
2

ϕj(η).

On this manifold, w(η, τ) may be written

w(η, τ) =
k
∑

i=0

βi(τ)ϕi(η) + h(β(τ)), (47)

where h(z) = O(z2) is some function that defines the manifold, β = (β1, . . . , βk), and each
βi is a solution to

∂τβi = −(
i

2
+ σ)βi +





∫

Hi(η)N
+(η,

k
∑

j=0

βj(τ)ϕj(η) + h(β(τ)))dη



 . (48)

Note that the assumption f ∈ C2 in equation (1) implies that N+(z) ≤ O(z2) as z → 0.
As a result, for sufficiently small initial data,

βi(τ) ∼ βi(0)e−(σ+ 1
2
i)τ . (49)

(See Chapter 13, section 4, theorem 4.5 of [11].) Using equation (47), we see that the
evolution of w has the form

w(η, τ) = b0(0)e−στϕ0(η) + · · · + bk(0)e−( k
2
+σ)τϕk(η) + h(b0, . . . , bk) + O(e(−

2m−1
4

−σ−ǫ)τ ),
(50)
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for any ǫ > 0. Transforming back to the original, unscaled variables, we have

W+(ξ)v+(ξ, t) =
e

α+

2
ξ|φ′| 12

√

(t+ 1)
p(η, τ)e

−
(ξ+α+(t+1))2

(t+1) + e
α+

2
ξ|φ′| 12 e−( 1

2
−σ)τh(b0, . . . , bk)

+ e
α+

2
ξ|φ′| 12O((t+ 1)−( 2m+1

4
−ǫ))

=
|φ′| 12 e−

ξ2

4(t+1)

√

(t+ 1)
p(
ξ + α+(t+ 1)√

t+ 1
, log(t+ 1))e−

(α+)2

4
(t+1)

+
e

α+

2
ξ|φ′| 12

(t+ 1)(
1
2
−σ)

h(b0, . . . , bk) + e
α+

2
ξ|φ′| 12O((t+ 1)−( 2m+1

4
−ǫ)),

(51)

where p(η, τ) is a polynomial in η that is bounded in τ .
Thus, the weight function W+ combines with the Gaussian in the original (ξ, t) vari-

ables, resulting in exponential, temporal decay of terms corresponding to the center-stable
subspace. We claim that the remaining two terms in the above expression both decay at

least at the rate (1 + t)−( 2m+1
4

−ǫ). To show this, we will prove the following lemma.

Lemma 3.5 The function h in equation (50) satisfies

||W
+h(b0, . . . , bk)

(t+ 1)
1
2
−σ

||H2 ≤ C

(1 + t)
2m+1

4

,

where the norm in the above estimate is taken in terms of the spatial variable ξ.

Proof Because h corresponds to the center manifold that was constructed in H2(m), we
know that h(η) ∈ H2(m) and is bounded there. Furthermore, we may write

|W+(ξ)| ≤ C

1 + e−
1
2
(α+−α−)ξ

.
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We compute
∫

|W+(ξ)h(ξ)|2dξ ≤ e
τ
2

∫

|W+(e
τ
2 η − α+eτ )h(η)|2dη

≤ e
τ
2

∫ |W+(e
τ
2 η − α+eτ )|2

(1 + η2)m
(1 + η2)m|h(η)|2dη

≤ Ce
τ
2

∫ α+e
τ
2 −ǫ

−∞

(1 + η2)m|h(η)|2

(1 + e−
1
2
(α+−α−)(e

τ
2 η−α+eτ ))2

dη

+ Ce
τ
2

∫ ∞

α+e
τ
2 −ǫ

(1 + η2)m|h(η)|2
(1 + η2)m

dη

≤ Ce
τ
2 e−ǫ(α+−α−)e

τ
2 ||h||2L2(m) + C

e
τ
2

(1 + (α+e
τ
2 − ǫ)2)m

||h||2L2(m)

≤ C

(t+ 1)
2m−1

2

.

Now take the square root and multiply by (t + 1)−( 1
2
−σ) to obtain the desired decay rate.

We note that the factor of (t + 1)σ is taken care of by the fact that h is nonlinear (since
h(0) = 0). Thus, every term contains a factor like bibj , which decays at least as fast as

(t+ 1)−2σ. One can bound
∫

|∂j
ξ(W

+(ξ)h(ξ))|2dξ, for j = 1, 2, in a similar manner. �

As a result, the seemingly higher order terms are the limiting factor in the decay of the
far-field components of the perturbation, which proves theorem 1.1. Similar analysis can
be carried out for the far-field component v−. Note that the estimate in the theorem is in
terms of the H2 norm because ||W±v±(t)||H2 ≤ C||W±w±(τ)||H2(m), and the asymptotic
expansions for w± were carried out in the space H2(m).

4 Analysis of the near-field component

We turn now to the analysis of the near-field component. For convenience, we restate its
equation of evolution:

∂tv
n = Avn −N (vn, v+, v−, ξ) + F (v+, v−, ξ), (52)

where A, N , and F are defined in equations (30), (28) and (29), respectively.
In order to obtain the result stated in theorem 1.2, we will need to work in the Sobolev

space X = W 1,p, rather than Lp. The reason for this is that we will use the theory of
fractional Banach spaces, presented, for example, in [12]. If we work in Lp, the embedding
theorems for these spaces only guarantee decay results inW k,p for k < 2. Since we ultimately
want a result in H2, this is not sufficient. Thus, we will work in the slightly smaller space
X = W 1,p.
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We must show that ǫ, in the definition of Wn, can be chosen so that the spectrum of
A is contained entirely within the left half plane without touching the imaginary axis. In
addition, ǫ must be chosen so that the presence of the factor 1

W n in the functions F and N
does not cause equation (52) to be ill-posed. The first issue is addressed in the following
lemma.

Lemma 4.1 For any 0 < ǫ < min(α+, |α−|), the operator A in equation (30) is sectorial
on W 1,p(R), 1 ≤ p < ∞. Furthermore, for a fixed ǫ, there exists some 0 < δ < π/2 and
0 < ω < min (ǫ(α+ − ǫ),−ǫ(ǫ+ α−)) for which the sector

Sδ,ω = {λ ∈ C : |arg(λ− ω)| < π − δ, λ 6= −ω} (53)

is contained in the resolvent set of A.

Proof The operator A will be sectorial, regardless of the choice of ǫ, for the following reason.
The operator ∂2

ξ , with domainD(∂2
ξ ) = W 3,p(R), is sectorial inW 1,p(R) for 1 ≤ p <∞. This

can be shown directly, using the explicit formula for the action of the associated resolvent
operator, which is given, for example, in [12]. In addition, using the results of [13], one
can show that ∂ξ, with domain W 2,p, is ∂2

ξ -bounded with ∂2
ξ -bound zero. Furthermore, the

coefficients in the operator A are smooth and uniformly bounded in ξ. Thus, if we consider
A as a perturbation of ∂2

ξ , we see that it is sectorial and the generator of an analytic
semigroup [13].

Since analytic semigroups satisfy a spectral mapping theorem, the lemma will be proven
if we show that the sector Sδ,ω is contained in the resolvent set of A [13], ie we need not
directly prove a bound on (A − λ1)−1. We first show that the resolvent set of A on the
space Lp contains the sector Sδ,ω and then show how this result can be extended to the
space W 1,p

Notice that limξ→+∞A(ξ) = ∂2
ξ − (2ǫ + α+)∂ξ + ǫ(ǫ − α+), and limξ→−∞A(ξ) = ∂2

ξ +

(2ǫ−α−)∂ξ +ǫ(ǫ+α−). Hence, if 0 < ǫ < min(α+, |α−|), the essential spectrum of A will be
contained in the left half of the complex plane and separated from the imaginary axis [12].
We must show that there are no eigenvalues that lie inside the sector Sδ,ω. This follows
using ideas in [12] and [3].

The operator A is simply the operator L, defined in equation (6), when considered on
the weighted space defined by 1/Wn. We will analyze the point spectrum of L and relate
it to that of A. The essential spectrum of L lies to the left of the parabolas Re(λ) =
−Im(λ)2/(α±)2, which touch the imaginary axis at the origin. We will show that there are
no eigenvalues that lie to the right of these parabolas.

Consider the eigenvalue equation for L,

uξξ + (c− f ′(φ(ξ)))uξ − λu = 0. (54)
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Suppose that some λ lying to the right of the essential spectrum is an eigenvalue with
eigenfunction uλ. By analyzing the associated asymptotic equations, one can show that the
function

v(ξ) =
uλ(ξ)

|φ′| 12
decays exponentially to zero as ξ → ±∞. In addition, v satisfies

vξξ +

(

φ′′′

2φ′
− 3

4

(φ′′)2

(φ′)2
− λ

)

v = 0. (55)

The linear operator in this equation is self-adjoint, and hence all eigenvalues are real. There-
fore, we need only consider real eigenvalues for equation (54).

If λ > 0, then the maximum principle shows that u ≡ 0. This is because u cannot have
a positive maximum, for which uξξ ≤ 0, uξ = 0, and u > 0, and similarly u cannot have a
negative minimum. Hence,

σ(L) = σess(L) ⊂ Ω ≡ {λ : Re(λ) ≤ − Im(λ)2

(α+)2
}
⋃

{λ : Re(λ) ≤ − Im(λ)2

(α−)2
}. (56)

As mentioned above, the operator A is the operator L when considered on the exponen-
tially weighted function space. In addition, the essential spectrum has been pushed off the
imaginary axis into the left half plane. The remaining part of the spectrum consists of iso-
lated eigenvalues of finite multiplicity. Suppose Vλ is an eigenfunction associated to such an
eigenvalue. Then uλ = sech(ǫξ)Vλ is a solution to equation (54). Since σ(L) is given in equa-
tion (56), we know that any eigenvalue of A must also lie in Ω. Note that, for λ = 0, the two
solutions of equation AV = λV are cosh(ǫξ) = 1/Wn(ξ) and cosh(ǫξ)φ(ξ) = φ(ξ)/Wn(ξ),
neither of which are in Lp. Furthermore, any eigenvalue is isolated. Hence, there must exist
some ω and δ such that Sδ,ω is contained in the resolvent set of A.

To see that Sδ,ω is also contained in the resolvent set of A when considered as an
operator on W 1,p, notice that if there were any spectral elements in Sδ,ω, then they must
be exponentially localized. This can be seen by analyzing the asymptotic limits of the
associated eigenvalue equation. Hence, they would also be in the spectrum of A on the
space Lp, contradicting the above result. �

We turn now to the well-posedness of equation (52). Because the operator A is the
generator of an analytic semigroup, we may use the tools associated to fractional Banach
spaces, given, for example, in [12]. We now state those results which will be used below.
The domain of A can be taken to be D(A) = W 3,p(R) ⊂ X, where X = W 1,p(R). For
any 0 < γ < 1, Xγ is the fractional Banach space associated to X and A. Using a slight
generalization of the embedding theorem 1.6.1 in [12], Xγ ⊂ W k,q for k < 3γ − 1

p
+ 1

q
, and
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Xγ ⊂ Cν for ν < 3γ − 1
p
. As a result, for γ ∈ (0, 1) sufficiently large and p = 1,

||etAu||γ ≤ Cγ

tγ
e−ωt||u||L1 (57)

||u||H2 ≤ Cγ ||u||γ (58)

||u||C1 ≤ Cγ ||u||γ , (59)

where || · ||γ represents the norm associated to the fractional Banach space Xγ .
Consider the integral form of solutions,

vn(t) = etAvn
0 −

∫ t

0
e(t−s)AN (vn, v+, v−)(s)ds+

∫ t

0
e(t−s)AF (v+(s), v−(s))ds. (60)

We study the properties of the two integral terms in this equation, which will subsequently
be used in a standard contraction mapping argument for the existence of solutions.

Proposition 4.2 Let v+(s) and v−(s) be the solutions to the far-field equations, constructed
in section 3. If 0 < ǫ ≤ min(α+/2, |α−|/2), then

||
∫ t

0
e(t−s)AF (v+(s), v−(s))ds||γ ≤

∫ t

0

C(v+
0 )e−ω(t−s)

(t− s)γ

e−
(α+)2

4
(s+1)

√
s+ 1

ds

+

∫ t

0

C(v−0 )e−ω(t−s)

(t− s)γ

e−
(α−)2

4
(s+1)

√
s+ 1

ds

+

∫ t

0

C(v±0 )e−ω(t−s)

(t− s)γ

1

(s+ 1)(
2m+1

4
−ǫ)

ds,

(61)

where C(v±0 ) → 0 as ||v±0 ||H2(m) → 0.

Proof Using equation (29), this integral term may be written
∫ t

0
e(t−s)AF (v+(s), v−(s))ds =

∫ t

0
e(t−s)A 1

Wn
[W+

ξξ +W+
ξ (c− f ′(φ))]v+ds

+

∫ t

0
e(t−s)A 1

Wn
[W−

ξξ +W−
ξ (c− f ′(φ))]v−ds

(62)

We need to determine the rate at which the terms in brackets decay to zero at either +∞
or −∞. Notice that equation (26) implies

[W+
ξξ +W+

ξ (c− f ′(φ))] = W+

[

(α+)2

4
− (c− f ′(φ))2

4
+

1

2
f ′′(φ)φ′

]

≡W+(ξ)B+(ξ)

[W−
ξξ +W−

ξ (c− f ′(φ))] = W−

[

(α−)2

4
− (c− f ′(φ))2

4
+

1

2
f ′′(φ)φ′

]

≡W−(ξ)B−(ξ). (63)
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In order to determine the asymptotic behavior of B±(ξ), we need some details about the
dynamics if φ. The two-dimensional system of ODEs associated to equation (2) is

φ′ = ψ

ψ′ = −(c− f ′(φ))ψ.

As ξ → +∞, this system is given, to leading order, by

φ′ = ψ

ψ′ = −α+ψ + f ′′(0)φψ.

The integral curve containing the point (0, 0) is ψ(φ) = −α+φ+ f ′′(0)
2 φ2. Substituting this

expression into the equation for φ′ and solving for φ, we obtain

φ(ξ) ∼ Ke−α+ξ

1 +K f ′′(0)
2α+ e−α+ξ

∼ Ke−α+ξ −K2 f
′′(0)

2α+
e−2α+ξ

as ξ → +∞, where K is some constant. A similar analysis leads to

φ(ξ) ∼ φ− + K̃e−α−ξ − K̃2 f
′′(φ−)

2α−
e−2α−ξ

as ξ → −∞. Using this information, we find that

B+(ξ) ∼
{

e−2α+ξ as ξ → +∞
(α+)2

4 − (α−)2

4 as ξ → −∞
,

and

B−(ξ) ∼
{

(α−)2

4 − (α+)2

4 as ξ → +∞
e−2α−ξ as ξ → −∞

.

Consider now the term on the right hand side of equation (62) involving v+. That involving
v− may be treated similarly. Using equation (51), we have

∫ t

0
e(t−s)AW

+B+

Wn
v+ds =

∫ t

0
e(t−s)A B

+

Wn

|φ′| 12 e− ξ2

4

√

(s+ 1)
g(ξ, s)e−

(α+)2

4
(s+1)ds

+

∫ t

0
e(t−s)AW

+B+

Wn
O((t+ 1)−( 2m+1

4
−ǫ))ds.
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If 0 < ǫ ≤ min(α+/2, |α−|/2), then

|φ′|
Wn

≤ C, and
W+B+

Wn
∈ L2,

and the result in equation (61) follows using the estimate in equation (57). �

We now obtain a similar bound on the integral term involving the function N .

Proposition 4.3 If 0 < ǫ < 1
2(α+ − α−), then

||
∫ t

0
e(t−s)AN (vn, v+, v−)(s)ds||γ ≤

∫ t

0

C(v±0 )γe
−ω(t−s)

(t− s)γ
||vn(s)||2γds

+

∫ t

0

C(v±0 )γe
−ω(t−s)

(t− s)γ

||vn(s)||γ
(1 + s)(

2m+1
4

−ǫ)
ds

+

∫ t

0

C(v±0 )γe
−ω(t−s)

(t− s)γ

1

(1 + s)(
2m+1

4
−ǫ)

ds,

(64)

where C(v±0 ) → 0 as ||v±0 ||H2(m) → 0.

Proof: Note that we assumed that the function f in equation (1) is in C2(R). This implies
that the function N ∈ C2(R), as well. In addition, since v± ∈ H2(m) and Xγ ⊂ C1 for
γ ∈ (3/4, 1), the functions v±, vn, and their derivatives are defined pointwise. The main
idea is to write the function N as

N (vn, v+, v−) = N1(v
n, v+, v−) + N2(v

−, v−)(Wnvn)ξ + N3(v
+, v−), (65)

where

N1(v
n, v+, v−) =

1

Wn
N(∂ξ(W

+v+ +W−v− +Wnvn)) − 1

Wn
N(∂ξ(W

+v+ +W−v−))

− 1

Wn
DN(∂ξ(W

+v+ +W−v−))∂ξ(W
nvn)

N2(v
+, v−)(Wnvn)ξ = DN(∂ξ(W

+v+ +W−v−))
∂ξ(W

nvn)

Wn
(66)

N3(v
+, v−) =

1

Wn
N(∂ξ(W

+v+ +W−v−)) − 1

Wn
N(∂ξ(W

+v+))

− 1

Wn
N(∂ξ(W

−v−)),

and bound each of the three terms separately. To deal with the first term, note that

|N1(v
n, v+, v−)| ≤ C(|∂ξ(W

+v+ +W−v−)|) |∂ξ(W
nvn)|2

|Wn| ,
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and hence
||N1(v

n, v+, v−)||L1 ≤ C(||W+v+||H2 , ||W−v−||H2)||vn||2γ . (67)

In the above we have used equation (58). To bound the third term, notice that for f ∈ C2(R)
with f(0) = 0, we may write f(x) = f ′(0)x+ f̃(x), where f̃ ∈ C2(R) and f̃(0) = f̃ ′(0) = 0.
Let a,b ∈ R such that |a|, |b| ≤M , and assume without loss of generality that |a| ≤ |b|. We
may write

|f(a+ b) − f(a) − f(b)| = |f̃(a+ b) − f̃(a) − f̃(b)|

= |f̃ ′(b)a+
1

2
f̃ ′′(x)a2 − f̃(a)|

= |
[

f̃ ′(0) +
1

2
f̃ ′′(y)b

]

a+
1

2
f̃ ′′(x)a2 −

[

f̃(0) + f̃ ′(0)a+
1

2
f̃ ′′(z)a2

]

|

= |1
2
f̃ ′′(y)ab+

1

2

(

f̃ ′′(x) − f̃ ′′(z)
)

a2|
≤ CM |a||b|,

where x, y, and z ∈ (0,M). As a result,

|N3(v
+, v−)| ≤ C(|∂ξ(W

±v±)|) |∂ξ(W
+v+)||∂ξ(W

−v−)|
|Wn| .

We can then bound

||N3(v
+, v−)||L1 ≤ C

∫ |∂ξ(W
+v+)||∂ξ(W

−v−)|
|Wn| dξ

= C

∫ 0

−∞

( |∂ξ(W
+v+)|

|Wn|

)

|∂ξ(W
−v−)|dξ + C

∫ ∞

0

( |∂ξ(W
−v−)|

|Wn|

)

|∂ξ(W
+v+)|dξ

≤ C||v+||H1 ||W−v−||H2(m) + C||v−||H1 ||W+v+||H2(m)

≤ C(v±0 )

(t+ 1)(
2m+1

4
−ǫ)

,

(68)

if 0 < ǫ < 1
2(α+ − α−). �

Using proposition 4.2, proposition 4.3, and a contraction mapping argument, one can
prove the following.

Proposition 4.4 Given any sufficiently small initial data in Xγ, there exists a T > 0 and
a solution to equation (52) satisfying vn(t) ∈ C0([0, T ), Xγ).
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The bound in propositions 4.2 and 4.3 will now be used to prove the main result of this
section, theorem 1.2.

Proof of Theorem 1.2 Using the integral form of solutions, given in equation (60), and
propositions 4.2 and 4.3, we have

||vn(t)||γ ≤ C

tγ
e−ωt||vn

0 ||L1 +

∫ t

0

C(v±0 )γe
−ω(t−s)

(t− s)γ
||vn(s)||2γds

+

∫ t

0

C(v±0 )γe
−ω(t−s)

(t− s)γ

||vn(s)||γ
(1 + s)(

2m+1
4

−ǫ)
ds+

∫ t

0

C(v±0 )γe
−ω(t−s)

(t− s)γ

1

(1 + s)(
2m+1

4
−ǫ)

ds

+

∫ t

0

C(v+
0 )e−ω(t−s)

(t− s)γ

e−
(α+)2

4
(s+1)

√
s+ 1

ds+

∫ t

0

C(v−0 )e−ω(t−s)

(t− s)γ

e−
(α−)2

4
(s+1)

√
s+ 1

ds.

Define |||vn||| = supt0<t<T (t + 1)(
2m+1

4
−ǫ)||vn(t)||γ , for some t0 > 0. Multiply the above

equation by (t+ 1)(
2m+1

4
−ǫ) to obtain

|||vn||| ≤ C||vn
0 ||L1 + sup

t0<t<T

(t+ 1)(
2m+1

4
−ǫ)

∫ t

0

C(v±0 )γe
−ω(t−s)

(t− s)γ(1 + s)(
2m+1

2
−ǫ)

ds|||vn|||2

+ sup
t0<t<T

(t+ 1)(
2m+1

4
−ǫ)

∫ t

0

C(v±0 )γe
−ω(t−s)

(t− s)γ(1 + s)(
2m+1

2
−ǫ)

ds|||vn|||

+ sup
t0<t<T

(t+ 1)(
2m+1

4
−ǫ)

∫ t

0

C(v±0 )γe
−ω(t−s)

(t− s)γ

1

(1 + s)(
2m+1

4
−ǫ)

ds

+ sup
t0<t<T

(t+ 1)(
2m+1

4
−ǫ)

∫ t

0

C(v+
0 )e−ω(t−s)

(t− s)γ

e−
(α+)2

4
(s+1)

√
s+ 1

ds

+ sup
t0<t<T

(t+ 1)(
2m+1

4
−ǫ)

∫ t

0

C(v−0 )e−ω(t−s)

(t− s)γ

e−
(α−)2

4
(s+1)

√
s+ 1

ds.

Therefore, we see that

|||vn|||
(

1 − C(v±0 ) −M1|||vn|||
)

≤M2||vn
0 ||L1 + C(v±0 ).

If v±0 are chosen sufficiently small in H1(m) so that C(v±0 ) ≤ (1/4)/(4M1 + 1), and T is
chosen to be the maximal time such that |||vn||| ≤ [1/4 − C(v±0 )]/M1, then we have that

|||vn||| ≤ 2M2||vn(0)||H1 + 2C(v±0 ).

Therefore, if ||vn(0)||H1 ≤ (1/4 − C±
0 ))/(4M1M2), then the bound must hold for all t ≥ t0.

Finally, using the embedding L1 ⊂ L2(m) and that of equation (58), we obtain the
desired result. �
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5 Example: Burgers Equation

We carry out the decomposition in detail for Burgers equation,

∂tu = ∂2
xu− ∂x(u2), (69)

where f(u) = u2. One can directly check that

φ(ξ) =
c

1 + ecξ
. (70)

The equation of evolution for the full perturbation is

∂tv = ∂2
ξ v + c tanh(

c

2
ξ)∂ξv − (∂ξv)

2, (71)

with α± = ±c, and the far-field weight functions are

W+(ξ) =
1

1 + e−cξ

W−(ξ) =
1

1 + e+cξ
. (72)

There is some freedom in the choice of the near-field weight function. For Burgers equation,

Wn(ξ) = sech(
c

2
ξ) (73)

is particularly convenient, due to the ease of the resulting calculations.
The equations of evolution for the three components of the perturbation are

∂tv
+ = ∂2

ξ v
+ + c∂ξv

+ − [(1 + e−cξ)∂ξv
+ + ce−cξv+]2

(1 + e−cξ)3
, (74)

∂tv
− = ∂2

ξ v
− − c∂ξv

− − [(1 + e+cξ)∂ξv
− − ce+cξv−]2

(1 + e+cξ)3
, (75)

∂tv
n = ∂2

ξ v
n − c2

4
vn −N (v+, v−, vn, ξ), (76)

with initial data

v±(ξ, 0) = (1 − sech(
c

2
ξ))v(ξ, 0)

vn(ξ, 0) = v(ξ, 0). (77)

In equation (76),

N (v+, v−, vn, ξ) = 2(a(ξ, t) + b(ξ, t))∂ξv
n + c tanh(

c

2
ξ)(a(ξ, t) + b(ξ, t))vn

+ sech(
c

2
ξ)
(

− c
2

tanh(
c

2
ξ)vn + ∂ξv

n
)2

+ 2 cosh(
c

2
ξ)a(ξ, t)b(ξ, t),

(78)
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where

a(ξ, t) = ∂ξ

(

v+(ξ, t)

(1 + e−cξ)

)

b(ξ, t) = ∂ξ

(

v−(ξ, t)

(1 + e+cξ)

)

. (79)

Note that for this example, F as in equation (29) is actually given by F ≡ 0. In order to
apply the preceding analysis, we must show that assumption 1 is satisfied. We carry out
the details only for the far field component v+, as those of v− are similar.

In terms of the scaling variables (η, τ), the equation for w is given by

∂τw = (L − σ)w −N+(η, τ, w), (80)

where

N+(η, τ, w) =
e−( 1

2
−σ)τ

(1 + e−ch(η,τ))
(∂ηw)2 +

2ceστe−ch(η,τ)

(1 + e−ch(η,τ))2
w∂ηw

+
c2e(

1
2
+σ)τe−2ch(η,τ)

(1 + e−ch(η,τ))3
(w)2,

(81)

and h(η, τ) = ηe
τ
2 − ceτ .

Lemma 5.1 Assumption 1, with

R(τ) =

∫ τ

0
eL(τ−s)N+(w(s))ds, (82)

is satisfied.

Proof Using equation (81), we have

||R1(τ) −R2(τ)||H2(m) ≤
∫ τ

0
||eL(τ−s)

(

e−( 1
2
−σ)τ

(1 + e−ch(η,τ))

)

(

(∂ηw1)
2 − (∂ηw2)

2
)

||H2(m)ds

+

∫ τ

0
||eL(τ−s)

(

2ceστe−ch(η,τ)

(1 + e−ch(η,τ))2

)

(w1∂ηw1 − w2∂ηw2) ||H2(m)ds

+

∫ τ

0
||eL(τ−s)

(

c2e(
1
2
+σ)τe−2ch(η,τ)

(1 + e−ch(η,τ))3

)

(

(w1)
2 − (w2)

2
)

||H2(m)ds.

(83)
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We first present the details of the bound in L2(m) for the last term on the right hand side

only, to indicate how one can deal with the factor e(
1
2
+σ)τ . The rest of the terms are similar.

Using proposition 3.2, we have

∫ τ

0
||eL(τ−s)

(

c2e(
1
2
+σ)τe−2ch(η,τ)

(1 + e−ch(η,τ))3

)

(

(w1)
2 − (w2)

2
)

||L2(m)ds ≤

∫ τ

0

C

a(τ − s)
1
4

||
(

c2e(
1
2
+σ)τe−2ch(η,τ)

(1 + e−ch(η,τ))3

)

(w1 + w2)(w1 − w2)||L1(m)ds

≤
∫ τ

0

C

a(τ − s)
1
4

||
(

c2e(
1
2
+σ)τe−2ch(η,τ)

(1 + e−ch(η,τ))3

)

(w1 + w2)||L2 ||w1 − w2||L2(m)ds.

Notice that

||
(

c2e(
1
2
+σ)τe−2ch(η,τ)

(1 + e−ch(η,τ))3

)

(w1 + w2)||L2 = ||
(

c2e(
1
2
+σ)τ sech( c

2h(η, τ))

(1 + e+ch(η,τ))

)

(w1 + w2)||L2

≤ C||e( 1
2
+σ)τ sech(

c

2
h(η, τ))(w1 + w2)||L2 .

We may bound this term using the following estimate. Define B = {ce τ
2 − δ < η < ce

τ
2 + δ}.

Then, for example, considering the first term in (w1 + w2)
2 = w2

1 + 2w1w2 + w2
2,

∫

e(1+2σ)τ sech2(
c

2
h(η, τ))(w1)

2dη =
∫

B
e(1+2σ)τ sech2(

c

2
h(η, τ))(w1)

2dη +

∫

R\B
e(1+2σ)τ sech2(

c

2
h(η, τ))(w1)

2dη

≤
∫

B

e(1+2σ)τ

(1 + η2)m
(1 + η2)m(w1)

2dη + C

∫

R\B
e(1+2σ)τe−δe

τ
2 (w1)

2dη

≤ C
e(1+2σ)τ

(1 + (ce
τ
2 − δ)2)m

||w1||2L2(m) + C||w1||2L2

≤ C||w1||2L2(m),

if m > 1 and 0 < σ < (m− 1)/2. A similar calculation can be made to bound

∫ τ

0
||∂ηe

L(τ−s)

(

c2e(
1
2
+σ)τe−2ch(η,τ)

(1 + e−ch(η,τ))3

)

(

(w1)
2 − (w2)

2
)

||L2(m)ds,

by taking α = 1 in proposition 3.2.
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To bound the second derivative, we present the details for the first term on the right hand
side of equation (83), since that term has the most derivatives and is therefore potentially
problematic. Using equation (42), we have

∫ τ

0
||∂2

ηe
L(τ−s)

(

e−( 1
2
−σ)τ

(1 + e−ch(η,τ))

)

(

(∂ηw1)
2 − (∂ηw2)

2
)

||L2(m)ds

≤
∫ τ

0

C

a(τ − s)
3
4

||∂η

[

e−( 1
2
−σ)τ

(1 + e−ch(η,τ))

(

(∂ηw1)
2 − (∂ηw2)

2
)

]

||L1(m)

≤
∫ τ

0

C

a(τ − s)
3
4

||eστ sech2(
c

2
h(η, τ))(∂ηw1 + ∂ηw2)(∂ηw1 − ∂ηw2)||L1(m)

+

∫ τ

0

C

a(τ − s)
3
4

||e−( 1
2
−σ)τ sech2(

c

2
h(η, τ))(∂ηw1 + ∂ηw2)(∂

2
ηw1 − ∂2

ηw2)||L1(m)

+

∫ τ

0

C

a(τ − s)
3
4

||e−( 1
2
−σ)τ sech2(

c

2
h(η, τ))(∂ηw1 − ∂ηw2)(∂

2
ηw1 + ∂2

ηw2)||L1(m).

We may now complete the bound in a manner similar to that above, by splitting the region
of integration in the L1(m) norm into B and its complement. In addition, we must use the
fact that w1,2 ∈ C0([0, T ], H2(m)) in order to deal with the second derivatives that appear
in the above expression.

Therefore, we have shown that

sup
0≤τ≤T

||R1(τ) −R2(τ)||H2(m) ≤ C

(

sup
0≤τ≤T

||w1(τ)||H2(m)

)(

sup
0≤τ≤T

||w2(τ)||H2(m)

)

×
(

∫ T

0

1

a(T − s)
3
4

ds

)(

sup
0≤τ≤T

||w1(τ) − w2(τ)||H2(m)

)

≤ C(m, r0, T ) sup
0≤τ≤T

||w1(τ) − w2(τ)||H2(m),

which proves the proposition. �

In order to illustrate the details of the center manifold calculation, we present them in
the context of this example. First, we show that the nonlinearity in equation (48) does
not affect the leading order dynamics on the manifold. In particular, we show that the
nonlinearity N+ satisfies

|





∫

Hi(η)N
+(η,

k
∑

j=0

βj(τ)ϕj(η) + h(β(τ)))dη



 | = O(|β|2) (84)
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uniformly in τ ≥ 0 for small |β|. We prove the estimate in equation (84) for only the last
term in the definition of N+. The rest are similar. We have

|
∫

Hi(η)





c2e(
1
2
+2σ)τe−2ch(η,τ)

(1 + e−ch(η,τ))3





k
∑

j=1

βj(τ)ϕj(η) + h(β(τ))





2

 dη| =

|
∑

m,n≤k

∫

[

2i

i!
e

η2

4 ∂η(e
η2

4 )
c2e(

1
2
+σ)τ sech2( c

2h(η, τ))

4(1 + ech(η,τ))
Cm,nβmβnϕm(η)ϕn(η)

]

dη| + O(|β|4)

≤ C
∑

m,n≤k

βmβn

∫

|
[

pi(η)e
( 1
2
+σ)τ sech2(

c

2
h(η, τ))ϕm(η)ϕn(η)

]

|dη + O(|β|4),

where pi(η) is a polynomial of degree i and we have used the fact that h(β) = O(|β|2).
The integral in the last line may be bound independently of τ by splitting the region of
integration into two parts, B and R \ B, as in the proof of lemma 5.1.

Next, we compute the dynamics on the center manifold and the resulting leading order
expansion, for m > 1/2. Equation (48), for i = 0, is given by

∂τβ0 = −σβ0 −G(τ)β2
0 + O(|β|4),

where

G(τ) =

∫

e(σ−
1
2
)τ

1 + e−ch(η,τ)
(ϕ′

0(η))
2dη +

∫

2ceστe−ch(η,τ)

(1 + e−ch(η,τ))2
ϕ′

0(η)ϕ0(η)dη

+

∫

c2e(
1
2
+σ)τe−2ch(η,τ)

(1 + e−ch(η,τ))3
ϕ2

0(η)dη.

Using techniques similar to those above, one can show that |G(τ)| ≤ M for all τ ≥ 0.
Therefore, for m > 1 we find that

β0(τ) = β0(0)e−στ + O(e−(σ+ǫ)τ ),

for some ǫ > 0, and so the asymptotic expansion of the far-field component at +∞ is given
by

W+(ξ)v+(ξ, t) =
β0(0)

√

4π(t+ 1)(1 + e−cξ)
e
−

(ξ+c(t+1))2

4(t+1) + O((t+ 1)(
2m+1

4
−ǫ))

=
β0(0)

√

4π(t+ 1)(1 + e+cξ)
e
− ξ2

4(t+1) e−
c2

4
(t+1) + O((t+ 1)(

2m+1
4

−ǫ)).

We remark that, for the nonlinearity in Burgers equation, it is not necessary to work in
H2(m) when analyzing the far-field components. One can check that the estimates in the
proofs of propositions 4.2 and 4.3 can be made even if only v± ∈ H1. Therefore, for some
nonlinearities, one can get by with slightly less smoothness in the initial data.
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6 Summary

We have investigated the stability of traveling waves to scalar, viscous conservation laws
by decomposing perturbations into three parts: two far-field components and one near-field
component. The linear operators associated to the far-field components were determined by
the asymptotic spatial limits of the original operator. By applying scaling variables to these
operators, a spectral gap was created, thus allowing for the use of invariant manifold theory
to determine the temporal decay rate of the far-field components. The linear operator
associated to the near-field component had spectrum contained entirely within the left half
plane, and so the associated semigroup decayed exponentially in time. The inhomogeneity
in the equation was shown to be governed by the far-field components and determine the
decay rate of the near-field component. As a result, the full perturbation was shown to
decay at the same rate as the far-field components. This algebraic decay could be increased
by requiring that the initial data lie in appropriate algebraically weighted spaces.
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