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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 291, Number 2, October 1985 

THE CUSPIDAL GROUP 
AND SPECIAL VALUES OF L-FIJNCTIONS 

BY 

GLENN STEVENS1 

ABSTRACT. The structure of the cuspidal divisor class group is investigated by 
relating this structure to arithmetic properties of special values of L-functions of 
weight two Eisenstein series. A new proof of a theorem of Kubert (Proposition 3.1) 
concerning the group of modular units is derived as a consequence of the method. 
The key lemma is a nonvanishing result (Theorem 2.1) for values of the "L-function" 
attached to a one-dimensional cohomology class over the relevant-congruence sub- 
group. Proposition 4.7 provides data regarding Eisenstein series and associated 
subgroups of the cuspidal divisor class group which the author hopes will simplify 
future calculations in the cuspidal group. 

Let Xr/Q be Shimura's canonical model over Q of the complete modular curve 
associated to the congruence group r c SL2(Z), where r is one of the groups r(N), 
r1(N), or ro(N) The cuspidal divisor class group Cr C Pic°(Xr) plays an im- 
portant role in the theory of the arithmetic of the modular curve Xr, for example in 
Mazur's proof of Ogg's conjecture [13] and in the proof by Mazur and Wiles of the 
main conjecture of Iwasawa theory [14]. Subgroups of the cuspidal group lead to the 
isogenies used in the Eisenstein descent theory. These subgroups can also be used to 
give congruence formulas for the universal special values of the L-function of Xr 
which are compatible with the descent theoretic results and the conjecture of Birch 
and Swinnerton-Dyer [3, 5, 12, 19]. 

The structure of the cuspidal group has been investigated extensively by Kubert 
and Lang [6, 7]. Their approach is based on a study of the group of modular units. 

In the present paper we propose another approach based on a study of integrality 
and divisibility properties of special values of L-functions of weight two Eisenstein 
series. Typically such an L-function is a product of two Dirichlet L-functions whose 
special values are closely related to the arithmetic of cyclotomic fields. Using a 
theorem of L. tllashington [20] on the non-p-part of the class number in cyclotomic 
Zp-extensions we describe a method of computing subgroups of Cr which should be 
useful for the descent theory. The corresponding congruence formulas for universal 
special values of L-functions are an immediate consequence of the method. 

Since Eisenstein series occur in many settings our point of view offers the prospect 
of generalization. Such a generalization to Hilbert-Blumenthal varieties may be an 
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important step towards extending the Mazur-Wiles theorem to totally real number fields. 
Our motivating observation is that the logarithmic derivative of a modular unit over r is a weight two Eisenstein series over r with integral periods on the affine curve Yr = Xr\ {cusps} (§1). Thus the problem of finding all modular units is closely related to finding the group of periods on Yr Of a weight two Eisenstein series E over r. Our starting point is Theorem 1.3 which determines the group of periods of E in terms of the special values at s = 0 and s = 1 of the L-function of E and its twists. 
By relating these values to units in cyclotomic fields we give another proof of a theorem of Kubert (Proposition 3.1) which leads to a description of the group of modular units of all levels in terms of the Siegel units and square roots of certain products of Siegel units. Kubert's original proof [7] was for odd level only, though he has since modified the proof to work for arbitrary level [8]. The cuspidal group Cr is generated by certain subgroups Cr(E) associated to weight two Eisenstein series E over r. In case E is an eigenfunction for the Hecke operators, the group Cr(E) is preserved by the action of the Galois group and the Hecke algegra. Thus Cr(E) is a natural group for the purpose of descent. Moreover, the corresponding congruence formulas for the universal special values of the L-function of Xr are given in terms of the special values of the L-function of E. In §4 we introduce a natural basis of eigenforms for the space of weight two Eisenstein series over r = rl(X). For each E in this basis we describe Cr(E) and the associated congruence formula. We have attempted to arrange this section to facilitate similar calculations for other eigenforms. 

§4 closes with two examples on Xo(N). The methods described here determine Cro(N(E) only modulo its intersection with the Shimura group. Since the Shimura group is easy to describe as a Galois module, it is often possible to show this intersection is trivial. In the general case we would need to make a study of the explicit formulas for the periods of E in terms of generalized Dedekind sums. NOTATION. For x E C we write e(x) for e2XXX. 

The Bernoulli functions Bl, B2: R R are defined by 

Bl(x) = x-[x]-2, B2(x) = (x-[x]) -(x-[x]) + 6, 
where [x] is the largest integer less than or equal to x. If X is a primitive Dirichlet character of conductor m, the generalized Bernoulli functions associated to X are: 

B1 x ( x ) = E X ( a )B1 ( m ) S B2.X ( x ) = m L X ( a )B2 ( ) . 
We will write Bl(x) for Blsx(0) and B2(X) for B2.x(°) 
If R is a subring of C we will write R[x] for the ring generated over R by the values of X- If 36 is a set of Dirichlet characters, then R[X] = R[Xlx E X]. If M is an R-submodule of C, then we will write M[x] (resp. M[X]) for M- R[x] (resp M- R[X])- 
The Gauss sum of X is (X) = £, -o x(a)e(a/m). 
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1. The cuspidal group. Let N > O be a positive integer and r c SL2(Z) be one of 
the groups r(N), rl(N), or ro(N) The complete modular curve Xr is the union of 
the affine modular curve Yr = r\Sk and the finite set of cusps, cusps(r) = 
r \ IF>1(Q). The curve Xr has a canonical nonsingular projective model defined over 
Q [18, Chapter 6]. In this model the set of cusps is invariant under the action of the 
Galois group Gal(Q/Q). Each cusp is rational over Q(e(l/N)), and the x cusp is 
Q-rational. 

Let U(r) denote the multiplicative group of modular units over r. Thus an 
element of U(r) is a modular function g over r without zeros or poles on !Q. The 
group U(r) may be identified with the group of meromorphic functions on Xr 
whose divisors are supported on the cusps. Let r (resp. r) denote the group of 
divisors (resp. degree zero divisors) supported on cusps(r) and for g E U(r) let 
divr(g) E r be the divisor of the associated meromorphic function on Xr. The 
cuspidal group on Xr is the group 

Cr = r/diVr ( U( r)) 

We will view Cr as a subgroup of Pic°(Xr). A theorem of Manin and Drinfeld [2, 
11] asserts that Cr is a finite group. 

Let Gr denote the space of weight two Eisenstein series over r. If E E Gr, then 
E(z) dz is a r-invariant differential form on A. Let xr(E) denote the 1-form on Xr 
whose pull-back to A is E(z) dz. Then xr(E) is regular on Yr but may have simple 
poles at the cusps. Integration of xr(E) on Yr induces a homomorphism 

(1.1) Hl(Yr; Z) C 

whose image, S2'r(E), is the group of periods of xr(E) on Yr. The residual divisor 
of wr(E) on Xr is the divisor 

(1.2) ar(e) = , rr E(X) *(x), 
xECusps(r) 

where rr E(x) = 27ri * Resx xr(E). This is a divisor of degree zero with complex 
coefficients. Let 5Pr(E) be the Z-submodule of C generated by the coefficients of 
Ar(E). Since rr E(x) is the integral of xr(E) over a parabolic cycle about x we have 
Sr(E) C bDr(E). 

A simple calculation shows that if g E U( r ), then E ( z ) = (2 r i ) - lg t( z )/g( z ) is a 
weight two modular form over r. In fact E is an Eisenstein series. This can be seen 
by verifying directly that E is orthogonal to the space of cusp forms under the 
Petersson inner product (or see [19, §2.4]). The invariance of g(z) under r is 
equivalent to S2'r(E) c Z. If gr(Z) is the lattice of Eisenstein series E E Gr for 
which S2 r(E) C Z, then logarithmic differentiation gives an isomorphism 

(2St1 )-ldlog/d, 
u(r)/C* > gr(Z) 

Moreover, if E(z) = (27Ti)-lg'(Z)/g(Z), then Ar(E) = divr(g). So the cuspidal 
group can be described using the Eisenstein series: 

Cr = r/8r ( gr (Z)) - 
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For an arbitrary Z-submodule, M, of C let Gr(M) = {E E GrlS2'r(E) c M}. 
For E E Gr let Ar(E) = 9Dr(E)/5Pr(E) 

PROPOSITION 1.1. (a) For a Z-module M C C the natural map Gr(Z) X z M 
gr ( M ) is an isomorphism 

(b) For E E Gr A r( E ) is finite. 

PROOF. (a) It suffices to prove this when M = C. By the Manin-Drinfeld theorem 

the image Of Ar: Gr(Z) r has finite index in r. Thus extending scalars gives an isomorphism Ar X 1: Gr(Z) XzC r SzC. The homomorphism Ar: Gr(C) 

r s z C is also an isomorphism. Hence the commutativity of the diagram 

SrXl 

gr(Z) XzC > rXzC 

I / 
/ Sr 

gr (C) 
proves (a). 

(b) If O + Eo E Gr(Z), then (O) + Sr(Eo) c Z. Hence Q Sr(Eo) = Q 2 

S2 r(Eo). By (a) it follows that S2 r(E) c Q Sr(E) for any E E Gr. Since Sr(E) 
S2 r(E) are finitely generated, (b) follows. O 

For a prime I not dividing N let T be the usual Hecke correspondence on Xr and 
for a E (Z/NZ)* let (a) be the associated Nebentypus automorphism of Xr [18, 
19]. These induce operators on the lattice Gr(Z) of integral Eisenstein series and on 
Pic°( Xr) preserving the cuspidal group Cr. 

If E1, E2 are primitive Dirichet characters defined modulo N and E E Gr satisfies 

ElT,= (E1(l) + IE2(1))E 

for all 1 + N, then we say E has signature (E1, E2). In this case E has Nebentypus 
character E1E2. 

- * . . 

. 1X an lsomorp msm 

(Z/N Z) * Gal (Q( e ( 1 /N ) )/Q) a (Ta: e(1/N) e(a/N)) 

THEOREM 1.2. (a) To every E C Gr there is associated a canonical subgroup 
Cr(E) C Cr and a canonicalperfect pairing 

Cr(E) X Ar(E) Q/Z 

(b) If E E gr(Q[Els E2]) has signature (E1, E2), then 
(i) 9pr(E) r(E) are fractional ideals in Q[E1, E2]. Hence Ar(E) and by duality 

Cr(E) inherit natural structures of Z[E1, E2]-modules. 
(ii) Cr ( E ) is preserved by the action of Gal(Q( e (1 /N ))/Q), TZ ( I + N ) and < a ) 

(a E (Z/NZ)*). In terms of the Z[E1, E2]-module structure: 

, acts as El ( a ); 
TZ acts as El(l) + IE2(l); 

<a) acts as ElE2(a). 
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PROOF. We will define Cr(E) and prove (a). We refer the reader to [19, §3.2] for 
the proof of (b). 

For E C Gr we have Ar(E) C r X Sr(E). The map 

Hom(r(E); Z) r <t (1 X +)(8r(E)) 

is one-one. Let r(E) be the image. Then Cr(E) is the image of Br(E) in Cr 

under the natural map r Cr 

To see the pairing we observe that because of Proposition l.l(b), any qi c 

Hom(SPr(E); Z) extends uniquely to a map zp: Rr(E) Q. This gives us a natural 

palrlng 

bd r( E) X 9Dr( E ) Q 

Since (1 s q9)(8r(E)) E r(E) is principal if and only if +(bDr(E)) c Z this 
induces a perfect pairing 

Cr( E ) X Ar( E ) Q/Z. O 

To understand the groups Cr(E) for E E Gr we must therefore have a satisfac- 
tory way of understanding the groups bar(E) r(E). The aim of the next theorem 
is to describe these groups in terms of special values of L-functions attached to E. 

Let E C Gr and y c SL2(Z). Then Ely has a Fourier expansion of the form 

(1.3) ( EIY ) 3 aO( Ely) + L an( Ely) ef nz/N) 
, > 1 

for z E A. The constant termaO(Ely)depends only on the r-orbit of y ioo E IR1(Q). 
It is related to the L-series of Ely by the formula [19, 2.2.1] 

(1.4) aO( Ely) = -L( Ely, O) . 

Let X be a primitive I:)irichlet character whose conductor mx is prime to N. The 
Dirichlet series 

(1.5) X(ff)Ns L an(E)x(n)n s 
n > 1 

converges absotutely for Re(s) > 2 and extends to a meromorphic function on the 
complex plane with a possible simple pole at s = 2. Let L(E, X, s) denote this 
analytic continuation. If X is the trivial character we write simply L(E, s). As we 
will see in the next section (Lemma 2.2), the " special valueS' 

(1.6) A (E, X, 1) dfn (x)L( E, X, 1) 

is in S2 r( E )[X l/mx] if X is nontrivial. 
If m is an odd prime, let Xm = (-/m) be the quadratic character of conductor m. 

For a primitive nonquadratic Dirichlet character X whose conductor is a power of m 
let 

(1.7) A + ( E , X , 1) = 2 ( A ( E , X , 1) + A ( E , XX n2 X l)) - 
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In the following S will denote a set of positive primes satisfying 

(a) m--3 (mod4), (m, N) = 1 for all m E S; 
(1.8) (b) S intersects every arithmetic progression of the 

form {-1 + Nkrlr E Z}. 

For such a set S, let XS denote the set of primitive Dirichlet characters X such that 
mx E S and X is not quadratic. 

THEOREM 1.3. Let E C gr. 
(a) For x E cusps(r) 

rr E(x) = er(X) * ao(ElYx) 

where er(x) is the ramification index or x over the j-line X(1), and Yx C SL2(Z) is 
chosen arbitrarily so that Yx ix is in the r-orbit of IFD 1(Q) representing x. 

(b) Suppose r is one of the groups rl(N) or r(N). Let M c C be a finitely 
generated Z-submodule of C. Let S be a set of primes satisfying (1.8). Then E E Gr(M) 
if and only if 

(i)r(E) c M; and 
(ii) for every X C X s 

A +(E, X 1) E M [X, 1/mx] 

PROOF. (a) Let x c cusps(r), e = er(x) and Y = Yx- The matrices a = y(O l)y- 
and ( 1 °) generate the parabolic subgroup of r stabilizing y ioo. Thus 

rr E(X) = | E(z) dz 

for every zO c A. Replacing zO by yzO we obtain 

rrsE(x) = | E(z) dz = | (Ely)(z) dz 
YZo zo 

1 Iz0+eN (EIy)(z) dz 
N zo 

= N(eN a0(Ely)) (by (1 3)) 
= er(X) a0(EIYx) 

The proof of (b) is given in the next section. 

2. Special values of L-functions. As in §1, N is a positive integer and r is one of 
the groups, r(N), r1(N) or ro(N) 

Let X be a nontrivial primitive Dirichlet character of conductor m with ( m, N ) = 1. 
If x, y c IP 1(Q) are r-equivalent we will write { x, Y } r E H1( Xr; Z) for the homol- 
ogy class represented by the oriented geodesic in A joining x to y. The universal 
special value A(x) E H1(Xr; Z[X]) of the L-function of Xr twisted by X is defined 
by 

(2.1) A (X)= E X(Na)(xS m ) 
(cl, m)=l 
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Here x E IP 1(Q) may be chosen arbitrarily in the r-orbit of N/m. Since the rational 
numbers Na/m, (a, m) = 1, are r-equivalent, this expression is well defined. In case 
m- + 1 (mod N ) we may choose x = O. 

In case the conductor of X is m = pn for an odd prime p -- 3 (mod 4) and satisfies 
the congruence m-- + 1 (mod N ) we let 

(2.2) A + ( X ) = E x ( Na ) (O, m ; . 
Xp(Nu)= + 1 

Hence A(x) = A +(X) + A -(X) 

If A is a Z[x]-module and (p: Hl(Xr; Z) A is a cohomology class on Xr, the 

special value of the L-function of (p twisted by X is 

(2.3) A((p, x) = ((p s l)(A(X)) 

We will also let 

(2.4) A +((p, X) = ((p s 1)(A +(X)) 

If S is a set of primes satisfying (1.8) let Z[Xs] denote the ring generated over Z 
by the values of the characters X E XS. Let XS (resp. XS-) be the set of X E Xs such 
that x(-1) = 1 (resp. x(-1) = -1). 

THEOREM 2.1. Suppose r is one of r(N) or rl(N). Let S be a set of primes 

satisfying (1.8), and A be a Z[ X s]-module. Let : H1( Xr; Z) A be a cohomology 

class satisfying A +(, X) = A _(, X) = O for every X E X s Then (p = O. 

REMARK. In case the kernel of multiplication by 2 in A is zero, the condition 
A+(q), X) = A_(q), X) = O for all X E Xs is equivalent to A(, X) = O for all 
X E X s This follows from the equalities 

2 A +(, X) = A(, X) + A(%,, XXm) 

with X E X s+ Of conductor m. 
PROOF OF THEOREM 2.1. Fix a prime ideal p C Z[Xs] and let At, be the localiza- 

tion of A at t. Let (pp be the composition of (p with the localization map A A>. 

If y E r, then the homology class {x, yx } r is independent of x E IFD1(Q). Thus 
the map 

r yHl(Xr;z) 

y { x, yx } r 

is a surjective homomorphism which contains the parabolic elements in its kernel. 

Define O>: r Ap by O>(y) = (p>({x, yx}r). 

We will prove Op = O in three steps. 
(1) If m E S, m---1 (mod N2) and p + ((m-1)/2), then (p>({O, Na/m}r) = O 

whenever ( m, Na ) = 1. 
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Let a E Z such that (a, m) = 1. A standard character calculation shows 

t(( ' m )r) m-1 E x(Na)A+('Pp,X) 

+ -1 E 'Pt(( ' m )r) 
xm(Nk)= +1 

where the sum is over nontrivial characters X on (Z/mZ)* such that x(-1) = 1 and the _ sign is chosen according as xm(Na) = _ 1. By the hypotheses of the theorem the terms 1t +(<P>, X) are zero. It follows that (p>({O, Na/m }) depends only on the square class of a modulo m. We may therefore assume a = _ 1, the choice of sign being as above. 
Thereisak E Zsuchthatm = -1 + N2k. Let,8 = (+lk °) r.Then: * (O)= (O) and ,B (+N) = _N/m. Hence 

(( m )r) 9)t(( ' m )r) (Pt({: (0)S: (+ff)}r) 
= (pp({O, +N}r) - ¢p((0 1 )) ° 

since (O +N) E r is parabolic. 
(2) Op vanishes on the subgroup 

r (N) = ( (Nc d ) E r(N)|a--d-- _1 (modN2)) 
of r. 
Let Y = (Nc yb) E r'(N). Without loss of generality we may assume that d- -1 (mod N2). We may choose k E Z so that m = d + N2bk is a prime in S satisfying the congruence m -- -1 (mod 4N2p). Then (m - 1)/2 = (m + 1)/2-1---1 (mod t) so p + ((m - 1)/2). Thus m satisfies the hypotheses of (1). 
Let ,8 = ( 1 k ° ) E r. Then 

¢t(7) = %'t((°' d Air) %'t((: ( )'13 ( d )\ir) 
= g ( (o Nb 7 ) = O; 

the last equality being a consequence of (1). 
(3) Op = O. 

LEMMA (FRICKE, WOHLFAHRT). Let N' be a positive integer divisible by N. Then I5(N) is generated by r(N) and the parabolic elements of r(N). C] 
As a consequence we see that r is generated by r'(N) and the parabolic elements of r. If r = r(N) then this follows from the lemma with N' = N2. Since r1(N) is generated by r(N) and the parabolic element (O 1), the statement is valid for r = rl(N) as well. 
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Since ¢, vanishes on r'(N) and on parabolic elements of r, (3) follows. 

The homomorphism r Hl(xr; z) is surjective. Therefore (pt, = O. Since this is 

trut for all t we have (p = O. [D 
We now return to the proof of Theorem 1.3(b). Let E E Gr and let S= r(E) 

92 = 92 rf E ). Integration Of X rf E ) on Yr induces a map 

H1( Yr; Z) 9/ = Ar( E ) 

Since the parabolic classes are contained in the kernel, this map factors through a 
homomorphism 

(2.5) gE Hl(Xr; Z) Ar(E) 

We will refer to this as the parabolic cohomology class associated to E. 
If X is a Dirichlet character of conductor m, let gE X be the composition 

(2.6) %>E x Hl(Xr; Z) Ar(E) g2 [X, l/m]/[X, 1/m] 

LEMMA 2.2. Let p-3 (mod4) be an odd prime and X + 1 be an even primitive 
Dirichlet character of conductor m = pn. Suppose m- _ 1 (mod N). Then 

(1) A +(E, X, 1) E b[X, 1/m]; and 
(2)A+(%)ExSX)-+(E,X,1) (mod[X,l/m]). 

PROOF. We will use Schoeneberg's cocycle HE: SL2(Z) C [17, 19]. The basic 

properties are: 
(a) HE(O/3) HE(O/) + IIEIa(B) for a, ,B E SL2(Z). 
(b) If y E r, then 

( ) SYZo ( ) 

0 

for arbitrary zO E A. 
(c) If a = (ab) E SL2(Z) and c + O, then 

HE(Ol) =-aO(E) + c ao(EIol) + DE( c )S 

where 

( c ) 27ri ( (O 1 ) ) 

The term DE(a/c) is usually expressed in terms of generalized Dedekind sums but 
we will not need these expressions here. The formula 

(2 .7) A ( E, X, 1 ) = E X ( N,2 ) DE ( m ) 

is an easy consequence of (c) (see [19, 3.1.1]). 
Because of (b) we have 

'PE({X, yx } r) - TIE(Y) (mod ) 
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for every x E IP1(Q) and y E r. If a C Z and (a, m)-1, let Ya E r be any element 
for which Ya * (°) = (Na/m). So Ya = ( ha, Nam) for some choice of a', b E Z. Let w = 
( ° 0 ). Then yaw-( Na t)< ) and by (c) 

IlE(yaw) =-a0(E)- m aO(Etw) + DE( m ). 

Since N * a)(E), NaO(Elw) E Xby Theorem 1.3(a), we see 

H E ( yaw )-DE ( m ) (mo [ m ] ) 
On the other hand, by (a), (c) we have 

TI E(YaW) = Il E(Ya) + TI E(W)' II E(W) - DE(O) 

We therefore have the congruence 

HE(Y )--DE( Na) _ DE(O) (mod**[ 1 ]) 

Calculating modulo [x, 1/m] we find 

A + ( GE9X u X ) = U = ° .X ( ( m j r ) x ( Na ) = + I 
Xp(Na)= +1 

- L X(Na)DEt m ) (sincexisnontrivial) 
XP( NA ) = + 1 

= 2 E X(Na)(l + Xp( Na)) DE (-) = A + ( E, X, l) 
ts m)=l 

This proves both (1) and (2) of Lemma 2.2. O 
PROOF OF THEOREM 1.3(b). There is a number field F such that for any other 

number field K linearly disjoint from F the natural map M X K MK iS an 

isomorphism. Let d F be the discriminant of F and 

S' = {m E Sl(dF, (m-1)/2)-1}. 
Then St satisfies (1.8) and if X C Xs, then Q[X] is linearly disjoint from F. 

Let p be prime and MP c C be the localization of M at p. Let AP = C/MP[XS,]. 
Since 5Pr(E) c M, integration of @(E) induces a parabolic cohomology class (pp: 

hrl(Xr; Z) AP. By hypothesis A+(E, X, 1) E Mp[Xs] for every X E Xs+,with mx + 

p. By Lemma 2.2 we have lt+(mp, X) = O for these X Then by Theorem 2.1, zp = 0. 
Hence bDr(E) C Mp[Xs ] Since this is true for every prime p we have bDr(E) C 

M[Xs] On the other hand because of Proposition l.l(b), bDr(E) C- 
Q 5Pr(E)cQ*M.Thus 

9@r(E) _ Q * M n M[XS,]. 

Since Q[3Es ] n F = Q, we have Q M n M[3Es] = M. Therefore E E Gr(M) as 
claimed. O 
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3. Modular units. Let U = UN>O U(r(N)) be the group of modular units of all 
levels. For each positive integer N let UN be the subgroup of U consisting of the units 
g E U such that gm C u(r(N)) for some m. 

A theorem of Kubert [7, 8] gives a complete description of Ujv/C* by describing 
both its elements and its structure as an SL2(Z)-module. In this section we recall 
Kubert's theorem and use Theorem 1.3 to give another proof. 

For 19 > O let DN be the free abelian group generated by the symbols 

x c NZ /Z \{°} 

Let D = inj lim DN. Let R C D be the subgroup of "distribution relations" gener- 
ated by the elements 

, (y) - (x) if x + O, 
ny=x 

(3.1) r"(x)=t , () if x=O, 
n y = (O) 

k Y*O 

where n is a positive integer and x c Q2/Z2. Let U = L)/R. The universal (punc- 
tured) distribution is the natural map 

(3.2) Q2/Z2 \ {0} RJ 

For a positive integer N let F1JN C tJ be the image Of SN. 
The natural right action of SL2(Z) on Q2/Z2 \ {O} defined by 

(3 3) y = (a b): x = (x1, x2) xy = (ax1 + cx2, bxl + dx2) 

extends to an action on D leaving R invariant. The induced action of SL2(Z) on RJ 
preserves the subgroup EJN For u c RJ and y c SL2(Z) we will write y*u for the 
result of applying y to u. Let RJ + be the subgroup of even elements of RJ, that is, the 
elements u E RJ for which (-l)*u = u. Since (-1) is in the center of SL2(Z), RJ + is an 
SL2(Z)-submodule of RJ. Let EJN = EJN n RJ - 

For X = (X1, X2) C Q2/Z2 \ {O} define the function jx(z) on A by its Fourier 
expansion: 

(3.4) jx(z) = e(-B2(xl)z) t1 (1-e(kz + x2)). 
k--xl (mod Z) 

k>O 

Then jx(z) has no poles or zeros on A. Let JN be the multiplicative group generated 
by C* and the functions jx(z), x C NZ2/Z2 \ {O}, and let J = UN>O JN It is not 
difficult to verify the distribution relations: 

(35) rl Xy= jx n jy=1 ny=x ny=O 
y+O 

for n > O and x c Q2/Z2\ {O}. Hence the homomorphism D J defined by x jx(z) factors through the universal distribution to give a homomorphism j: llJ J. Let JN+ be the subgroup °f JN generated by C* and j(lLJ N ) 
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THEOREM (KUBERT). (1) UN = JN 

(2) The homomorphism EJN UN/C*, induced by j, is an isomorphism of SL2(Z)- 

modules. 

We will restrict our attention to what appears to be the most difficult part of the 
proof, namely the inclusion JN C UN. For the rest of the proof we refer the reader to 
[7 or 6, Chapter 4]. 

We will prove JN C UN by verifying the corresponding statement about weight 
two Eisenstein series. 

Let (Z) = UN>O gr(N)(z)- Logarithmic differentiation gives an isomorphism 
(2 ZZ1 )-1CI 10g/ 

(3.6) U/C* _ > (Z). 

The image of UN/C* iS (Z) n gr(N)- 

For X = (X1, X2) E Q2/Z2 \ {O}, let lx be the function on A defined by 

(3-7) IX(Z)= 277ijX(Z)/>X(Z) 
x 

=4B2(X1)- E k- , e(mfkz+x2)). 
k-X1(mOdZ) m=1 

kEQ+ 
Let LN be the additive group generated by the functions lx, x E v Z 2/Z 2 \ {O} . 

Define 1: RJ N LN to be the composition 

j (2 i)-lcllog/ 

EJ N JN > L N 

and let LN = I(lJN) 
The inclusion JN C UN is an immediate consequence of the following proposition. 

Moreover, we see that the functions in JN are modular of level N' = 4 * lcm(6, N2). 

PROPOSITION 3.1. (1 ) L N C Gr( N ); 
(2) LN C gr( Nt ) (Z) where N' = 4 lcm(6, N 2 ). 

PRooF.(l)Forx E ,VZ2/Z2\{0}1et 

(3.8) W9x = lx + l x, 71x =ix i-x 
A comparison of Fourier expansions shows that 71x is a nonzero multiple of the 
Siegel unit gx [6, p. 29]. Hence for y E SL2(Z), 

71X(YZ)-C * 71xy(Z) 

for a root of unity c. Taking logarithmic derivatives we find 

(3 9) W9x}Y = W9xy 
In case y E r(N) this equality says qiX}Y = qix Thus qix E Gr(N) 

For E E LN there is a u E QJN+ such that l(u) = E. Then 2 * E = I(U + (-1)*U) is 
a Z-linear combination of the functions qix, x E nvz2/z2\ {O}. In particular, 
E E gr(N) 

(2) Let r = r(N), N'-4 * lcm(6, N2). Let E E LN BY (1) we have E E Gr We 
will use Theorem 1.3 to show E E gr(Z) 
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We begin by proving SPr(E) C Z. By the argument of (1) we know that 2E is a 
Z-linear combination of the Eisenstein series qix, x c NZ2/Z2\ {0}. Hence it 
suffices to prove r(qix) c 2Z for each x. Since the ramification index of every cusp 
on Xr over X(1) is N', Theorem 1.3(a) shows that 9Pr(qix) is generated as a Z-module 
by the numbers 

N' ao(<ixy) Y E SL2(Z) 

If xy-(x1, x2), then an examination of the Fourier expansion of fxy reveals 
ao(5ixy) = 2B2(X1)* Hence N' ao(<ixy) c 2Z, as desired. 

To complete the proof we must study the values A(E, x,1) for E C LN and 
nontrivial primitive Dirichlet characters X of conductor prime to N. 

We may extend the definition of L(E, X, S) to all E C LN by setting 
x 

L(E X S) = X(N)Ns , a"(E)x(n)n-s, Re(s) > 2, 
t1=1 

if E = aO(E) + £°°=1a"(E)e(nz/A). For x = (xl, x2) c NZ2/Z2\ {O} it is not 
hard to check the equality 

(3.10) L(IX, X, s) = -D(s-1, X, x1) Z(s, X, x2), 
where 

t(5, X, xl) = x(N) £ x(Nk)k 
k--xl (mod Z) 

(3.11) X 

Z(s, x, X2) = E X(n)e(nx2)n-S, 
n = 1 

Since D and Z are Hurwitz zeta functions they converge absolutely in the half-plane 
Re(s) > 1 and extend to meromorphic functions with possible simple poles only at 
s = 1. For a general Hurwitz zeta function H(s) represented by a Dirichlet series 
°°=1 +(n)n-S with a periodic function + of period A, the residue at s = 1 is given by 

l A 

- E +(n) 
n = 1 

Hence t(s, X, xi) and Z(s, X, x2) are regular at s = 1. Since any E C LN is a linear 
combination of functions lx we have the following 

LEMMA 3.2. If E E LN and X is a nontrivial primitive Dirichlet character, then the 
Dirichlet series L( E, X, S) converges absolutely for Re(s) > 2 and extends to an entire 
function of s E C. O 

For E E LN we may define 

A ( E X , 1) = (X) L( E, X , 1) 

as we did for Eisenstein series E. 
Let 

(3.12) 
S = { m primelm-3 (mod 4) and m--1 (mod N ) } . 
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Clearly, S satisfies (1.8). For X E Xs of conductor m and E E LN let 

A +(E, X, 1) = -(A(E, X, 1) + A(E, XXm, 1))- 
For the rest of the proof we will fix a prime m E S and a character X E Ais of 

conductor m. We will show A +(E, X, 1) E Z[X, l/m] for E E LN- 
Let K = Q(e(l/Nm)) and fix an isomorphism 

(Z/n Z)* G = Galt K/Q( e (l/Nr ))) r (Tr: e(l/m) e(r/m)) 

For a Z[G]-module V let V(x ) be the Z[X, l/m ]-submodule of V s z Z[X, l/m ] on 
which the squares in G act via X- Hence 

V(x) = { v E V s Z[X, 1/m]|r(v) = X(r)v for every 
quadratic residue r E (Z/m Z) * } . 

Let W be the group of units in K written additively. Thus W is generated by the 
symbols { X }, X E ° K, subject to the relations { @1@2 } = { @1 } + { )2 } for )1, @2 E 

° K. Of course W is a Z[G]-module. 
Define 

A: W s zZ[X, l/m] C/Z[x, l/m] 

by 

({ @ } s ) = a 277i log(@) (mod Z[X, l/m]). 

Let 

v7: C C/Z[x, l/m ] 

be the natural projection. If w = { X } s cx is an element of W s Z[X, l/m], we write 
w for { X } s cx where X is the complex conjugate of . 

We need two lemmas. The first is concerned with special values of L-functions. 
The second is about units in cyclotomic fields. 

LEMMA 3.3. For either choice of sign +, there is a distribution wx+: EJN W(X) 

such that 
(a) The diagrflam 

wx+ 

UJN W(X) 

l8, 8, 
A ( ,x,l) 7 

L + C c/Z[xSl/m] 

is commutative; 
(b) For u E EJ N, WX+ ((- 1 )* U ) = -WX+ ( u ) . 

LEMMA 3.4. If w E W(x) and w + w = O, then w = O. 

Before proving Lemmas 3.3 and 3.4 we show how they can be used to complete 
the proof of the proposition. Let E E LN and u E ON such that E = (U). Set 
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w = wx+(u). Since (-l)*u = u we have w + w = O by Lemma 3.3(b). Lemma 3.4 
then tells us w = O. By Lemma 3.3(a) 

( A + ( E, X , 1)) = X ( w) = O. 
Therefore 1t +(E, X, 1) E Z[X, l/m]. By Theorem 1.3(b), E E Gr(Z) as was to be 
shown. 

PROOF OF LEMMA 3.3. To define wx+ we need the generalized Bernoulli functions 

(3.13) Bl+,(x) = 2(Bl >(x) + B1 ae(x)) 

where + is a primitive nonquadratic Dirichlet character of conductor m, x E Q and 
E = Xm Also, let B1+(+) = Bl+,(O). The basic properties we will use are: 

m-1 

(1) B1+(A) = E +(a) * a/m; 
cl=l 

£(C)= + 

(3.14) (2) Bl+l(x)=B1+(A)-A(-1) E {(a), 
e(cl)= +1 

where L* means the terms corresponding to the 
endpoints a = O, x are weighted by a factor of 2 S 

(3) Bl+,(x)=-A(-1) B1+,(-x). 

(1) and (3) are straightforward calculations and (2) is a consequence of a correspond- 
ing formula for Blx,(x) (see [19, 3.6.2]). Note that if x E NZ then l::* may be 
replaced by S. Thus (1) and (2) show Bl+,>(x) E Z[X, l/m]. 

Let x E NZ2/Z2\ {O}. Since (m, W) = 1 we may represent x by an element 
(xl, x2) E NZ2 with xl E n Z. For our fixed character X define w +(x, X) E W s 

Z[X, l/m] by the formula 

W+(X, X) = E ( 1 _ ( + 1/ ) ) C' X(a)Bl,X( )(Xl). 

For a quadratic residue r E (Z/n Z)* an easy calculation shows 

tr(W -(X, x)) = X(r)w +(x, X). 

Hencew+(x,x)6 W(X) 
The formulas 

ri. ( ( n m )) ( ( m )) 

and 

E Bl+x( n ) = X(n) Bl.x(X) 

for (n, m) = 1 show that w+(, X) is a distribution on NZ2/Z2\ {O}. Hence 
w +( , X ) induces a homomorphism 

WX : UN W(X)- 
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(a)ForxeQlet 
x 

t(s, x) = E k-S and Z(s,x) = E e(nx)n-S. 

k-x(modZ) 
n=l 

k>O 

These are Hurwitz zeta functions and thus have analytic continuations with possible 

simple poles only at s = 1. In fact if x is not an integer, then Z(s, x) is regular at 

s = 1. Moreover we have the formulas 

t(0, x) = -Bl(x), Z(1, x) = -log(l-e(x)) 

for x E Q \ Z [21, p. 271]. Here log denotes the principal branch of the logarithm. 

For a primitive character A of conductor m, the functions (s, A, xl) and 

Z(s, +, x2) can be expressed in terms of the functions t(s, ) and Z(s, *) by 

t(s, {, xl) = m S E A(a)D(s xl + a ) 

cl-1 

(recall xl E m Z/N ) and 

( + ) z(sS +, X2 ) = E + ( a) z( s, X2 +-) - 

a-1 

Thus 

t(o, A, X1) = -Bl,+(Xl), 

T(+)Z(l, { X2) = - E {(a)logt 1 _ ( 2 + 1/ ) )- 

Hence 

(Ix + 1) = t(o A xl) (+1? Z(1,A,x2) 

= -Bl|;>(xl) , {(a) * 1 logt 1 - e(X2 + a/m) ) 

Thus for our fixed character X we have 

m-1 

+(lxs X7 1) = - E X(a) 2 (Blsx(xl) + E(a)Bl XE(Xl)) 
u=1 

1 1 { 1-e(X2 + a/m) j 

2STi gV 1 - e(X2 + l/m) } 

- E X ( a )Bl+x£(a) ( xl ) 21 i logt 1 e ( x2 + a/m ) ) 

The commutativity of the diagram in (a) is now clear. 
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(b) We use property (3) of the functions Bl+x to compute 

W+(-X, X) = E 4 1 _ (( 2_ 1/ ) ) >) x(a)BI,X( )(-X1) 

aEl ( 1-e(-x2 - 1/m) ) 8) X(-a)Bl x(-a)(-xl) 
mEl(l-e(-x2-a/m))s_( )B+£(a)( 

= -w+(x, X) - 

This proves (b). O 
PROOF OF LEMMA 3.4. It is a well-known fact that if X E OK iS a unit of absolute 

value one, then X is a root of unity. Thus an element w E W satisfying w + w = 0 
must lie in WtOr, the subgroup of torsion elements of W. Hence if w E W(x) and 
w + w = 0, then w E Ktor(x). We will show Wtor(X) = °- 

Let N1 = lcm(2, N). Then N1 is the number of roots of unity in the Q(e(l/N)) 
and WtOr_ ElNI X ElmS where Eln denotes the group of nth roots of unity. Hence 
Wtor(X) - yNl(X) X ym(X) 

Since m acts invertibly on Elm(X), we have Elm(X) = (°) 
The group of squares in the Galois group G= Gal(K/Q(e(1/N))) (Z/mZ)* 

acts at the same time trivially and via X on ElN,(X). Therefore ,uNl(X) is annihilated 
by x(r)-1 for every quadratic residue r E (Z/mZ)*. Since X is not quadratic, we 
can choose r so that x(r) is a nontrivial ((m-1)/2)th root of unity. Hence 
(m-1)/2 annihilates ,uNI(X). But the conditions m-3 (mod4) and m- 
-1 (mod N) show that N1 and (m-1)/2 are relatively prime. Thus ,uNl(X) = 0. C1 

4. Subgroups of the cuspidal group. Let N > O and r be one of the groups rl(N) 
or ro(N) For a divisor D E r s C let R(D) be the Z-submodule of C generated 
by the coefficients of D. 

DEFINITION 4.1. The subgroup of Cr associated to D is the image of the 
composition 

Hom(R(D); Z) r Cr + ¢*(D). C1 

It follows from the definition that for A E C* the subgroup associated to D is equal 
to the subgroup associated to XD. 

The Hecke algebra T = Z[TX, (a>: I + N prime, a E (Z/NZ)*] and the Galois 
group G= Gal(Q(e(1/N))/Q) act on r. If T[G] acts on D via a character 

A: T[G] C, then the subgroup of Cr associated to D is a cyclic T[G]-submodule of 

Cr. In this section we show how Theorems 1.2 and 1.3 can be used to study this 
module. In case r = rl(X) we will obtain a complete description. When r = rO(X) 
we describe it only modulo the Shimura group. 

For the rest of this section we will write r1 for rl(N) and rO for ro(N) 
Over rl our method may be summarized in two steps: 
(1) Find a weight two Eisenstein series E over rl with Arl(E) = D. 
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(2) Use Theorem 1.3 to find gZ rl( E ). 
Then the subgroup of Crl associated to D is Crl(E) and its structure is described in 
Theorem 1.2. 

The first step is easily accomplished using Proposition 4.7(d). To carry out (2) we 
need some divisibility properties of the values A+(E, X, 1). Proposition 4.7(c) allows 
us to give explicit formulas for A+(E, X, 1) in terms of generalized Bernoulli 
numbers and Euler factors. The following theorem then provides the necessary 
divisibility information. 

THEOREM 4.2. Let E be a primitive Dirichlet character of conductor M and m + M an 
odd prime. Let X+ (resp. X-) be the set of primitive Dirichlet characters X whose 
conductors are powers of m and satisfy x(-l) = 1 (resp. x(-1) = -1). Let 83 + m be a 
prime of Q and _ be a choice of sign. Then 

(a) For every algebraic integer cx and prime number 1, there are infinitely many 
X E X - such that 

a + (1 - aX(I)); 

(b) If m-3 (mod 4) and X E Ai + is not quadratic, then 
2Bl(eX) E Z[e, X, 1]; 

(c) (L. Washington [20]) For all but finitely many X E X-E(-1), 2B1(EX) is a -unit. 

PROOF. (a) For any m-power root of unity, , there is a X E X+ such that x(l) = t. 
Since the m-power roots of unity are distinct modulo , there is at most one choice 
of D for which 1(1-cxt). This proves the result for X+. Fix Xo E Ai-. Then there 
are infinitely many X E X+ such that 13 + (1 - 'xXo(l)x(l)) Since XoX is imprimi- 
tive for only finitely many X E X +, the result follows. 

(b) If ex (-l) = 1, then Bl(ex ) = O. If ex (-l) = -1, then eX (-l)(-l/m ) = 1 Thus 
Bl(eX) = Bl(ex) + Bl(6X( /m)) 

= 2E(mx)X(M) E X(a)Bl £(-) ° 

( cl/m ) = ( M/m ) 

In case r = rO we use the natural projection ST: X1(X) XO(X). The map Sz induces sz*: Pic°(Xo(N)) Pic°(Xl(N)) whose kernel zN iS known as the Shimura 

group. Let X2(N) be the maximal unramified extension of Xo(N) intermediate to sz. 
By Kummer theory there is a perfect pairing of Gal(Q/Q)-modules 

AUt(X2(N)/Xo(N)) X 2 N 

where ,u is the group of roots of unity. Since the Nebentypus automorphisms of 
X1 ( N ) are defined over Q we see that Gal(Q/Q) acts trivially on 
Aut( X2(N)/Xo(N)). Thus 2 N iS a ,u-type group. 

Let D E rO s C be a divisor on which T[G] acts via a character A. Using 
Proposition 4.7(d) we can find E E Grl so that Srl(E) = sz*D. Then E 6 66rO and 
ArO(E) = D. Using Theorems 1.3 and 4.2 we can calculate9Zr (E) as before. Let 

(4.1) Crso)(E) = sz*(CrO(E)) 

A(ro)(E) = (g2 rl(E) + rO(E))/rO(E) 
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Clearly C(so)(E) C Crl(E). The following proposition will allow us to describe the 
structure of Cpso)(E) as a T[G]-module. 

PROPOSITION 4.3. There is a canonicalperfect pairing 

CrSo) ( E ) x A (rO) ( E ) Q/Z 

PROOF. Crso)(E) is the image of the composition 

Hom( rO( E ); Z) rO rl Cr + +*(D) 

Since any + E Hom(rO(E); Z) extends uniquely to a homomorphism 

f (9Zr1(E) + SrO(E)) Q 

we obtain a natural pairing 

(4.2) Hom( SrO( E ) ; Z) x ( rle E ) + SrO( E )) > Q 

An element + E Hom(SrO( E); Z) goes to zero in Cr if and only if 7r*(+* D) = 
f *(X*D) = f *(8rl(E)) is principal if and only if ¢(95rl(E)) c Z. Thus (4.2) 
induces a perfect pairing 

CrSo)( D ) x A(rO)( E ) Q/Z 

as desired. O 
Since the Shimura group zN can be computed explicitly and since we have an 

exact sequence 

(4 3) ° EN n CrO(E) Cro(E) Crso)(E) > o, 

we can often use our complete knowledge of Cps)(E) to say a good deal about 
CrO(E)- 

Before proceeding to a general description of the cusps and the Eisenstein series, 
we illustrate these techniques with a familiar example. 

EXAMPLE 4.4. Let rO = ro(N) where N is prime. There are only two cusps (O) and 
(ix) on Xo(N), thus CrO is generated by the class of D = (O)-(iso). The space of 
Eisenstein series over rO is spanned by 

E(z)= 24 + E ov(n)e(nz), 
n=l 

where AN(n ) = Edin; N+d d Thus CrO = CrO(E )- 

By Theorem 1 3(a) rrO E(i°)= (N-1)/24. Since brO(E) has degree zero we 
have 8 rOt E ) = (1-N )/24 D. Thus SrOt E ) = Z<24 Z 

The L-function of E is L(E, s) = (1-Nl-s)D(s)D(s-1). Let S = {m primel 
m--1 (mod4N)}. Then S satisfies (1.8). If m E S and X is an odd primitive 
character with conductor a power of m, then 

A ( E, X , 1) = 2 (1-X ( N ))Bl( X )Bl( X ) 

and 

+(E x,1) = (1-X(ff)) . Bl(X) . B1(X) 
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Thus Theorems 4.2(b) and 1.3 show barl( N)( E ) c z + IV24 } Z. By Theorem 4.2(a), 

(c) we have equality, gZ rl( N)( E) = Z + Z. Thus 

A(rSo)(E) = (Z + Z)/Z _ Z/n'Z, 
where n' = Num((N - 1)/24). By Proposition 4.3 Cgo)(E)-Z/n'Z. 

We therefore have an exact sequence 

° zNrl CrO CrO Z/n'Z > O. 

The group zN iS cyclic of order n = Num((N-1)/12). Thus zN - t(l". Since G acts 
trivially on CrO (Theorem 1.2(b)) we have 

zN n CrO-(O) or (Z/2Z). 
To decide which of these possibilities occurs we can appeal to the explicit formulas 
for the cocycle of E [19] and then use classical congruence formulas modulo 8 for 
Dedekind sums [16, p. 34] to show 

r (E) = |1 2Z + 24 Z if N-1 (mod8), 

24 Z otherwise. 

Thus 

CrO-Z/nZ, n = Num(( N-1)/12) . o 

Fix N > O. We will use Shimura's notation for the cusps on X(N). For a, b E Z 
such that the triple (a, b, N) is relatively prime, [b]r(N) denotes the cusp represented 
by a/,B E Q with a, ,8 + O relatively prime integers satisfying a-a, ,B--b (mod N ). 
The group GL2(Z/NZ) acts on cusps(r(N)) by matrix multiplication. 

Let r be one of the groups r1 = rl(N), or rO-ro(N) The natural map 

r GL2(Z/NZ) affords an action of r on cusps(r(N)). The cusps on Xr may be 

identified with the r-orbits of cusps on X(N). Let [blr be the cusp represented by 
the r-orbit of [b jr(y). Then we have the relations 

(i) [b]r=[b]r if a--a',b--b'(modN); 

(4.4) (ii) [b] r = [b ] r if a-a' (mod b); 

(iii) [b] r [-b] r 
If r = rO, (iii) may be strengthened to 

(iii) [ b ] rO = [rb] rO for all r E Z with (r, N) = 1. 
The integer d= (b, N) depends only on the cusp [ab]r- We will refer to d as the 
"divisor" of [ablr The ramification index of [ablr over X(1) is given by 

( ) r([b]r) l N S r - r (N3 

where t-gcd (d, N/d ). 
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Let T(N ) = {(o °* )N } C GL2(Z/NZ) be the standard torus. Then T(N) normal- 
izes the image of r in GL2(Z/NZ) and therefore acts on cusps(r). The action is 
given by 

(4.6) (0 S)N [b]r [sb]r 
for r, s E (Z/NZ)*. 

For a divisor d of N let !@r d C !@r be the subgroup of divisors supported on cusps 
with divisor d. The above formulas show that r d iS preserved by T(N). 

In Shimura's canonical model for Xr over Q, the cusps are defined over Q(e(l/N)). 
If we fix the isomorphism 

(Z/NZ)* G = Gal(Q( e (1/N ))/Q) r @ ' (Tr: e(l/N) e(r/N)) 

then the action of G on r is given in terms of the action of T(N) by the 
correspondence 

(4.8) ( ° r ) N 

[19, Theorem 1.3.1]. Hence the rationality properties of the cusps are summarized by 

(4 9) [ b ] is rational over ( Q( e (1/t )) if r - r ( N j 

where d is the divisor Of [ b] r and t = gcd(d, N/d ). 
The action on r Of the Nebentypus automorphisms <r>, r E (Z/NZ)*, and the 

Hecke operators Tl, I prime, 1 + N, can also be described in terms of the action of 
T(N ) by 

(4.10) <r> (o r-l)N 

Tls1+1(1),-1 

We warn the reader that this action of <r>, Tl on r is dual to what may be 
considered the standard action. This is due to the fact that we are viewing Cr as a 
subgroup of the contravariant object Pic°(Xr). For E E Gr define El<r>, ElTz as 
usual by 

El<r> = Ely for Y = ( c d) E ro(N) withd--r (mod N); 

(4.11) E|Tt = E E|(o 1)l+ Ell)l(0 1) 

Then with our conventions for the action of <r>, Tl on r we have 

(4.12) sr(E|<r>) = <r> * 8r(E), sr(E|Tz) = Tl - sr(E) 

Fix a character A: T(N) C*. Then there are primitive Dirichlet characters El, E2 

of conductors N1, N2 divisors of N such that 

(4.13) + ( ( r 0 ) ) ( ) ( ) 
for r, s E (Z/NZ)*. Let E = E1E2. Then E need not be primitive. 
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For a divisor d of N let r d()2) be the Z[+]-submodule Of r d (8) Z[|4] on which 
Tf N) acts via + and let r( + ) = EdlNr d ( + ). In particular, for r E (Z/NZ)*, 

'rr E G acts on r(+) as El(r) and (r> acts as £(r). For a prime 1 + N, Tz acts as 
£1(1) + 1£2(1)- By (4 4)(iii) r(+) = O unless E(-1) = 1. 

PROPOSITION 4 5. Let A be as above with £(-1) = 1. 

(a)§r d(94) + ° if andonlyifN2ld,Nll(N/d)and,incase r = rO(X),£1 = £2. 
(b) If r d (i4) + ° then it is generated as a Z[ + ]-module by 

Drd(+) = £l(b)£2(a)[db] r' 

where the sum is over cusps [db]r with divisor d. 

The proof is a straightforward calculation which uses the primitivity of £1, £2. Q 

For a character at: T(X) C* let r(+) be the degree zero divisors in r(+). 

Let Cr(+) c Cr be the image of the composition 

r(Rt)Xzxpom(Z[+];Z) 'rCr 

D s f ¢*(D) 

In case + is nontrivial we have §3rf + ) = rf + ). In this case we let Cr d ( + ) C Cr( + ) 
be the image of r d(+) @ Hom(Z[+]; Z) under the above homomorphism. Then we 
have 

Cr(A)= ECr,dfA)A 
dlN 

though this sum is usually not direct. 
It is convenient to extend the space Gof weight two Eisenstein series of all levels 

by adjoining the nonholomorphic Eisenstein series of level one: 

1 1 t 
+(o o) ( z ) = +-- 2 * 5£ k * E e ( mkz ) 

Let * = g @ C ¢0. A typical element E E * has a Fourier expansion of the form 

(4.14) E(z) = 2 i(l _ -) + ao(E) + E ak(E)et N ). 

The space * is a module under the weight two action of the group GL2(Q) of 2 x 2 
rational matrices with positive determinant. For a congruence group r _ SL2(Z) let 
Gr* = Gr 63 C +0 be the space of r-invariants in *. If r = rl(N) or ro(N) then 
the action of Tf N ) on Gr extends trivially to an action on Gr*. 

We may extend br to a linear map br: Gr* ' r X C by defining 

ar(fo)= 12 E er(x)-(x). 
xECuspsf r) 

We also extend the definition of L(E, X, s) to all E E * by setting 

L( fo X, s) = -2L(s, X)L(s-1, X) 

and extending linearly. We then define A(E, X, 1), A+(E, X, 1) as before (1.6), (1.7). 
The basic properties (1.4), (4.11) of these symbols are preserved by the extension. 
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As before let rl = rl(N), rO = ro(N) and +: T(N) C* be a character assocl- 

ated to £1 82 of conductors Nl, N2 as in (4.13). Assume £-£162 iS an even character, 
and (NlN2)lN 

DEFINITION 4.6. (a) 

1 Nl-1 N2-1 
E(el e2) 2 E E £l(r)£2(S)+(S/X2 r/l; 

r=O s-O 

(b) For d a divisor of N/N1 such that N2ld let 

I PI(N/d) ( P ( O 1 )) n (1 2( P) ( 1 ° )) ( d O ) 
where the product on the right is multiplication in the group ring C[GL2(Q)]. O 

PROPOSITION 4.7. Let d be a divisor of N/N1 such that N2ld and let E = Ed(l;,). 
Then 

(a) E E Grl; Elr> = £(r)E for r E (Z/NZ)*; EITz = (£1(1) + 1£2(1))E for prime 
1+ N. 

(b) 

L(E,s) = -T(£1)(N ) rl (1-£1(p)p ) 
2 plf N/d ) 

X n(l £2(P)P )L(£l,s)L(£2 5 - 1). 

pld 

(c) For a primitive Dirichlet character X of conductor m x with (m xS N ) = 1, 

2 1( X)X T N ) I1 (1 _ 1X( P ) ) 

X n (1 - ) B1 ( elX )B1 ( £2X ) v 

(d) 

25 (E) el( 1)N n (1 _ (( p) ) T(el)T(e2) B (() D (+) 

where t is the primitive Dirichlet character associated to £1£2, and n is the conductor of 
- 

The proof is given in the next section. 
EXAMPLE 4.8. If rl = rl(N), dl(N/Nl) and N2ld, then 

Crl d(+) Z[+]/Num(:) 

as Z[+]-mcedules. The action of T[G] is given in Theorem 1.2. Here Num(,B) is the 
ideal (,B) n z[+] and 

: M N n (1 (( p) ) (el)T(£2) B (() 
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where M = (ripl(X/dA; ptNl P)(ped; p+N2 p), t is the primitive Dirichlet character 
associated to £1£2, and n is the conductor of {. 

PROOF. We have Crl d(+) = Crl(E), where E = Ed(+). Proposition 4.7(d) shows 
rl(E)= MZ[+]. 

Let S be a set of primes satisfying (1.8). If m E S and X has conductor a power of 
m, then 

A+(E X 1) = -£l(mx)xt N ) n (1 F ) 

X n(l - ) ) 1( lX) Bl(e2x) 

By Theorem 4.2(b) M * A+(E X, 1) E Z[14, X, l/mx] for every X E Xsel( l)- For 
m E S and E t m a prime of Q, Theorem 4.2(a), (c) assures the existence of X with 
conductor a power of m such that M * A+(E, X, 1) is a W3-unit. Thus by Theorem 
1.3(b) 

9$'rl(E)= MZ[l4] +9Prl(E) = MZ[+] + MZ[l4]- 

Then 

Arl(E) = S@rl(E)/Srl(E) 

( M [ l4 ] + M Z[ )' ])/( M Z[ l4 ])-Z[ + ]/Num(,B) 
and the result follows from Theorem 1.2. 0 

EXAMPLE 4.9. Let N-m2 and a be a primitive Dirichlet character of conductor 
m. Let + be the character of T(N) defined by +((oO)N)-a(rs) Let p c Z[+] be a 
prime ideal such that cx is not the cyclotomic character at t (i.e. there exists n E Z 
such that cK(n) $ n (mod lp)). Then 

cro(N)(+)p- (Z[a]/Num(A))pS 

where 

3 4n n (1 /2 ) T ( () B2( ( ) ( 

t is the primitive character associated to al 2, n is the conductor of (, and the subscript 
p denotes completion at t. 

PROOF. Let E = Em(+) E GrO Then CrO(+)= Cro(E). In the notation of (4.13) 
E1 = al, E2 a 

As in Example 4.8, rl(E) = m,BZ[a] and Szrl(E) = Z[x] + Srl(E) = Z[a] + 
m:Z[a]. By (4.5) rO(E ) = m5trl( E) = ,B * Z[ol]. Thus 

A(rso)(E) = (SDrl(E) + SrO(E))/§trO(E) 

= (Z[a] + AZ[a])/3Z[a] = Z[a]/Num(B). 
Since a is not cyclotomic at , we have (2N n Cro(E))t = (0)- Hence CrO(+)> = 
Cr(,( E ) , = CrSO) ( E ) ¢, and the result follows. O 
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EXAMPLE 4.10. Let C be the p-primary component of the cuspidal group Crf,(p2, 

on Xo(p2), wherep is prime. The cusps are rational over Q(e(l/p)) by (4.9). We 
identify (Z/pZ)* and G = Gal(Q(e(1/p))/Q) as in (4.7). For each integer k with 
O < k < p - 1 let C(k) c C be the subgroup on which G acts via Sk, wilere 

: G Zp is the cyclotomic character defined by w( r ) - r (mod p ). Then 

{ (0) if k = 1, ( p-1)/2, ( p + 1)/2, 

C(k) 4 Z /B2(@-2k) if 1 < k < ( p - 1)/2, 

t<Zp/pB2(fi3-2k) if ( p + 1)/2 < k < p-1. 

PROOF. We may assume p > 3. Fix k with 0 < k < p - 1, a prime ideal p c 
Z[e(l/( p-1))] dividing p, and a primitive Dirichlet character a of conductor p 
such that ct Sk (mod p ). Let A, E, ,8 be as in Example 4.9. One easily checks 

Cro(+)t,-C(k). 

As in Example 4.9 we have Cr(A) = Cro(E). The order of zp2 iS easily seen to be 
Num((p-1)/12). Hence Cro(E)>_ Cr(,)(E)¢, even when a is cyclotomic at p. 
Thus 

C(k)- (Z[ct]/Num(3)) 

by Example 4.9. 
To calculate ord(,B) we use the following facts: 

ord(p/n)= (1 

ordp ((1 - {( p )/p )) = ( _ 

ord (T(a)2/ (()) ( ° 

if k + (p-1)/2, 
if k-(p- 1)/2, 

O if k + ( p-1)/2, 
2 if k=(p-1)/2, 

if O < k < ( p-1)/2, 
if (p - 1)/2 < k < p - 1 [9], 

1 if k = 1, ( p + 1)/2, 
O if k = ( p-1)/2, 

ord,,(B2(t))= X ( 
> O otherwise [9]. 

We conclude 

if k= 1, 

if k = ( p 1)/2, ( p + 1)/2, 

if 1 < k < ( p - 1)/2n 

if(p+l)/2<kep-1. 

S nce zral z and B (t) is sent to B2(S-2k) under this isomorphism, the: result 1 t ,> - p 2 

1 + ord¢,(B2(t)) > 1 

follows. a 

' -1 

o 

ord¢, ( 3 ) = < ord¢, (B2 (t)) > ° 
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5. Proof of Proposition 4.7. (a) Using (3.9) one easily sees the equality E(£1 F2)lY = 

E(£ £2) for y = (a^) with b--O (mod N2), c-O (mod N1) and a--d-- 

+ 1 (mod N1N2 ). Thus, if k is a divisor of N/N1 such that N2l k, then 

E i ( k O ) E g * 

Since E is a linear combination of terms of this form, we have also E E Gr*l(N). The 

other two statements follow from corresponding statements for E(£l E2), or from an 

examination of the L-series in (b). 
(b) A straightforward calculation [19, 3.4.2] using the Fourier expansion of the fx 

shows 

L(E(el,£2)9 S) = -T(E1)N5 lL(El, s)L(£2, s-1). 

The L-series of E is then easily calculated using the identity 

(5.1) ( ( O 1 ) ) 

for t E & *. 
(c) 

A(E, X, 1) = (X)L(, X, 1) 

= _ ( (X ) ) ( E ) X ( d ) rI (1 - 1X ( P ) ) 

X I1 ( 1 - ) L ( E1X, 1 ) L ( e2X, °) . 

The result follows from substitution with the identities: 

L(E1X 1) = _ B1(E1X)9 
T ( E1X ) 

L(E2X1 O) = -B1(E1X)9 

T(x)T(el) (N ) ( ) 

(d) For t E Twe have Elt = A(t)-1E. Thus t brl(E) = brl(Elt-l) = A(t)6rl(E). 

It follows that Srl(E) may be written as 

(5.2) srl(E) = ,c(n) * Drl n(i8) 

where the sum is over n > O satisfying 

(5.3) N2ln, n N . 

We will calculate the coefficients c(n) using an induction on N. 
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To start the induction suppose N = N1N2. Then E = E(el e2l(N2 1°) There is only 
one n satisfying (5.3); hence 

Srl(E) = C(N2) * Drl,N2(+) 

where (Theorem 1.3) 

c(N2)=rrl.Et N2 r) erlt N2 rl) °( (N2 1)) 

=N1 aO(E(N2 1)) 

Thus 

(5.4) Sr,(E) = NI a°(E (N2 1)) Dr,.N2(+) 

We will calculate aO(El(l 2 1°)) using the identity aO(o) = -Lf f, O) for f E *. By 
expressing E in terms of the functions fx and applying (1 2 1°) it is easy to derive 
expressions for a O ( E lf N2 1° )) and L ( E 1( 1 2 1° ) S ). Unfortunately, these expresslons 
require a great deal of work to simplify to the desired expressions. We therefore 
prefer the following trick. 

If we compare the coefficient of [,ZN2lrlS a E Z, on both sides of the equality (5.4) 
we find 

aO(E ( aN2 1 )) = El(a)ao (E ( N2 1 )) 

Hence if we let v ( N1 ) - # ((Z/N1 Z) * ), then 

(5.5) v(Nl)aotE(ff2 1)) aO(E) 

where 

E' = L El(a)E (aN2 1) 

It therefore suffices to find aO(E'). 
For a primitive Dirichlet character X of conductor n, let 

(x) E x(, (o 1 ) [ 2 (Q)] 
cl =o 

In the group ring C[GL2+(Q)] we have the identity 

(5.6) el(-l) E el(a)(aN2 1)= (NIN2 0 )R(el)(NlN2 0 ) 
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We will calculate L(E', s ) using the following lemma. For f E g * let 

(5-7) D( f, s) = i r(s)(2X) Lt f, s). 

LEMMA 5.1. For f E * we have 
(a) D(tl(l -O), s) + D(f, 2 - s) = 0; 
(b) For a primitive Dirichlet character X and f E gr'e X ) A > O, 

L(tlR(x) S) = (x)L(f, x, S); 

(c) For primitive Dirichlet characters 41. 42 of condactors m1, m 2 

(t,*42,1 ( 1 0 ) (42!41) 

PROOF. The functional equation in (a) is well known (e.g. [15]). The second 
statement (b) is a standard calculation. A simple calculation from [)efinition 4.6 
using (3.9) proves (c). C1 

Returning to the calculation of L(Et, s) let 

1 E (X1X2 o ) E2-EllR(el) E3 =E2|(° -1 J 
where n is the conductor of (. Then by (5.6) 

(5.8) E' =e(-1) * E3 l 1 o2/ 1 )- 

Since 

{N2 O0t O -10 _ N {° -litNl °0 
to l/\Nl-V2 o J 2\1 0 JVo 1} 

Lemma S.l(c) shows 

E1 =E<£ £ ) | N1 °), 

Hence 

L(E1, s)--T(E2)L(£2 s)L(£l, s-1). 

Then (b) of the lemma shows 

L(E2, s) = -T(£1)T(£2)L(£1£2, S)L(£l£1' S - 1) 

(£1)T(£2) H (1 _ ((p)p s) H (1 -p ) 

T(() plN plNl 

*(-T(()L(t,s)t(s-- 1)). 
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Thus D(E2, s) = [ ] D(E( 1), 5). Since (° o) = (°-0)(0°), (a) of the lemma shows 

D(E ) l-sD(E (° -1) ) l-sD(E 2 ) 

I-st T(el)T(e2) H (l _ ((p)p5-2) H (1 - ps 1)} * D(E(t 1),2 - s) 
Te () plN plNl 

= n { } DlE(t 1)1(1 0 ), s) (a) 

= nl-St } * D(E(1 (), s) (c). 

Hence L(E3, s) = -t )t,(s) * L((, s-1). If we combine this with (5.8) we find 

L(E',s) = £1(-l)( 1 2) L(E3,s) 

( 1)( N,N2 Vl-s 

X ( T(el)T(e2) H (1 - ((p)pS 2) H (l _ p )}t(s)L(t, s ) 
T(() plN plNl 

The formulas (5.4), (5.5) and 
aO(E') = -L(E',O), r(N1) = N1 rl (1 _ p-l), 

plNl 

(°) = - 2 , L ( (, -1) = - 2 B2 ( ( ) 

now lead easily to the desired formula. This proves (d) when N = N1N2. 
To complete the proof of (d) we proceed by induction on N. Let A be a positive 

integer divisible by N1N2 and I a prime. Suppose the result is known for N = A. We 
prove it for N = Al. Let r = rl(X) rt = rl(Al). 

Consider the two projections 
Xl(AI) 

7T / X f 

X1(A) X1(A) 

where 7r is induced by the inclusion rt c r and 7TZ is induced by the map rt r given by y (/ °)y(0 °). These maps induce maps on cuspidal divisors 

r 
f* / N f* 

r r 
The Dirichlet characters £1, £2 define a character on T(A) and also one on T(AI) as 
in (4.13). We denote both of these characters by the same letter, A. 

LEMMA 5.2. Let d be a divisor of A/N1 such that N2ld Then 
(a) 

7T ( Dr,d ( + )) ( 1 Dr d ( + ) + el ( l ) Dr' Id ( + ) If l + ( A /d ) 
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(b) 

< ( Di d ( + )) = ( tDr ,d ( + ) + e2 ( 1 ) Dr'.d ( + ) tf l + d 

PROOF. Clearly each of these divisors is in r(+). We will give the details of (a) 
only since (b) is similar. 

We have 

*(Dr d (+)) = E c(k) Dr.k(+) 

where the sum is over all k such that kl(A//Nl) and N2lk. The coefficients c(k) are 
given by 

( ) (; [k]r ) ([k]r )' 

where e(r; [k]r,) is the ramification index of X at [k]r, and r([klr) is the coefficient 
of [1 lr in Dr d(+)- Since r([klr) = O unless (k, A) = d, we have c(k) = O if k + d 
and k + dl . Moreover, r ([ ld ] r ) = 1 and 

rtl011 j-J° if 11(A/d), 
\ L dl ] r } \ £1(1 ) if I + (A/d ) . 

The ramification indices are easily computed using the formula e(r; x) = 
er,(x)/er(x). We obtain e(rr; [ldlr) = I and for I + (A/d), e(X;[dllr ) = 1 Thus 
c(d)=land 

(dl) (° if 11(A/d ), 

LEMMA 5.3. Let d be a divisor of A/N1 such that N2ld. Let E E gr* such that 
sr( E) = Dr.d (+). Let 

{E if ll(A/d ), 

4 ( I (O 1 )) if I + (A/d ), 

f ( O 1 ) if lld, 

iE (( I O) _ £2(l) ) if 1 + d 

Then E1, E2 E gr* and 

{IDro,d(+) ifllA, 

sr (E1) 81(1- (2 )Drd(+) if 1 + 
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and 

{IDr,ld(+) itllA, 

sr ( 2) i,1(1- (2 ) * Dr,ld(+) it1 + A 

PROOF. This is a straightforward calculation using Lemma 5.2. We will give the 
details only for E1. 

Suppose IiA. If I l(A/d ), then br(El) = Ar (E) = s*(Dr d(+)) = IDr.d(+) by 
l emma 5.2(a). On the other hand if I + (A/d ), then lld and 

a rt ( E1 ) = * ( Dr d ( + ))- z 1* ( Dr.d ( + )) 

( /Dr,,d ( + ) + £1 ( 1 ) Dr',dl ( + )) - z ( /Dr' dl ( + )) 

= IDr.d(A) 

Suppose I + A. Then 

8r'(E1) = s*(Drsd(+))- I fl*(Dr,d(+)) 

= (IDr. c,(+) + el(l)Dr.,/6S(+))- I (IDr,zd(A) + e2(1)Dr .d(+)) 

( 12 ) 

The proof of Proposition 4.7(d) follows easily by induction from the case N = N1N2 
and Lemma 5.3. C] 
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