

p-adic *L*-functions and *p*-adic periods of modular forms *

Ralph Greenberg and Glenn Stevens

Department of Mathematics, Boston University, Boston, MA 02215, USA

Oblatum 12-II-1992

Introduction

Let *E* be an elliptic curve which is defined over **Q** and has stable reduction modulo a given prime *p*. Assuming that *E* is modular, one can associate to *E* a *p*-adic *L*-function $L_p(E, s)$. (See [Mz-SwD, A-V, Vi, Mz-T-T] for its construction in various cases.) This function is defined by a certain interpolation property and is analytic for $s \in \mathbb{Z}_p$. In this paper, we will assume that *E* has split multiplicative reduction at *p*. Under this assumption the interpolation property implies that $L_p(E, 1)=0$. We will prove a formula for $L_p(E, 1)$ which was discovered experimentally by Mazur, Tate, and Teitelbaum [Mz-T-T].

By Tate's *p*-adic uniformization theory, there is a *p*-adic integer $q_E \in p \mathbb{Z}_p$ (which we refer to as the Tate period for *E*) and a *p*-adic analytic isomorphism

$$(0.1) E(\bar{\mathbf{Q}}_p) \cong \bar{\mathbf{Q}}_p^*/q_E^2$$

which is defined over \mathbf{Q}_p . Let $\log_p: \mathbf{Q}_p^* \to \mathbf{Z}_p$ be the usual *p*-adic logarithm on \mathbf{Z}_p^* , extended to \mathbf{Q}_p^* by the convention $\log_p(p)=0$. Let $\operatorname{ord}_p: \mathbf{Q}_p^* \to \mathbf{Z}$ be the normalized valuation. We define the \mathfrak{L} -invariant of *E* by

(0.2)
$$\mathfrak{L}_p(E) = \frac{\log_p(q_E)}{\operatorname{ord}_p(q_E)}$$

Our main result (Theorem 7.1) specializes to the following.

(0.3) **Theorem.** Let p be a prime ≥ 5 and let E be a modular elliptic curve with split multiplicative reduction at p. Then

$$L'_p(E, 1) = \mathfrak{L}_p(E) \cdot \frac{L_{\infty}(E, 1)}{\Omega_E}.$$

^{*} Partially supported by grants from the National Science Foundation

Here $L_{\infty}(E, z)$ is the Hasse-Weil L-function for E/\mathbf{Q} and Ω_E is the real period for E.

Let $w_{\infty} = \pm 1$ denote the sign in the functional equation for $L_{\infty}(E, z)$. Then, under our assumption that E has split multiplicative reduction at $p, L_p(E, s)$ satisfies the functional equation

$$L_p(E, 2-s) = w_p \langle N \rangle^{s-1} L_p(E, s)$$

where $w_p = -w_{\infty}$. Here $\langle \cdot \rangle$ is projection to the subgroup $1 + p\mathbb{Z}_p$ of principal units in \mathbb{Z}_p^* . If $w_{\infty} = -1$, then $w_p = +1$ and the above theorem is trivially true. Both sides of the equation vanish. If $w_{\infty} = +1$, then $L_p(E, s)$ has a zero at s=1of odd order. As a consequence of the above theorem, we see that this order is 1 if and only if both $\log_p(q_E)$ and $L_{\infty}(E, 1)$ are nonzero. Manin has conjectured that $\log_p(q_E) \neq 0$ whenever E is a Tate curve with algebraic *j*-invariant (see [Man1], §4.12). The Birch and Swinnerton-Dyer conjecture predicts that $L_{\infty}(E, 1) \neq 0$ precisely when the Mordell-Weil group $E(\mathbb{Q})$ is finite. It is conjectured in [Mz-T-T] that

$$\operatorname{ord}_{s=1}(L_p(E, s)) = 1 + \operatorname{ord}_{z=1}(L_{\infty}(E, z)).$$

At the moment, all we can prove is that the order of vanishing of $L_p(E, s)$ at s = 1 is at least 2 if $w_{\infty} = -1$ and at least 3 if $w_{\infty} = +1$ and $L_{\infty}(E, 1) = 0$.

To explain the idea behind the proof of Theorem 0.3, we will give an outline in the special case $E = X_0(11)$ and p = 11. For more details see (2.11) and (5.18). In this case E has split multiplicative reduction at p = 11, $L_{\infty}(E, 1) \neq 0$, and $w_{\infty} = +1$. Let $Ta_p(E)$ be the p-adic Tate module of E and let

$$\rho_E: G_{\mathbf{Q}} = \operatorname{Gal}(\mathbf{Q}/\mathbf{Q}) \to \operatorname{Aut}(Ta_p(E))$$

be the associated Galois representation. Let $f_E = q \prod (1-q^n)^2 (1-q^{11n})^2$ be the unique normalized weight two newform over $\Gamma_0(11)$. Then the Mellin transform of f_E is $L_{\infty}(E, z)$. We have $f_E|T_p = f_E$ and, in particular, f_E is ordinary at p.

The basic ingredient in our proof of Theorem 0.3 is Hida's universal ordinary deformation of $Ta_p(E)$. In our example, the universal ordinary Hecke algebra turns out to be the completed group ring, $\Lambda = \mathbb{Z}_p[[1 + p\mathbb{Z}_p]]$. Thus Hida's universal ordinary deformation of $Ta_p(E)$ is a free rank two Λ -module T equipped with an action of the Galois group

$$\rho: \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{Aut}_{\mathcal{A}}(\mathbf{T})$$

such that $\mathbf{T}/P_0 \mathbf{T} \cong Ta_p(E)$ where P_0 is the augmentation ideal in Λ . The Galois module **T** has a number of remarkable properties, which we will describe below.

For each $k \in \mathbb{Z}_p$, let $\sigma_{k-2} \colon A \to \mathbb{Z}_p$ be the unique continuous \mathbb{Z}_p -algebra homomorphism extending the character $1 + p\mathbb{Z}_p \to \mathbb{Z}_p^*$, $t \mapsto t^{k-2}$. For $\alpha \in A$ we will write $\alpha(k)$ instead of $\sigma_{k-2}(\alpha)$ and refer to σ_{k-2} as specialization to weight k. Let $P_k \subseteq A$ be the kernel of σ_{k-2} . Let $\mathbb{T}_k = \mathbb{T}/P_k \mathbb{T} \cong \mathbb{T} \otimes_{A, \sigma_{k-2}} \mathbb{Z}_p$ and let

$$\rho_k$$
: Gal($\overline{\mathbf{Q}}/\mathbf{Q}$) \rightarrow Aut(\mathbf{T}_k)

be the reduction of ρ modulo P_k . Now fix, once and for all, an embedding

$$(0.4) \qquad \qquad \bar{\mathbf{Q}} \subseteq \bar{\mathbf{Q}}_p.$$

Then ρ has the following properties.

(0.5)a. $\rho_2 = \rho_E$.

(0.5)b. For each integer $k \ge 2$, there is a normalized newform f_k of weight k and conductor dividing p such that ρ_k is equivalent to Deligne's p-adic Galois representation [D] associated to f_k and our fixed embedding of $\bar{\mathbf{Q}}$ into $\bar{\mathbf{Q}}_p$. The conductor of f_k is 1 precisely when k > 2 and $k \equiv 2$ modulo p-1. For example, $f_{12} = \text{Ramanujan's } \Delta$ -function. For other values of k the conductor is p and the Nebentype character is the Dirichlet character of conductor p associated to ω^{2-k} where $\omega: \mathbf{Z}_p^* \to \mu_{p-1} \subseteq \mathbf{Z}_p^*$ is the Teichmüller character.

(0.5)c. Let $G_{\mathbf{Q}_p} = \operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$ be a fixed decomposition group over p. Then the restriction $\rho|_{G_{\mathbf{Q}_p}}$ of ρ to $G_{\mathbf{Q}_p}$ is equivalent to an upper triangular representation

$$\rho|_{G_{\mathbf{Q}_p}} \sim \begin{pmatrix} \chi \varphi^{-1} & * \\ 0 & \varphi \end{pmatrix}$$

where $\varphi: G_{\mathbf{Q}_p} \to \Lambda^*$ is an unramified character and $\chi: G_{\mathbf{Q}_p} \to \Lambda^*$ is the unique character for which $\sigma_{k-2} \circ \chi = \chi_0^{k-1} \omega^{2-k}$, where χ_0 is the cyclotomic character and ω is the Galois character associated to the Teichmüller character by class field theory.

The A-adic representation ρ can be used to construct p-adic analytic functions (in fact Iwasawa functions) which interpolate various data attached to the newforms f_k , $k \ge 2$. For example, for each prime $l \ne p$ let Frob_l be a Frobenius element at l and let $a_l = Tr(\rho(\operatorname{Frob}_l)) \in A$. It follows from (0.5) b and the Eichler-Shimura relations that $a_l(k)$ is the l-th Fourier coefficient of f_k for each integer $k \ge 2$.

The Euler factors at p will play an important role in our proof of Theorem 0.3. These factors can be described in terms of the representation ρ . Let $a_p = \varphi(\operatorname{Frob}_p) \in A^*$. Then for each integer $k \ge 2$, the p-th Euler factor of the complex L-function $L_{\infty}(f_k, z)$ of f_k has the form $[(1 - \alpha_k p^{-z})(1 - \beta_k p^{-z})]^{-1}$, where $\alpha_k = a_p(k)$ and

$$\beta_k = \begin{cases} p^{k-1}/\alpha_k & \text{if } k > 2 \text{ and } k \equiv 2 \text{ modulo } (p-1), \\ 0 & \text{otherwise.} \end{cases}$$

These numbers satisfy the congruences $\alpha_k \equiv \alpha_2 = 1$ and $\beta_k \equiv 0$ modulo *p*. We will refer to α_k as the unit root of Frobenius and to β_k as the non-unit root of Frobenius. From the above description we see that the family of unit roots of Frobenius $\{\alpha_k\}_{k\geq 2}$ is interpolated by the Iwasawa function $a_p(k)$, but that the family of non-unit roots of Frobenius $\{\beta_k\}$ cannot be interpolated by any *p*-adic analytic function of *k*.

The remarks of the last two paragraphs may be summarized by saying that there is a formal q-expansion

(0.6)
$$\mathbf{f} = \sum_{n=1}^{\infty} a_n q^n \in A[[q]]$$

such that for each integer $k \ge 2$, the specialization $\mathbf{f}_k \stackrel{\text{def}}{=} \sum_{n=1}^{\infty} a_n(k) q^n$ of **f** to weight

k is the q-expansion of the 'p-stabilized newform' associated to f_k . This is the cusp form f_k^* defined by

(0.7)
$$f_k^*(z) = f_k(z) - \beta_k f_k(pz)$$

for z in the upper half-plane [W]. In particular, the L-function of f_k^* is equal to the L-function of f_k with the Euler factor $(1 - \beta_k p^{-z})^{-1}$ removed.

The final ingredient we require for the proof of Theorem 0.3 is a two variable *p*-adic *L*-function $L_p(k, s)$, $k, s \in \mathbb{Z}_p$. In case *E* is an elliptic curve with complex multiplication, which has ordinary reduction at *p*, the construction of such a *p*-adic *L*-function having the four properties below is due to Katz [Kz]. When *E* is a modular elliptic curve with ordinary reduction at *p* (e.g. if *E* has multiplicative reduction at *p*), this function was constructed in special cases by Mazur [Mz2]. Mazur's construction was generalized by Kitagawa [K] for arbitrary ordinary *A*-adic cusp forms. Property (0.8)d was not treated. In this paper we will give another construction of the two variable *p*-adic *L*-function. The properties of it which we need for the case $E = X_0(11)$ are as follows (see Theorem 5.15 for the general case, where we also prove an important functional equation for the 'improved' *p*-adic *L*-function L_p^*).

- (0.8)a. (Analyticity) $L_p(k, s)$ is analytic for $k, s \in \mathbb{Z}_p$.
- (0.8)b. (Specialization to weight two) $L_p(2, s) = L_p(E, s)$.
- (0.8)c. (Functional equation) $L_p(k, k-s) = -L_p(k, s)$.
- (0.8)d. (Specialization to the critical value s = 1) There is a factorization

$$L_p(k, 1) = (1 - a_p(k)^{-1}) L_p^*(k, 1)$$

where $L_p^*(k, 1)$ is a *p*-adic analytic function of k for which

$$L_p^*(2,1) = \frac{L_\infty(E,1)}{\Omega_F}.$$

In fact, much more is true. The two variable *p*-adic *L*-function $L_p(k, s)$ interpolates the one variable *p*-adic *L*-functions $L_p(f_k, s)$ associated to the newforms $f_k, k \ge 2$, as in [A-V, Vi]. More precisely, recall that the definition of $L_p(f_k, s)$ depends on the choice of a complex period $\Omega_{f_k} \in \mathbb{C}^*$. This period is determined only up to multiplication by a non-zero element of the field generated by the Fourier coefficients of f_k . Fix, once and for all, a choice of complex periods $\Omega_{f_k}, k \ge 2$, with $\Omega_{f_2} = \Omega_E$. Then the two variable *p*-adic *L*-function $L_p(k, s)$ interpolates the functions $L_p(f_k, s)$ in the following sense. For each integer $k \ge 2$ there is a 'period' $\Omega_k \in \mathbb{Q}_p$ such that

$$L_p(k, s) = \Omega_k \cdot L_p(f_k, s).$$

Note that (0.8)b says that $\Omega_2 = 1$, and in particular that not all Ω_k vanish. Note also that (0.8)c follows from the above interpolation property and the functional equation of $L_p(f_k, s)$.

The fourth property (0.8)d lies somewhat deeper. For each integer $k \ge 2$, and each integer s_0 with $0 < s_0 < k$ and $s_0 \equiv 1 \pmod{p-1}$, the *p*-adic *L*-function $L_p(f_k, s)$ satisfies the following interpolation property

(0.9)
$$L_p(f_k, s_0) = (1 - \beta_k p^{-s_0}) (1 - \alpha_k^{-1} p^{s_0 - 1}) \cdot \frac{L_{\infty}(f_k, s_0)}{\Omega_{f_k}}$$

For a discussion of the Euler factors which occur in this expression, see [Gr]. For $s_0 = 1$, the second Euler factor is interpolated by an Iwasawa function, namely $(1 - a_p(k)^{-1})$. This vanishes at k = 2 and so is a nonunit in the Iwasawa algebra Λ . The function $L_p(k, 1)$ is also an Iwasawa function in k. Moreover, $L_p(k, 1)$ can be shown to be divisible in Λ by $(1 - a_p(k)^{-1})$. The quotient $L_p^*(k, 1)$ is an Iwasawa function in k, which we regard as an "improved" *p*-adic *L*function. It satisfies the interpolation property

(0.10)
$$L_p^*(k, 1) = (1 - \beta_k p^{-1}) \frac{L_{\infty}(f_k, 1)}{\Omega_{f_k}} \cdot \Omega_k$$

for all integers $k \ge 2$. When k=2, this reduces to (0.8)d since $\beta_2 = 0$, $\Omega_{f_2} = \Omega_E$, and $\Omega_2 = 1$.

Theorem 0.3 is proved by calculating the linear term in the Taylor expansion of $L_p(k, s)$ about (k, s) = (2, 1). From the functional equation (0.8)c we see that $L_p(k, k/2) = 0$ for all $k \in \mathbb{Z}_p$. Hence the linear term has the form $c \cdot (-\frac{1}{2}(k-2) + (s-1))$ for some constant $c \in \mathbb{Z}_p$. We calculate c in two ways. From (0.8)b we see that $c = L'_p(E, 1)$. But from (0.8)d and the fact that $a_p(2) = \alpha_2 = 1$, it follows that $c = -2a'_p(2) \cdot L_{\infty}(E, 1)/\Omega_E$. Comparing these expressions for c we obtain

$$L'_{p}(E, 1) = -2a'_{p}(2) \cdot \frac{L_{\infty}(E, 1)}{\Omega_{E}}.$$

Theorem 0.3 is therefore a consequence of the following special case of Theorem 3.18.

(0.11) **Proposition.** $\mathfrak{L}_{p}(E) = -2 a'_{p}(2).$

This proposition can be interpreted as follows. The analytic isomorphism (0.1) leads to an exact sequence

$$(0.12) 0 \to \mathbf{Q}_p(1) \to V \to \mathbf{Q}_p \to 0$$

where $V = Ta_p(E) \otimes \mathbf{Q}_p$ is the Tate module of E tensored with \mathbf{Q}_p . For an arbitrary continuous $G_{\mathbf{Q}_p}$ -module M, we let $H^n(M)$ denote the continuous Galois cohomology $H^n(G_{\mathbf{Q}_p}, M)$. Then the isomorphism class of the exact sequence (0.12) is determined by a nontrivial extension class $\xi \in H^1(\mathbf{Q}_p(1))$ and the isomorphism class of the middle term V is determined by the line spanned by ξ in $H^1(\mathbf{Q}_p(1))$. Now, by Kummer theory, ord_p and \log_p give rise to coordinates on $H^1(\mathbf{Q}_p(1))$ in terms of which we get an isomorphism

$$H^1(\mathbf{Q}_p(1)) \cong \mathbf{Q}_p^2.$$

With respect to these coordinates, the \mathfrak{L} -invariant $\mathfrak{L}_p(E)$ is the slope of the line spanned by ξ . In this way the isomorphism class of V is determined by $\mathfrak{L}_p(E)$ and vice-versa.

Now let ϕ , $\chi: G_{\mathbf{Q}_p} \to \Lambda^*$ be the characters of (0.5)c. Let $\mathbf{T}(\varphi^{-1})$ denote the underlying free rank two Λ -module of the representation ρ with $G_{\mathbf{Q}_p}$ acting on \mathbf{T} via $\rho \otimes \varphi^{-1}$. Then (0.5)c gives us an exact sequence $0 \to \Lambda(\chi \psi) \to \mathbf{T}(\varphi^{-1}) \to \Lambda \to 0$ where $\psi = \varphi^{-2}$. For each $k \in \mathbf{Z}_p$ we "specialize this exact sequence to weight k" and tensor with \mathbf{Q}_p to obtain an exact sequence

$$(0.14) 0 \to \mathbf{Q}_p(\chi_k \psi_k) \to \mathbf{V}_k \to \mathbf{Q}_p \to 0$$

where $\chi_k = \sigma_{k-2} \circ \chi$ and $\psi_k = \sigma_{k-2} \circ \psi$ and $\mathbf{V}_k = \mathbf{T}(\varphi^{-1})_k \otimes \mathbf{Q}_p$. Now, as before, the isomorphism class of \mathbf{V}_k is determined by an extension class $\xi_k \in H^1(\mathbf{Q}_p(\chi_k \psi_k))$ up to homothety. Clearly, $\xi_k \neq 0$ for k sufficiently close to 2. But for $k \neq 2$ the cohomology group $H^1(\mathbf{Q}_p(\chi_k \psi_k))$ is one-dimensional. Hence the isomorphism class of \mathbf{V}_k is completely determined by the character $\chi_k \psi_k$. As k approaches 2 in \mathbf{Z}_p , the sequence (0.14) flows into the sequence (0.12). Thus we should expect that the sequence (0.12) is completely determined by the characters ψ_k for k in a neighborhood of 2. More precisely, what we prove is

(0.15)
$$\frac{d\psi_k(\operatorname{Frob}_p)}{dk}\Big|_{k=2} = \mathfrak{L}_p(E).$$

Since $\psi_k(\operatorname{Frob}_p) = a_p(k)^{-2}$, this is equivalent to proposition (0.11). This completes our outline of the proof of Theorem 0.3 in the special case where $E = X_0(11)$ and p = 11.

In general, we may start with an arbitrary newform f of weight 2 over $\Gamma_1(Np)(p \not\prec N)$ which is split multiplicative at p (i.e. the pth Hecke eigenvalue of f is +1). In this case f corresponds to a simple quotient of the Jacobian variety of $X_1(Np)$ which has multiplicative reduction at p. Our Theorem 7.1 is a strengthened form of Theorem 0.3 in which the \mathfrak{L} -invariant of f is defined as in [Mz-T-T]. For example, if E is a modular elliptic curve with split multiplicative reduction at p and if ψ is a primitive Dirichlet character (not necessarily quadratic) for which $\psi(p)=1$, then we have $L_p(E, \psi, 1)=0$ and Theorem 7.1 implies $L'_p(E, \psi, 1)=\mathfrak{L}_p(E) \frac{L_{\infty}(E, \psi, 1)}{\Omega_{E,\psi}}$ where $\Omega_{E,\psi}=\Omega_E^{\pm}/\tau(\bar{\psi})$ with Ω_E^{\pm} being the real or imaginary period of E depending on the sign of ψ . This is the "local" property of the \mathfrak{L} -invariant discovered numerically by Mazur, Tate, and Teitelbaum in [Mz-T-T].

Some interesting problems arise in the general case which are not apparent in the special case $E = X_0(11)$ described above. In the general case, as in the special case, Hida has constructed a finite Λ -algebra \Re called the universal ordinary Hecke algebra and the newform f corresponds to a $\bar{\mathbf{Q}}_p$ -valued homomorphism κ of \Re . But, in general, \Re is larger than Λ , and we can no longer say that $k \in \mathbf{Z}_p$ parametrizes an analytic family of $\bar{\mathbf{Q}}_p$ -valued homomorphisms of \Re . However, it turns out that by restricting k to a neighborhood of 2, we do get such a parametrization locally (see (2.7) and the remarks thereafter for a precise formulation). We then obtain, as before, an analytic family of ordinary Galois representations ρ_k and a *p*-adic *L*-function $L_p(k, s)$ which is defined for all $s \in \mathbb{Z}_p$ and all *k* in a neighborhood of 2. In general, however, the functional equation relates the *p*-adic *L*-function to the contragredient family of Galois representations, which will differ from the original family if the Nebentype is nontrivial. This means that the *p*-adic *L*-function need not vanish identically along the line $s = \frac{k}{2}$ as it did in our special case. However, in Theorem 5.15c we will also prove a 'functional equation' for the improved two-variable *p*-adic *L*-function. This allows us to show that the restriction of the standard twovariable *p*-adic *L*-function to the line $s = \frac{k}{2}$ vanishes to order ≥ 2 at the point (k, s) = (2, 1). This is sufficient for our purposes.

We may also inquire about the 'denominators' in the various *p*-adic *L*-functions. In general, we expect the two-variable *p*-adic *L*-function to have no denominator at all. On the other hand, the improved *p*-adic *L*-function may have a denominator. This denominator is a 'divisor' of the characteristic power series of a certain torsion Λ -module – the Λ -adic cuspidal group – which arises in our calculations (see 6.12). It would be interesting to analyze the structure of this group and to perform a descent analogous to Mazur's Eisenstein descent [Mz1].

We close this introduction by mentioning the following question. Assume that *E* is a modular elliptic curve with good, ordinary reduction or multiplicative reduction at *p*. Then there is an associated two-variable *p*-adic *L*-function $L_p(k, s)$. Let $n = \operatorname{ord}_{z=1} L_{\infty}(E, z)$. Then it seems reasonable to believe that the expansion of $L_p(k, s)$ at k=2, s=1 should begin with the homogeneous term of degree *n* (or n+1 in the case of split multiplicative reduction). If this degree is odd, then $-\frac{1}{2}(k-2)+(s-1)$ will be a linear factor in this term. Can one determine the other linear factors?

1. Hecke operators and ordinary eigenforms

In this section we fix some of the terminology and conventions which will be used in the rest of the paper.

Following [Sh2] we define Hecke algebras as double coset algebras. Let $\Sigma = GL_2(\mathbf{Q}) \cap M_2(\mathbf{Z})$ be the semigroup of 2×2 integral matrices with nonzero determinant. For each arithmetic group Γ in $SL_2(\mathbf{Z})$ we let $D(\Gamma, \Sigma)$ denote the double coset algebra associated to the pair (Γ, Σ) . The elements of this algebra are the **Z**-valued functions on Σ which are bi-invariant with respect to Γ and which are supported on the union of finitely many double cosets of Γ . Clearly $D(\Gamma, \Sigma)$ is generated by the characteristic functions $T(g) \in D(\Gamma, \Sigma)$ of the double cosets $\Gamma g \Gamma$, for $g \in \Sigma$. If Σ_1 is a subsemigroup of Σ containing Γ , then we will denote by $D(\Gamma, \Sigma_1)$ the subalgebra of $D(\Gamma, \Sigma)$ consisting of functions supported on Σ_1 . For each such Σ_1 we will denote by Σ_1^+ the subsemigroup of Σ_1 consisting of matrices with positive determinant.

In this paper, Σ -modules will be *contravariant* (i.e. Σ acts on the right) unless otherwise stated. The algebra $D(\Gamma, \Sigma)$ acts contravariantly and functorially on the cohomology of Σ -modules. If Γ is preserved by the anti-involution $g \mapsto g^* = \det(g) g^{-1}$, then * induces an anti-involution on $D(\Gamma, \Sigma)$ by

 $T(g) \mapsto T(g)^* = T(g^*)$. In this case we can also define a covariant action of $D(\Gamma, \Sigma)$ on the Γ -cohomology of Σ -modules by defining

(1.1)
$$T(g) \cdot \Phi \stackrel{\text{def}}{=} \Phi |T(g)|^{*}$$

for a cohomology class Φ and $g \in \Sigma$.

Fix a positive integer N, a prime p which does not divide N, and an integer $r \ge 0$. Let $\Sigma_1(p^r) = \left\{ g \in \Sigma \middle| g \equiv \begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix} \mod p^r \right\}$. If N > 1, the algebra $D(\Gamma_1(Np^r), \Sigma_1(p^r))$ is not commutative, but we can construct a central subalgebra as follows. Let \mathbf{Z}' denote the multiplicative set of integers which are prime to p. For each $a \in \mathbf{Z}'$ choose $\gamma_a \in \Gamma_1(N) \cap \Gamma_0(p^r)$ whose lower right hand entry is congruent

to a modulo p^r and let $[a]_p = T\left(\begin{pmatrix}a & 0\\ 0 & a\end{pmatrix}\gamma_a\right)$ in $D(\Gamma_1(Np^r), \Sigma_1(p^r))$. The map

 $\mathbf{Z}' \to D(\Gamma_1(Np^r), \Sigma_1(p^r)), a \mapsto [a]_p$, is multiplicative, hence extends to a Z-algebra morphism $\mathbf{Z}[\mathbf{Z}'] \to D(\Gamma_1(Np^r), \Sigma_1(p^r))$. The image of this map is a central subalgebra. On the other hand, $\mathbf{Z}[\mathbf{Z}']$ embeds naturally in the completed group ring $\mathbf{Z}_p[[\mathbf{Z}_p^*]]$. Hence we may form the $\mathbf{Z}_p[[\mathbf{Z}_p^*]]$ -algebra

(1.2)
$$D_p(Np^r) \stackrel{\text{def}}{=} D(\Gamma_1(Np^r), \Sigma_1(p^r)) \otimes_{\mathbb{Z}[\mathbb{Z}^r]} \mathbb{Z}_p[[\mathbb{Z}_p^*]].$$

If A is a $\mathbb{Z}_p[\Sigma_1(p^r)]$ -module which satisfies Hypothesis P below, then the (contravariant or covariant) action of $D(\Gamma_1(Np^r), \Sigma_1(p^r))$ on the $\Gamma_1(Np^r)$ -cohomology of A extends uniquely to a continuous action of $D_p(Np^r)$.

(1.3) Hypothesis P. The action of the scalar matrices aI, $a \in \mathbb{Z}'$, extends to a continuous action of the scalar matrices aI for $a \in \mathbb{Z}_p^*$.

We are going to view $D_p(N)$ as a universal algebra which acts on the $\Gamma_1(Np^r)$ -cohomology, for every $r \ge 0$, of every $\mathbb{Z}_p[\Sigma]$ -module A satisfying Hypothesis P. To define this action we note that the Hecke pair $(\Gamma_1(Np^r), \Sigma_1(p^r))$ is weakly compatible to $(\Gamma_1(N), \Sigma)$ in the sense of [A-S]. Hence, as in [A-S], there is a natural surjective $\mathbb{Z}_p[\mathbb{Z}_p^*]$]-morphism

$$(1.4) D_p(N) \to D_p(N p^r)$$

induced by restriction of functions on Σ to $\Sigma_1(p^r)$. Let $D_p(N)$ act on the $\Gamma_1(Np^r)$ -cohomology of A via the composition of this morphism with the natural action of $D_p(Np^r)$.

The elements of $D(\Gamma_1(Np^r), \Sigma_1(p^r))$ supported on $\Sigma_1^+(p^r)$ (elements of positive determinant) generate a $\mathbb{Z}_p[[\mathbb{Z}_p^*]]$ -subalgebra of $D_p(Np^r)$ which we denote $D_p^+(Np^r)$. As before, the algebra $D_p^+(N)$ acts naturally on the $\Gamma_1(Np^r)$ -cohomology of any $\mathbb{Z}_p[\Sigma_1^+(p^r)]$ -module A satisfying Hypothesis P.

(1.5) **Definition.** We define the following standard elements of $D_p(N)$.

a. For each positive integer *n*, let $T_n = T\begin{pmatrix} 1 & 0 \\ 0 & n \end{pmatrix}$.

b. For each integer a prime to N choose an element $\beta_a \in \Gamma_0(N)$ whose lower right entry is congruent to a modulo N and define $[a]_N = T(\beta_a)$.

c. We extend $[\cdot]_p: \mathbb{Z}_p^* \to D_p(N)$ to a multiplicative function on all nonzero *p*-adic integers by defining $[p]_p = T\begin{pmatrix} p & 0\\ 0 & p \end{pmatrix}$.

d.
$$\iota = T\left(\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}\right).$$

e. $W_N = T\left(\begin{pmatrix} 0 & 1\\ -N & 0 \end{pmatrix}\right).$

All of these elements, except *i*, are in the subalgebra $D_p^+(N)$. Moreover, $D_p(N) = D_p^+(N)[i]$. The elements $[a]_N$, for $a \in \mathbb{Z}$ prime to N, generate a subgroup Δ_N in $D_p^+(N)$ isomorphic to $(\mathbb{Z}/N\mathbb{Z})^*$. Let \mathscr{H} be the $\mathbb{Z}_p[[\mathbb{Z}_p^*]]$ -subalgebra of $D_p^+(N)$ given by

(1.6)
$$\mathscr{H} = \mathbf{Z}_p[[\mathbf{Z}_p^*]][\varDelta_N, T_n(n \in \mathbf{Z}^+), [p]_p].$$

Then \mathscr{H} is commutative and is centralized by *i*. If we define $[a] = [a]_N \cdot [a]_p \in \mathscr{H}$ for integers *a* which are prime to Np, then the map $a \mapsto [a]$ extends uniquely to a continuous multiplicative map from $\mathbb{Z}_{p,N}^* = \lim_{\to \infty} (\mathbb{Z}/N p^r \mathbb{Z})^*$ to \mathscr{H} . In this way we obtain a $\mathbb{Z}_p[[\mathbb{Z}_p^*]]$ -morphism

(1.7)
$$\mathbf{Z}_p[[\mathbf{Z}_{p,N}^*]] \to \mathscr{H}$$

in terms of which we may view \mathscr{H} as a $\mathbb{Z}_p[[\mathbb{Z}_{p,N}^*]]$ -algebra. The element W_N does not centralize $\mathscr{H}[\iota]$. Indeed, W_N does not even normalize \mathscr{H} (e.g. $W_N T_n W_N^{-1} \notin \mathscr{H}$ if (n, N) > 1). However, we do have the following relations in $\mathscr{H}[\iota, W_N]$:

(1.8)
$$W_{n} \cdot [a] \cdot W_{N}^{-1} = [a]_{N}^{-1} \cdot [a]_{p} \quad \text{for all } a \in \mathbb{Z}_{p,N}^{*};$$
$$W_{N} \cdot T_{n} \cdot W_{N}^{-1} = [n]_{N}^{-1} \cdot T_{n} \quad \text{for every } n \text{ which is relative prime to } N;$$
$$W_{N} \cdot \iota \cdot W_{N}^{-1} = [-1]_{N} \cdot \iota;$$
$$W_{N}^{2} = [-N]_{p}.$$

Let k be an integer ≥ 2 and, for each congruence group Γ , let $\mathscr{S}_k(\Gamma, \bar{\mathbf{Q}})$ denote the space of holomorphic weight k cusp forms over Γ whose q-expansions have algebraic coefficients. Let

(1.9)
$$\mathscr{S}_{k}(\bar{\mathbf{Q}}) = \bigcup \mathscr{S}_{k}(\Gamma, \bar{\mathbf{Q}})$$

be the union over all congruence groups Γ . We let the subsemigroup $\Sigma^+ \subset \Sigma$ of elements with positive determinant act on $\mathscr{S}_k(\bar{\mathbf{Q}})$ by the weight k action: if $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Sigma^+$ and $f \in \mathscr{S}_k(\bar{\mathbf{Q}})$ then $(f|g)(z) = \det(g)^{k-1}(cz+d)^{-k}f(gz)$ for z in the upper half plane. We extend this by linearity to an action of Σ^+ on

 $\mathscr{S}_{k}(\bar{\mathbf{O}}_{p}) = \mathscr{S}_{k}(\bar{\mathbf{Q}}) \otimes_{\bar{\mathbf{Q}}} \bar{\mathbf{Q}}_{p}$ and define

(1.10)
$$\mathscr{G}_{k}(\Gamma_{1}(Np^{r}), \bar{\mathbf{Q}}_{p}) = \mathscr{G}_{k}(\bar{\mathbf{Q}}_{p})^{\Gamma_{1}(Np^{r})}.$$

Since the nonzero scalar matrices over \mathbb{Z} act on $\mathscr{S}_k(\overline{\mathbb{Q}}_p)$ via $aI \mapsto a^{k-2}$, Hypothesis P is satisfied and we obtain an action of $\mathscr{H}[W_N]$ on $\mathscr{S}_k(\Gamma_1(Np'), \overline{\mathbb{Q}}_p)$. (1.11) **Definition. a.** If r is a nonnegative integer and ψ is a Dirichlet character whose conductor is a power of p, then we let $\sigma_{r,\psi}$: $\mathbf{Z}_p^* \to \bar{\mathbf{Q}}_p^*$ be the character defined by $a \mapsto \psi(a) a^r$. Such a character will be called an *arithmetic character*. If ψ is trivial we will suppress it from the notation and write simply σ_r instead of $\sigma_{r,\psi}$.

b. If \hat{R} is a commutative $\mathbb{Z}_p[[\mathbb{Z}_{p,N}^*]]$ -algebra we let $\mathscr{X}(R) = \operatorname{Hom}_{cont}(R, \bar{\mathbb{Q}}_p)$ denote the set of continuous $\bar{\mathbb{Q}}_p$ -valued homomorphisms on R. We will refer to the elements of $\mathscr{X}(R)$ as the $\bar{\mathbb{Q}}_p$ -valued *points* on R. A continuous homomorphism $\kappa: R \to \bar{\mathbb{Q}}_p$ will be called an *arithmetic point* if its restriction to \mathbb{Z}_p^* is an arithmetic character. In that case we say that κ has weight r+2 and character ε if $\kappa([a]) = \varepsilon(a) a^r$ for every rational integer a prime to Np. Let

 $\mathscr{X}^{\text{arith}}(R) = \text{the arithmetic points on } R.$

c. We will write \mathscr{X}_0 and $\mathscr{X}_0^{\text{arith}}$ for the points and the arithmetic points, respectively, of our base algebra $\mathbb{Z}_p[[\mathbb{Z}_p^*]]$.

It will often be convenient to view the elements of R as functions on $\mathscr{X}(R)$. When we wish to emphasize this point of view, we will write $\alpha(\kappa)$ instead of $\kappa(\alpha)$ for $\alpha \in R$ and $\kappa \in \mathscr{X}(R)$.

The homomorphism $\kappa: \mathscr{H} \to \overline{\mathbf{Q}}_p$ associated to any eigenform f is easily seen to be an arithmetic point on the $\mathbf{Z}_p[[\mathbf{Z}_{p,N}^*]]$ -algebra $\mathscr{H}(1.7)$ whose weight is the weight of f and whose character is the nebentype character of f.

2. Deformations of ordinary Galois representations

Fix a positive integer N and a prime $p \ge 5$ which does not divide N. For each integer $n \ge 0$, let $J_{n/Q}$ be the Jacobian of the modular curve $X_1(Np^n)$ equipped with Shimura's canonical model [Sh2] associated to the adelic group

$$\left\{g\in GL_2(\mathbf{A}_f)|g\equiv \begin{pmatrix}1&*\\0&*\end{pmatrix}(\mod Np^n)\right\}.$$

There is a natural covariant action of the Hecke algebra $\mathscr{H}[\iota, W_N]$ on $J_n(\mathbb{C})$ induced by the action of the double coset algebra $D(\Gamma_1(Np^n), \Sigma_1^+(p^n))$ via algebraic correspondences and letting ι act by complex conjugation. The elements [a], for $a \in \mathbb{Z}_{p,N}^*$ operate through the nebentype.

Let $Ta_p(J_n)$ denote the *p*-adic Tate module of J_n . The action of \mathscr{H} on J_n is defined over \mathbb{Q} , and therefore induces an action of \mathscr{H} on $Ta_p(J_n)$ which commutes with the action of the Galois group $G_{\mathbb{Q}}$. For each pair of nonnegative integers $m \ge n$, the natural projection $X_1(Np^m) \to X_1(Np^n)$ is defined over \mathbb{Q} , hence induces a Galois equivariant map of Tate modules $Ta_p(J_m) \to Ta_p(J_n)$. If m, n are positive then this projection also commutes with $D_p(N)$ and in particular with \mathscr{H} . (When n=0 and m>0, it respects all of the generators T_q , [a] of \mathscr{H} except T_p and $[p]_p$.) We may therefore form the projective limit over n>0 and define an $\mathscr{H}[G_0]$ -module

(2.1)
$$Ta_p(J_{\infty}) = \lim_{\leftarrow} Ta_p(J_n).$$

The importance of $Ta_p(J_{\infty})$ for the study of *p*-adic Galois representations attached to modular forms was first recognized by Shimura [Sh1] (see [O] for a published account). More recently, Hida defined a certain factor of $Ta_p(J_{\infty})$ called the ordinary part and made a careful and beautiful analysis of its structure. The following discussion is based on his works [H1, H2].

(2.2) **Definition.** Let A be a profinite abelian group and $T_p: A \to A$ be a continuous homomorphism. The ordinary submodule of A is defined to be

$$\mathbf{A}^{0} = \bigcap_{n=1}^{\infty} T_{p}^{n}(\mathbf{A}).$$

(2.3) **Proposition.** Let $\mathbf{A} = \lim_{n \to \infty} \mathbf{A}_n$ be a profinite abelian group and let T_p be an operator on \mathbf{A} which is equal to a limit of operators on the finite quotients \mathbf{A}_n . Then T_p acts invertibly on \mathbf{A}^0 and there is a canonical decomposition $\mathbf{A} = \mathbf{A}^0 \bigoplus \mathbf{A}^{nil}$ where $\mathbf{A}^{nil} = \{a \in \mathbf{A} \mid \lim_{n \to \infty} T_p^n(a) = 0\}$ is the subgroup on which T_p acts topologically nilpotently.

Proof. In case A is finite, A^0 is the subgroup on which T_p acts periodically. Clearly, T_p acts invertibly on A^0 in this case. The asserted decomposition then follows in the finite case from the fact that every orbit of T_p is eventually periodic. The general case follows from the finite case by a simple compactness argument.

Since the Tate modules $Ta_p(J_n)$ are profinite, so also is $Ta_p(J_{\infty})$. Moreover, $Ta_p(J_{\infty})$ satisfies the hypotheses of Proposition 2.3, so we may define the ordinary part $Ta_p(J_{\infty})^0$. Since the operator T_p commutes with $\mathscr{H}[G_{\mathbf{Q}}]$, we see that $Ta_p(J_{\infty})^0$ is a direct factor of the $\mathscr{H}[G_{\mathbf{Q}}]$ -module $Ta_p(J_{\infty})$. Let Λ be the Iwasawa algebra $\mathbf{Z}_p[[1 + p\mathbf{Z}_p]]$ embedded in the natural way

Let Λ be the Iwasawa algebra $\mathbb{Z}_p[[1 + p\mathbb{Z}_p]]$ embedded in the natural way in $\mathbb{Z}_p[[\mathbb{Z}_p^*]]$ and let \mathscr{L} be the fraction field of Λ . Let H^0 be the image of \mathscr{H} in the endomorphism ring of $Ta_p(J_\infty)^0$. Hida has proven ([H1], Thm. 3.1) that $Ta_p(J_\infty)^0$ is a free Λ -module of finite rank. Moreover, he has constructed an idempotent $e_{\text{prim}} \in H^0_{\mathscr{L}} = H^0 \otimes_{\Lambda} \mathscr{L}([H2], \text{pp. 250, 252})$ analogous to projection to the space of N-primitive eigenforms in Atkin-Lehner theory. We define the *primitive part* of $Ta_p(J_\infty)^0$ to be the $\mathscr{H}[G_Q]$ -submodule $\mathbf{T} = Ta_p(J_\infty)_{\text{prim}}^0$ obtained as the intersection of $Ta_p(J_\infty)^0$ and $e_{\text{prim}} \cdot Ta_p(J_\alpha)^0 \otimes_{\Lambda} \mathscr{L}$. Then \mathbf{T} is a reflexive Λ -module and is therefore free of finite rank. Since ι and W_N preserve the Nprimitive part of $Ta_p(J_n)$, they induce operators on \mathbf{T} . Note, however, that W_N does not in general commute with \mathscr{H} and that neither ι nor W_N commutes with the action of the Galois group.

We associate to T the following data which will be used throughout the paper.

(2.4) **Definition. a.** The universal ordinary p-adic Hecke algebra of tame conductor N is defined to be the image \mathscr{R} of \mathscr{H} in End_A(**T**). The natural map $h: \mathscr{H} \to \mathscr{R}$ endows \mathscr{R} with the structure of $\mathbb{Z}_p[[\mathbb{Z}_{p,N}^*]]$ -algebra inherited from \mathscr{H} . The induced character $\eta: \mathbb{Z}_{p,N}^* \to \mathscr{R}^*$ will be called the *canonical character*. Let $\mathscr{H} = \mathscr{R} \otimes_A \mathscr{L}$ where \mathscr{L} is the fraction field of Λ and let $\widetilde{\mathscr{R}}$ be the normalization of \mathscr{R} in \mathscr{H} . Let $\mathscr{X} = \mathscr{X}(\widetilde{\mathscr{R}}) = \operatorname{Hom}_{\operatorname{cont}}(\widetilde{\mathscr{R}}, \overline{\mathbb{Q}}_p)$ and set

$$\mathscr{X}^{\text{arith}} = \mathscr{X}^{\text{arith}}(\tilde{\mathscr{R}}) = \text{the arithmetic points on } \tilde{\mathscr{R}} (\text{see} (1.11)).$$

b. Let \mathbf{T}^{\pm} denote the \pm eigenmodules of *i*.

c. The universal ordinary p-stabilized newform of tame conductor N is defined

to be the formal q-expansion $\mathbf{f} \in \mathscr{R}[[q]]$ given by $\mathbf{f} = \sum_{n=1}^{\infty} a_n q^n$ where the coefficients are given by $a_n = h(T_n)$ for each integer n > 0.

d. The universal ordinary *p*-adic Galois representation of tame conductor N is defined to be the representation $\rho: G_{\mathbf{Q}} \to \operatorname{Aut}_{\mathscr{R}}(\mathbf{T})$.

(2.5) **Definition. a.** We will say that an eigenform $f \in \mathcal{G}_k(\Gamma_1(Np^m), \bar{\mathbf{Q}}_p) \ (k \ge 2)$ is ordinary if the eigenvalue a_p of T_p on f is a unit, that is, if $|a_p|_p = 1$.

b. An ordinary eigenform f will be called a *p*-stabilized newform of tame conductor N if it is normalized (its leading Fourier coefficient is 1) and the following two conditions hold.

(1) The conductor of f is divisible by N.

(2) The level of f is divisible by p.

It is not hard to see that an ordinary *p*-stabilized newform f is either already a newform, or is related to a newform g of conductor N as described in (0.7). In the latter case, f has level Np.

(2.6) **Theorem.** Let p be a prime ≥ 5 and suppose $p \not\mid N$. Let r be the number of ordinary p-stabilized newforms of tame conductor N in $\mathscr{S}_2(\Gamma_1(Np), \bar{\mathbf{Q}}_p)$.

a. (Hida) The \mathcal{L} -algebra $\mathcal{K} = \mathcal{R} \otimes_{\Lambda} \mathcal{L}$ is a finite product of finite field extensions of \mathcal{L} ([H2], Thm. 3.5). Moreover, $\dim_{\mathscr{L}} \mathcal{K} = r$. For each $\kappa \in \mathcal{X}^{\text{arith}}$, the localization $\mathcal{R}_{(\kappa)}$ of \mathcal{R} at κ is a discrete valuation ring which is unramified over Λ ([H1], Cor. 1.4).

b. (Hida) The map $\kappa \mapsto \mathbf{f}_{\kappa}$ establishes a one-one correspondence

 $\begin{cases} \text{Arithmetic points} \\ \text{on } \mathscr{R} \end{cases} \leftrightarrow \begin{cases} \text{Ordinary } p\text{-stabilized newforms} \\ \text{of tame conductor } N \end{cases}.$

c. (Hida) The A-modules \mathbf{T}^{\pm} are free of rank r. As \mathscr{K} -modules, $\mathbf{T}_{\mathscr{L}}^{\pm} = \mathbf{T}^{\pm} \otimes_{A} \mathscr{L}$ are free of rank one. We may therefore regard ρ as a two-dimensional Galois representation over \mathscr{K} . This representation is unramified outside N p and for each prime l outside N p, the characteristic polynomial of $\rho(\operatorname{Frob}_{l})$ is $X^{2} - a_{l} X + l\eta(l)$ where $\eta: \mathbb{Z}_{p,N}^{*} \to \mathscr{R}^{*}$ is the canonical character (2.4) a.

d. (Mazur, Wiles) ([Mz-W], and [W] Theorem 2.2.2) Let $\varphi: G_{\mathbf{Q}_p} \to \mathscr{R}^*$ be the unramified character for which $\varphi(\operatorname{Frob}_p) = a_p$. Let $\chi_0: G_{\mathbf{Q}_p} \to \mathbf{Z}_p^*$ be the cyclotomic character and let $\eta: G_{\mathbf{Q}_p} \to \mathbf{Z}_{p,N}^* \subseteq \mathscr{R}^*$ be the Galois character associated to the canonical character η (2.4) a by class field theory (i.e. compose η with the homomorphism $G_{\mathbf{Q}_p} \to \mathbf{Z}_{p,N}^*$ induced by the action on Np^{∞} roots of unity). Then, as a $G_{\mathbf{Q}_p}$ -module, $\mathbf{T}_{\mathscr{L}}$ has a filtration

$$0 \to \mathscr{K}(\chi_0 \eta \varphi^{-1}) \to \mathbf{T}_{\mathscr{L}} \to \mathscr{K}(\varphi) \to 0.$$

These results can be interpreted analytically as follows. For each arithmetic point $\kappa \in \mathscr{X}^{\operatorname{arith}}$ of weight k_0 and character ε , let $\mathscr{A}(\kappa)$ be the subring of $\overline{\mathbf{Q}}_p[[x-k_0]]$ consisting of formal power series in $x-k_0$ with a positive radius of convergence and let $\mathscr{M}(\kappa)$ be the field of fractions of $\mathscr{A}(\kappa)$. We endow $\mathscr{A}(\kappa)$ with an $\mathscr{R}_{(\kappa)}$ -structure $\tilde{\kappa}: \mathscr{R} \to \mathscr{A}(\kappa)$ as follows. On the image of $\mathbf{Z}_p[[\mathbf{Z}_p^*]]$ in \mathscr{R} we define $\tilde{\kappa}$ by associating to each $t \in \mathbf{Z}_p^*$ the power series in $\mathscr{A}(\kappa)$ representing the analytic function $k \mapsto \varepsilon \omega^{k_0}(t) \langle t \rangle^k$, where ω is the Teichmüller character and

 $\langle \rangle$ is projection to the principal units $1 + p\mathbb{Z}_p$. Now it is well-known that the ring of convergent power series is Henselian ([N], Thm. 45.5) and, from (2.6)a we have $\mathscr{R}_{(\kappa)}$ is unramified over Λ . Hence there is a unique extension of this map to a morphism

(2.7)
$$\tilde{\kappa}: \mathscr{R}_{(\kappa)} \to \mathscr{A}(\kappa)$$

such that $\tilde{\kappa}(a)(k_0) = \kappa(a)$ for every $a \in \mathcal{R}$. Moreover, we can extend $\tilde{\kappa}$ by linearity to an \mathscr{L} -homomorphism $\tilde{\kappa}: \mathscr{K} \to \mathscr{M}(\kappa)$. We define the *domain of convergence* about κ to be the intersection of the disks of convergence of the power series $\tilde{\kappa}(a) \in \mathscr{A}(\kappa)$ where a ranges over $\tilde{\mathscr{R}}$. Since $\tilde{\mathscr{R}}$ is finite over Λ , U_{κ} is an open disk centered at k_0 .

(2.8) Notational Conventions. Let κ be an arithmetic point on \mathscr{R} and let $a \in \mathscr{K}$.

a. Define $a(\kappa, k)$ to be the meromorphic function of k about k_0 represented by $\tilde{\kappa}(a) \in \mathcal{M}(\kappa)$. For each $k \in U_{\kappa}$, let $\kappa^{(k)} \in \mathcal{X}$ be the point defined by $\kappa^{(k)}(a) = a(\kappa, k)$ for $a \in \tilde{\mathcal{R}}$.

b. We say that a is regular at κ if $a(\kappa, k)$ does not have a pole at $k = k_0$. In that case, we will write $a(\kappa)$, $a'(\kappa)$ for the value, respectively the derivative, of $a(\kappa, k)$ at $k = k_0$.

For each $\kappa \in \mathscr{X}^{arith}$ and $k \in U_{\kappa}$, we let $\mathbf{f}_{\kappa,k}$ denote the specialization $\sum a_n(\kappa, k) q^n$ of \mathbf{f} to $\kappa^{(k)}$. As a function of $k \in U_{\kappa}$ this is an analytic family of formal q-expansions which interpolates the q-expansions of ordinary p-stabilized newforms at integers $k \ge 2$ in U_{κ} . Similarly, we can specialize ρ to obtain an analytic family $\rho_{\kappa,k}$, $k \in U_{\kappa}$, of Galois representations interpolating the Galois representations associated to the forms $\mathbf{f}_{\kappa,k}$ at integers $k \ge 2$ in U_{κ} . We close this section by describing an involution on \mathscr{H} which will play

We close this section by describing an involution on \mathscr{K} which will play an important role later.

(2.9) **Proposition.** Conjugation by W_N in $\operatorname{End}_{\mathscr{S}}(\mathbf{T}_{\mathscr{S}})$ preserves the subalgebra \mathscr{K} and induces an involution * on \mathscr{K} satisfying the following properties. a. $\lceil t \rceil_N^* = \lceil t \rceil_N^{-1}$ for all $t \in \Delta_N$; and

b. $a_l^* = \prod_{N=1}^{l} a_l$ for all primes $l \not\ge N$.

Proof. Since, by Atkin-Lehner theory, the actions of \mathscr{H} and of $W_N \mathscr{H} W_N^{-1}$ commute with one another on the N-primitive part of $Ta_p(J_n)$ for each *n*, they also commute on **T**. In particular, $W_N \mathscr{H} W_N^{-1}$ centralizes \mathscr{H} in $\operatorname{End}_{\mathscr{L}}(\mathbf{T}_{\mathscr{L}})$. Since $\mathbf{T}_{\mathscr{L}}^{\pm}$ are free of rank one as \mathscr{H} -modules and are preserved by $W_N \mathscr{H} W_N^{-1}$, there are involutions $i_{\pm} : \mathscr{H} \to \mathscr{H}$ over $\mathbf{Z}_p[[\mathbf{Z}_p^*]]$ such that, for every $a \in \mathscr{H}, i_{\pm}(a) = W_N a W_N^{-1}$ on $\mathbf{T}_{\mathscr{L}}^{\pm}$. By (1.8), each of these involutions satisfies properties a and b of the proposition. We need to show $i_{+} = i_{-}$. Let $\kappa \in \mathscr{X}^{\operatorname{arith}}$ be an arbitrary arithmetic point on $\widetilde{\mathscr{H}}$, and let $\kappa_{\pm} = \kappa \circ i_{\pm}$. Then $\mathbf{f}_{\kappa_{+}}$ and $\mathbf{f}_{\kappa_{-}}$ are ordinary *p*-stabilized newforms which, according to b, have identical eigenvalues for the Hecke operators $T_n, (n, N) = 1$. Hence, by the strong multiplicity one theorem, we have $\mathbf{f}_{\kappa_{+}} = \mathbf{f}_{\kappa_{-}}$. By Theorem 2.6b we conclude that $\kappa_{+} = \kappa_{-}$ and, since κ was arbitrary, that $i_{+} = i_{-}$. This completes the proof.

The involution * on \mathscr{K} induces an involution on \mathscr{X} which we will denote $\kappa \mapsto \kappa^*$. If κ is an arithmetic point of weight k_0 and Nebentype character $\varepsilon = \varepsilon_N \varepsilon_p$, then κ^* is an arithmetic point of the same weight k_0 , but with character $\varepsilon_N^{-1} \varepsilon_p$.

Moreover, for any $a \in \mathscr{K}$ we have the following identity of meromorphic functions in a neighborhood of $k = k_0$:

(2.10)
$$a^*(\kappa^*, k) = a(\kappa, k).$$

(2.11) **Example.** In the example of the introduction, where $E = X_0(11)$, p = 11, and N = 1, the space $\mathscr{S}_2(\Gamma_1(11))$ is one dimensional and is spanned by f_E . Since f_E is ordinary at p = 11 we have r = 1 in Theorem 2.6. Hence the universal ordinary Hecke algebra (2.4) a is given by $\mathscr{R} = \Lambda$. Moreover, we have $\mathbf{T} = Ta_p(J_{\infty})_{\text{prim}}^0 = Ta_p(J_{\infty})^0$. If we set

$$\mathbf{f} = \sum a_n q^n \in \mathcal{A}[[q]], \quad \rho \colon G_\mathbf{0} \to \operatorname{Aut}_{\mathcal{A}}(\mathbf{T})$$

as in (2.4)c, d, then **f**, and ρ are the deformations of f_E and $Ta_p(E)$, respectively, whose properties are described in (0.5). For each integer $k \ge 2$ let \mathbf{f}_k (respectively, ρ_k) be the specialization of **f** (respectively, ρ) to weight k and trivial character and let f_k be the associated normalized newform. The assertions (0.5) are then immediate consequences of Theorem 2.6. The precise prescription of the conductor of each f_k given in (0.5) b follows from [A-L]. Indeed, in [A-L] it is proven that if f is a newform of weight $k \ge 2$ with prime level p and trivial character, then $a_p(f) = \pm p^{\frac{k-2}{2}}$. Hence f can be ordinary at p only if k = 2.

3. The 2-invariant

The \mathfrak{L} -invariant of an abelian variety with split multiplicative reduction

Let p be a rational prime and let $A_{/Q_p}$ be an abelian variety over Q_p with split multiplicative reduction. Then the dual abelian variety $B_{/Q_p}$ also has split multiplicative reduction. Let X, Y be the character groups of $B_{F_p}^0$, $A_{F_p}^0$, respectively. Then X and Y are free abelian groups of rank dim(A) on which the local Galois group $G_{Q_p} = \text{Gal}(\bar{Q}_p/Q_p)$ acts trivially. From the theory of p-adic uniformization [M°C, Mo] we obtain a bi-multiplicative pairing

$$(3.1) j: X \times Y \to \mathbf{Q}_n^*$$

and exact sequences of $G_{\mathbf{0}_{p}}$ -modules

where the maps labeled j are induced by (3.1). Moreover, the pairing $\alpha = \operatorname{ord}_p \circ j: X \times Y \to \mathbb{Z}$ is nondegenerate. Let $X_p = X \otimes \mathbb{Q}_p$, $Y_p = Y \otimes \mathbb{Q}_p$ and let α_p be the non-degenerate pairing of \mathbb{Q}_p -vector spaces induced by α :

$$(3.3) \qquad \qquad \alpha_p: \ X_p \times Y_p \to \mathbf{Q}_p$$

Recall that $\log_p: \mathbf{Q}_p^* \to \mathbf{Z}_p$ is the unique group homomorphism for which $\log_p p = 0$ and $\log_p(1+x) = x - x^2/2 + x^3/3 - \ldots + (-1)^{n+1} x^n/n + \ldots$ whenever $x \in p\mathbf{Z}_p$. The composition of j with \log_p induces another pairing

$$(3.4) \qquad \qquad \beta_p \colon X_p \times Y_p \to \mathbf{Q}_p,$$

(3.5) **Definition.** The \mathfrak{L} -invariant of A is the \mathbf{Q}_p -endomorphism $\mathfrak{L}_p(A)$: $X_p \to X_p$ for which $\beta_p(x, y) = \alpha_p(\mathfrak{L}_p(A) x, y)$ for all $x \in X_p$, $y \in Y_p$.

(3.6) **Example.** If A is an elliptic curve then A is canonically isomorphic to its dual abelian variety. Hence we may take A = B and X = Y. Moreover, X is free of rank one over Z. Tate's multiplicative period q_A is given by $q_A = j(x_0, x_0)$ where j is the pairing (3.1) and x_0 is a generator of X = Y. Hence $\beta_p(x_0, x_0) = \log_p(q_A)$, $\alpha(x_0, x_0) = \operatorname{ord}_p(q_A)$ and it follows that the \mathfrak{L} -invariant defined in (3.5) agrees with the \mathfrak{L} -invariant defined in the introduction for elliptic curves over \mathbf{Q}_p with split multiplicative reduction.

Returning now to the general case we will show how the \mathfrak{L} -invariant can also be described in terms of the *p*-adic Galois representation associated to *A*. Indeed, we will generalize the above definition by first introducing the notion of a *split multiplicative* Galois representation and then associating an \mathfrak{L} -invariant to an arbitrary split multiplicative Galois representation.

The \mathfrak{L} -invariant of a split multiplicative representation

Let art: $\mathbf{Q}_p^* \to G_{\mathbf{Q}_p}^{ab}$ be the Artin symbol, where we observe the conventions of [Ser]. Thus, if χ_0 is the cyclotomic character then $\chi_0(\operatorname{art}(u)) = u$ for all $u \in \mathbb{Z}_p^*$. We will write Frob_p for $\operatorname{art}(p)^{-1}$. This is a lifting to $G_{\mathbf{Q}_p}^{ab}$ of the Frobenius element on the maximal unramified extension of \mathbf{Q}_p . If W is a finite dimensional vector space over a finite extension K of \mathbf{Q}_p and if W is equipped with the trivial action of $G_{\mathbf{Q}_p}$, then there is a canonical isomorphism $H^1(W) \cong \operatorname{Hom}(G_{\mathbf{Q}_p}^{ab}, W)$ of K-vector spaces. Moreover, for any nontrivial principal unit $u \in 1 + p\mathbb{Z}_p$ the map

$$H^{1}(W) \to W \times W$$
$$\xi \mapsto \left(\xi(\operatorname{Frob}_{p}), \frac{1}{\log_{p} u} \xi(\operatorname{art}(u))\right)$$

is an isomorphism whose definition is independent of the choice of u. The space $H^1(W)$ therefore decomposes into a corresponding direct sum

$$H^1(W) = H^1(W)_{unr} \oplus H^1(W)_{cyc}$$

where $H^1(W)_{unr}$ is the space of unramified homomorphisms and $H^1(W)_{cyc}$ is the space of homomorphisms which factor through the basic cyclotomic \mathbb{Z}_p -extension of \mathbb{Q}_p . Let

(3.7)
$$\lambda_{unr}: W \to H^1(W)_{unr} \text{ and } \lambda_{cyc}: W \to H^1(W)_{cyc}$$

be the induced linear isomorphisms. Hence for each $w \in W$, $\lambda_{unr}(w)$ is the unique unramified homomorphism for which $\lambda_{unr}(w)(\operatorname{Frob}_p) = w$ and $\lambda_{cyc}(w)$ is the

unique cyclotomic homomorphism for which $\lambda_{cyc}(w)(\operatorname{art}(u)) = \log_p(u) \cdot w$ for every $u \in \mathbb{Z}_p^*$.

(3.8) **Definition.** A finite dimensional $G_{\mathbf{Q}_{p}}$ -representation V over K will be called split multiplicative if the following conditions are satisfied. **a.** There is an exact sequence of $G_{\mathbf{Q}_{p}}$ -representations

and sequence of $O_{\mathbf{Q}_p}$ representations

$$0 \to V^0(1) \to V \to V^{et} \to 0$$

where $G_{\mathbf{Q}_p}$ acts trivially on V^{et} and V^0 (hence via the cyclotomic character on $V^0(1)$).

b. The degree one coboundary map $\delta: H^1(V^{et}) \to H^2(V^0(1))$ associated to the long exact cohomology sequence of **a** induces an isomorphism $\delta: H^1(V^{et})_{unr} \xrightarrow{\sim} H^2(V^0(1))$.

Since $H^2(V^0(1))$ is canonically isomorphic to V^0 , the composition of δ with λ_{unr} and λ_{cyc} (3.7) gives rise to maps δ_{unr} , δ_{cyc} : $V^{et} \to V^0$. Condition **b** of (3.8) is equivalent to the assertion that δ_{unr} is an isomorphism. In particular we see that a split multiplicative representation must be even dimensional.

(3.9) **Definition.** Let V be a split multiplicative $G_{\mathbf{Q}_p}$ -representation. Then the \mathfrak{L} -invariant of V is defined to be the endomorphism $\mathfrak{Q}_p(V) \in \operatorname{End}_K(V^{et})$ given by

$$\mathfrak{L}_p(V) = -\,\delta_{\mathrm{unr}}^{-1} \circ \delta_{\mathrm{cyc}}.$$

To compare the definitions (3.5) and (3.9) we will need some well known facts from Kummer theory and Tate duality theory. For each integer $n \ge 0$, let $\gamma^{(n)}: \mathbf{Q}_p^* \to H^1(\mu_{pn})$ be the Kummer homomorphism. This sends $q \in \mathbf{Q}_p^*$ to the cohomology class $\gamma_q^{(n)} \in H^1(\mu_{pn})$ represented by the 1-cocycle which sends $\sigma \in G_{\mathbf{Q}_p}$ to $(q^{1/p^n})^{\sigma-1}$ where q^{1/p^n} is a fixed choice of a p^n -th root of q in $\overline{\mathbf{Q}}_p^*$. The family $\{\gamma_q^{(n)}\}_{n\ge 0}$ corresponds to an element of $\varprojlim_n H^1(\mu_{pn}) = H^1(\mathbf{Z}_p(1))$. Let γ_q denote

the image of this element in $H^1(\mathbb{Z}_p(1)) \otimes \mathbb{Q}_p = H^1(\mathbb{Q}_p(1))$. Then the map $q \mapsto \gamma_q$ defines a continuous group homomorphism, $\gamma \colon \mathbb{Q}_p^* \to H^1(\mathbb{Q}_p(1))$ whose image spans $H^1(\mathbb{Q}_p(1))$.

To a finite dimensional continuous $\mathbf{Q}_p[G_{\mathbf{Q}_p}]$ -representation V we associate the contragredient representation V*. From Tate duality we know that cup product induces perfect pairings

$$H^{i}(V) \times H^{2-i}(V^{*}(1)) \rightarrow \mathbf{Q}_{n} = H^{2}(\mathbf{Q}_{n}(1))$$

for i=0, 1, 2. In the important special case when $V = \mathbf{Q}_p$ and i=1, the pairing is explicitly given by $(\xi, \gamma_q) \mapsto \xi(\operatorname{art}(q))$ for $\xi \in H^1(\mathbf{Q}_p)$ and $\gamma_q \in H^1(\mathbf{Q}_p(1))$. It follows that the transposes of the maps $\lambda_{unr}: \mathbf{Q}_p \to H^1(\mathbf{Q}_p)$ and $\lambda_{cyc}: \mathbf{Q}_p \to H^1(\mathbf{Q}_p)$ are given by

(3.10)
$$H^1(\mathbf{Q}_p(1)) \xrightarrow{\lambda_{unr}^*} \mathbf{Q}_p \text{ and } H^1(\mathbf{Q}_p(1)) \xrightarrow{\lambda_{cyc}^*} \mathbf{Q}_p$$

 $\gamma_q \longmapsto \operatorname{ord}_p(q) \qquad \gamma_q \longmapsto \operatorname{log}_p(q).$

(3.11) **Theorem.** Let $Ta_p(A)$ be the Tate module of an abelian variety A/\mathbf{Q}_p with split multiplicative reduction and let $V = Ta_p(A) \otimes \mathbf{Q}_p$. Then V is a split multiplicative Galois representation and $\mathfrak{L}_p(A) = \mathfrak{L}_p(V)$.

Proof. For each integer $n \ge 0$ a simple application of the snake lemma to the p^n -power map acting on the exact sequences (3.2) gives us exact sequences

$$0 \longrightarrow \operatorname{Hom}(Y, \mu_{p^n}) \xrightarrow{\iota_n} A[p^n] \xrightarrow{\delta} X/p^n X \longrightarrow 0$$
$$0 \longrightarrow \operatorname{Hom}(X, \mu_{p^n}) \xrightarrow{\iota_n} B[p^n] \xrightarrow{\delta} Y/p^n Y \longrightarrow 0.$$

Passing to the projective limit over n, and tensoring with Q_p we obtain the exact sequences

$$0 \to Y_p^*(1) \to V \to X_p \to 0$$
$$0 \to X_p^*(1) \to V^* \to Y_p \to 0.$$

These sequences are $\mathbf{Q}_p(1)$ -dual to each other, hence Tate duality gives us a perfect pairing between the associated long exact cohomology sequences. In particular, the coboundary map $\delta: H^1(X_p) \to H^2(Y_p^*(1)) = Y_p^*$ of degree one associated to the first of these sequences is the transpose of the coboundary map $\delta^*: H^0(Y_p) \to H^1(X_p^*(1))$ of degree zero associated to the second sequence. If we identify $H^0(Y_p)$ with Y_p and $H^1(X_p^*(1))$ with $X_p^* \otimes H^1(\mathbf{Q}_p(1))$ in the natural way, then a simple calculation shows that δ^* is given by

(3.12)
$$\delta^* \colon Y_p \to X_p^* \otimes H^1(\mathbf{Q}_p(1))$$
$$y \mapsto (x \mapsto \gamma_{j(x,y)}).$$

Let λ_{unr} , λ_{cyc} : $X_p \to H^1(X_p)$ be as in (3.7) and define δ_{unr} , δ_{cyc} : $X_p \to Y_p^*$ by setting $\delta_{unr} = \delta \circ \lambda_{unr}$ and $\delta_{cyc} = \delta \circ \lambda_{cyc}$. We will show that δ_{unr} and δ_{cyc} induce the pairings $-\alpha_p$ (3.3) and β_p (3.4). Indeed, their duals are given by $\delta_{unr}^* = \lambda_{unr}^* \circ \delta^*$ and $\delta_{cyc}^* = \lambda_{cyc}^* \circ \delta^*$, where the maps λ_{unr}^* , λ_{cyc}^* : $H^1(X_p^*(1)) = X_p^* \otimes H^1(\mathbf{Q}_p(1)) \to X_p^*$ are induced by (3.10). Hence, using (3.12) we find that δ_{unr}^* , δ_{cyc}^* : $Y_p \to X_p^*$ are given by $\delta_{unr}^*(y)(x) = -\operatorname{ord}_p(j(x, y)) = -\alpha_p(x, y)$ and $\delta_{cyc}^*(y)(x) = \log_p(j(x, y)) = \beta_p(x, y)$. By duality we therefore have

$$\delta_{unr}(x)(y) = -\alpha_p(x, y)$$
 and $\delta_{cyc}(x)(y) = \beta_p(x, y)$

for all $x \in X_p$ and $y \in Y_p$. From the nondegeneracy of α_p we see that δ_{unr} is an isomorphism, hence V is split multiplicative. The above identities together with the definition of $\mathfrak{Q}_p(A)$ (3.5) imply $\delta_{unr} \circ \mathfrak{Q}_p(A) = -\delta_{cyc}$. Hence, by the definition of $\mathfrak{Q}_p(V)$ (3.9) we conclude that $\mathfrak{Q}_p(A) = -\delta_{unr}^{-1} \circ \delta_{cyc} = \mathfrak{Q}_p(V)$ and the theorem is proved.

The \mathfrak{L} -invariant and infinitesimal deformations

The \mathfrak{L} -invariant exerts a strong influence on the *p*-adic deformations of a split multiplicative representation. To explain this, we begin with a few remarks about infinitesimal deformations. Let $\tilde{\mathbf{Q}}_p = \mathbf{Q}_p[T]/T^2$.

(3.13) **Definition.** An infinitesimal deformation of a $\mathbf{Q}_p[G_{\mathbf{Q}_p}]$ -module W is a $\mathbf{\tilde{Q}}_p[G_{\mathbf{Q}_p}]$ -module W such that $\mathbf{W}/T\mathbf{W} \cong W$.

If W is a trivial $\mathbf{Q}_p[G_{\mathbf{Q}_p}]$ -module, we let $\tilde{W} = W \otimes \tilde{\mathbf{Q}}_p$ denote the trivial infinitesimal deformation of W. If $\psi: G_{\mathbf{Q}_p} \to \operatorname{Aut}_{\tilde{\mathbf{Q}}_p}(\tilde{W})$ is a continuous Galois representation then $\tilde{W}(\psi)$ will denote \tilde{W} with $G_{\mathbf{Q}_p}$ acting via ψ . Clearly, $\tilde{W}(\psi)$ is an infinitesimal deformation of W if and only if $\psi \equiv I$ modulo T. Assume now that ψ is such a character. Then ψ factors through $G_{\mathbf{Q}_p}^{ab}$ and after differentiation with respect to T gives rise to an additive homomorphism

$$\frac{d\psi}{dT}: \ G^{ab}_{\mathbf{Q}_p} \to \mathrm{End}(W)$$

for which $\psi = I + \frac{d\psi}{dT} \cdot T$.

(3.14) **Theorem.** Let V be a split multiplicative Galois representation and fix a homomorphism $\psi: G_{\mathbf{Q}_p} \to \operatorname{Aut}_{\mathbf{Q}_p}(\tilde{V}^{et})$ and an exact sequence $0 \to \tilde{V}^0(1) \to \mathbf{V} \to \tilde{V}^{et}(\psi) \to 0$ whose terms are infinitesimal deformations of the terms in the exact sequence (3.8)a. Then for any nontrivial principal unit $u \in 1 + p \mathbf{Z}_p$

$$\frac{d\psi}{dT}(\operatorname{Frob}_p) = \mathfrak{L}_p(V) \circ \frac{1}{\log_p(u)} \frac{d\psi}{dT}(\operatorname{art}(u)).$$

Proof. Multiplication by T gives rise to a Galois equivariant map $V^{et} \to \tilde{V}^{et}(\psi)$ whose cokernel is V^{et} . Thus we obtain an exact sequence

$$(3.15) 0 \to V^{et} \to \tilde{V}^{et}(\psi) \to V^{et} \to 0.$$

Let $\delta_{\psi}: V^{et} = H^0(V^{et}) \to H^1(V^{et})$ be the degree zero coboundary map of the associated long exact cohomology sequence. A simple calculation shows that for each $x \in V^{et}$, $\delta_{\psi}(x)$ is the homomorphism whose value on an element $\sigma \in G_{\mathbf{Q}_p}$ is given by $\delta_{\psi}(x)(\sigma) = \frac{d\psi}{dT}(\sigma)(x)$. Hence the homomorphism $\delta_{\psi}: V^{et} \to H^1(V^{et})$ is given by

(3.16)
$$\delta_{\psi} = \lambda_{unr} \circ \frac{d\psi}{dT} (\operatorname{Frob}_p) + \lambda_{cyc} \circ \frac{1}{\log_p(u)} \frac{d\psi}{dT} (\operatorname{art}(u)).$$

Now consider the following diagram.

Since $i_2 \circ \delta_{\psi} = 0$ and the diagram is commutative, we have $i_1 \circ \delta \circ \delta_{\psi} = 0$. By a simple application of Tate-duality it follows that i_1 is injective. Hence $\delta \circ \delta_{\psi} = 0$. The theorem now follows by composing δ on the left with (3.16), and using the identities $\delta_{unr} = \delta \circ \lambda_{unr}$, $\delta_{cyc} = \delta \circ \lambda_{cyc}$, and $\mathfrak{L}_p(V) = -\delta_{unr}^{-1} \circ \delta_{cyc}$.

The \mathfrak{L} -invariant of a split multiplicative newform

Let f be a classical weight two newform. Let K_f be the completion in $\bar{\mathbf{Q}}_p$ of the field of Hecke eigenvalues and let V_f be the two dimensional $G_{\mathbf{Q}}$ -representation over K_f constructed by Deligne [D]. We will say that fis split multiplicative at p if V_f is split multiplicative at p. From the work of Deligne and Rapoport [D-R] we know that f is split multiplicative at p if and only if (1) the conductor of f is Np where $p \not\prec N$ and (2) $f | T_p = f$. In particular, these two conditions show that if f is split multiplicative at p then f is an ordinary p-stabilized newform of tame conductor N.

(3.17) **Definition.** The \mathfrak{L} -invariant of a weight two split multiplicative newform f is defined to be the \mathfrak{L} -invariant of its Galois representation V_f . Hence $\mathfrak{L}_p(f) = \mathfrak{L}_p(V_f) \in K_f$.

(3.18) **Theorem.** Let f be a weight two newform of conductor Np with $p \ge 5$, and suppose f is split multiplicative at p. Let \mathcal{R} be the universal ordinary Hecke algebra of tame conductor N and let $a_p = h(T_p) \in \mathcal{R}$. If κ is the arithmetic point on \mathcal{R} which corresponds to f by Theorem 2.6 then

$$a'_p(\kappa) = -\frac{1}{2}\mathfrak{L}_p(f).$$

Proof. Let $\varphi: G_{\mathbf{Q}_p} \to \mathscr{R}^*$ be the unramified character with $\varphi(\operatorname{Frob}_p) = a_p$. Let $\mathscr{R}_{(\kappa)}$ be the localization of \mathscr{R} at κ . From Theorem 2.6d we obtain an exact sequence

$$(3.19) \qquad \qquad 0 \to \mathscr{R}_{(\kappa)}(\chi_0 \eta \varphi^{-1}) \to \mathbf{T}^0_{\mathrm{prim}} \otimes_{\mathscr{R}} \mathscr{R}_{(\kappa)} \to \mathscr{R}_{(\kappa)}(\varphi) \to 0.$$

Since the specialization of this to κ is the sequence $0 \to V_f^0(1) \to V_f \to V_f^{et} \to 0$, we see that φ and η are congruent to 1 modulo the maximal ideal P_{κ} in $\mathscr{R}_{(\kappa)}$. In particular we see that $\kappa(a_p)=1$, that $\eta(\operatorname{art}(u))=[u]_p$ for any principle unit $u \in 1 + p\mathbb{Z}_p$, and that $\eta(\operatorname{Frob}_p)=1$. Now tensor (3.19) with $\varphi \eta^{-1}$ and reduce modulo P_{κ}^2 . This gives us an exact sequence

$$0 \to \widetilde{K}_{f}(1) \to \widetilde{V} \to \widetilde{K}_{f}(\varphi^{2}\eta^{-1}) \to 0$$

where \tilde{V} is an infinitesimal deformation of V_f . Since $\varphi \eta^{-1} \equiv 1$ modulo P_{κ} , we may apply Theorem 3.14 with $\psi = \varphi^2 \eta^{-1}$ to obtain the identity

(3.20)
$$\psi(\operatorname{Frob}_p)'(\kappa) = \mathfrak{L}_p(f) \cdot \frac{\psi(\operatorname{art}(u))'(\kappa)}{\log_p(u)}$$

for any nontrivial principal unit $u \in 1 + p\mathbb{Z}_p$. But $\varphi(\operatorname{Frob}_p) = a_p$, $\eta(\operatorname{Frob}_p) = \varphi(\operatorname{art}(u)) = 1$, and $\eta(\operatorname{art}(u)) = [u]_p \in A$. Hence $\psi(\operatorname{Frob}_p) = a_p^2$ and $\psi(\operatorname{art}(u)) = [u]_p^{-1}$. The theorem now follows from (3.20) and the simple fact that $[u]_p'(\kappa) = \log_p(u)$.

4. Modular symbols and special values of L-functions

In this section we review the basic definitions and properties of modular symbols. Modular symbols will be useful to us in two ways. First of all they give us a concrete realization of the one-dimensional compactly supported cohomology groups of a congruence subgroup of $SL_2(\mathbb{Z})$ as well as a concrete description of the action of the Hecke operators on these groups. On the other hand they provide a powerful tool for studying the arithmetic properties of critical values of *L*-functions associated to modular forms. We will recall how modular symbols are used to attach one-variable *p*-adic *L*-functions to *p*-stabilized ordinary newforms as in [Mz-T-T].

Definitions and first properties

Fix a commutative ring R and let A be a contravariant $R[\Sigma]$ -module where $\Sigma = M_2(\mathbb{Z}) \cap GL_2(\mathbb{Q})$ as in "section 1".

(4.1) **Definition.** Let $\mathscr{D} \stackrel{\text{def}}{=} \operatorname{Div}(\mathbf{P}^1(\mathbf{Q}))$ denote the group of divisors supported on the rational cusps $\mathbf{P}^1(\mathbf{Q}) = \mathbf{Q} \cup \{\infty\}$ of the upper half plane **H**. Let $\mathscr{D}_0 \subseteq \mathscr{D}$ be the subgroup of divisors of degree zero. Note that Σ acts by fractional linear transformations on \mathscr{D} and on \mathscr{D}_0 . Let Γ be a congruence group.

a. An additive homomorphism $\Phi: \mathcal{D}_0 \to A$ will be called *modular symbol* over Γ if Φ is a Γ -homomorphism, i.e. if $\Phi(\gamma D)|\gamma = \Phi(D)$ for all $D \in \mathcal{D}_0$ and $\gamma \in \Gamma$. We will denote the *R*-module of all *A*-valued modular symbols over Γ by $\text{Symb}_{\Gamma}(A)$. **b.** An *A*-valued *boundary symbol* over Γ is a Γ -homomorphism $\Phi: \mathcal{D} \to A$. We will denote the group of all *A*-valued boundary symbols over Γ by $\text{Bound}_{\Gamma}(A)$. **c.** More generally, we define

$$\operatorname{Symb}(A) = \bigcup_{\Gamma} \operatorname{Symb}_{\Gamma}(A), \quad \operatorname{Bound}(A) = \bigcup_{\Gamma} \operatorname{Bound}_{\Gamma}(A)$$

where Γ runs over all congruence groups. We let Σ act on these groups according to the formula $\Phi|g: D \mapsto \Phi(gD)|g$, for $g \in \Sigma$ and $\Phi \in \text{Symb}(A)$, $D \in \mathcal{D}_0$ (respectively $\Phi \in \text{Bound}(A)$, $D \in \mathcal{D}$).

Our interest in $\text{Symb}_{\Gamma}(A)$ and $\text{Bound}_{\Gamma}(A)$ is motivated by the following theorem which allows us to relate these groups to the cohomology of Γ (see 4.3). Let $\tilde{\mathbf{H}}$ be the Borel-Serre completion of \mathbf{H} . Also, let $t(\Gamma)$ be the least common multiple of the orders of the torsion elements of Γ .

(4.2) **Theorem.** Let Γ be a congruence subgroup of $SL_2(\mathbb{Z})$ and suppose $t(\Gamma)$ is invertible in \mathbb{R} . Then the long exact cohomology sequence of the pair $(\Gamma \setminus \widehat{\mathbf{H}}, \partial(\Gamma \setminus \widehat{\mathbf{H}}))$ with coefficients in A is isomorphic to the right-shift of the long exact Γ -cohomology sequence of the exact sequence $0 \rightarrow A \rightarrow \operatorname{Hom}_{\mathbb{Z}}(\mathcal{D}, A) \rightarrow \operatorname{Hom}_{\mathbb{Z}}(\mathcal{D}_0, A) \rightarrow 0$. More precisely, for each integer $i \geq 0$ we have the following commutative diagram:

$$\xrightarrow{\hspace{1cm}} H^{i-1}(\Gamma, \operatorname{Hom}(\mathscr{D}_{0}, A)) \xrightarrow{\hspace{1cm}} H^{i}(\Gamma, A) \xrightarrow{\hspace{1cm}} H^{i}(\Gamma, \operatorname{Hom}(\mathscr{D}, A)) \xrightarrow{\hspace{1cm}} H^{i}(\Gamma, \operatorname{Hom}(\mathscr{D}, A)) \xrightarrow{\hspace{1cm}} H^{i}(\Gamma \setminus \operatorname{H}, A) \xrightarrow{\hspace{1cm}} H^{i}(\partial(\Gamma \setminus \widetilde{\operatorname{H}}), A)) \xrightarrow{\hspace{1cm}} H^{i}(\partial(\Gamma \setminus \widetilde{\operatorname{H}}), A)$$

where the vertical arrows are isomorphisms.

For a proof of this, see [A-S]. Recall that the parabolic cohomology group $H^1_{par}(\Gamma, A)$ is defined to be the image of the map $H^1_c(\Gamma \setminus \mathbf{H}, A) \to H^1(\Gamma \setminus \mathbf{H}, A)$. The following theorem is an immediate consequence of Theorem 4.2.

(4.3) **Theorem.** Suppose $t(\Gamma)$ is invertible in R. Then there is a canonical isomorphism $\operatorname{Symb}_{\Gamma}(A) \cong H^1_c(\Gamma \setminus \mathbf{H}, A)$. Moreover, there is a canonical exact sequence

$$0 \to H^0(\Gamma, A) \to \text{Bound}_{\Gamma}(A) \to \text{Symb}_{\Gamma}(A) \to H^1_{\text{nar}}(\Gamma, A) \to 0.$$

Now let Γ be a congruence group and let $D(\Gamma, \Sigma)$ be the double coset algebra associated to the pair (Γ, Σ) . The action of the algebra $D(\Gamma, \Sigma)$ on A-valued modular symbols over Γ can be made explicit as follows. If $T(g) \in D(\Gamma, \Sigma)$ is the element associated to the double coset $\Gamma g\Gamma$, $g \in \Sigma$, then we can write $\Gamma g\Gamma$ as a finite disjoint union of right cosets, $\bigcup \Gamma g_i$. For a modular symbol

 $\Phi \in \operatorname{Symb}_{\Gamma}(A)$ we then have

(4.4)
$$\Phi | T(g) = \sum_{i} \Phi | g_i \in \operatorname{Symb}_{\Gamma}(A).$$

The matrix $i = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \in \Sigma$ induces an involution $\Phi \mapsto \Phi | i$ on modular symbols.

If 2 is invertible in R, then we can decompose any modular symbol Φ in a unique way as a sum

$$(4.5) \qquad \qquad \Phi = \Phi^+ + \Phi^-$$

where $\Phi^{\pm}|_{I} = \pm \Phi^{\pm}$. Let $\text{Symb}_{\Gamma}(A) = \text{Symb}_{\Gamma}(A)^{+} \oplus \text{Symb}_{\Gamma}(A)^{-}$ be the corresponding decomposition of the space of modular symbols.

Modular symbols of integral weight $k \ge 2$

For each non-negative integer $r \ge 0$, let Sym^r(R^2) denote the *R*-module of homogeneous polynomials of degree *r* in two variables *X*, *Y* with coefficients in *R*. We let Σ act on Sym^r(R^2) by the formula $(F|g)(X, Y) = F((X, Y)g^*)$ for $g \in \Sigma$ and $F \in \text{Sym}^r(R^2)$, where * is the adjoint involution defined in "section 1".

(4.6) **Definition.** Fix an integer $k \ge 2$. Then the $R[\Sigma]$ -module Symb(Sym^{k-2}(R^2)) is called the module of modular symbols of weight k over R.

This terminology is motivated by the following well known example of Eichler and Shimura. Recall from "section 1" that $\mathscr{S}_k(\bar{\mathbf{Q}})$ is the space of weight k cusp forms of all levels having algebraic q-expansions and that Σ^+ acts on $\mathscr{S}_k(\bar{\mathbf{Q}})$ via the weight k action.

(4.7) **Definition.** The standard weight k modular symbol associated to a cusp form $f \in \mathscr{S}_k(\bar{\mathbf{Q}})$ is the modular symbol $\Phi_f \in \text{Symb}(\text{Sym}^{k-2}(\mathbf{C}^2))$ defined on divisors $\{c_2\} - \{c_1\} \in \mathscr{D}_0, c_1, c_2 \in \mathbf{P}^1(\mathbf{Q})$ by

$$\Phi_f(\{c_2\} - \{c_1\}) = 2\pi i \int_{c_1}^{c_2} f(z) (zX + Y)^{k-2} dz$$

where the integral is over the geodesic in the upper half-plane joining c_1 to c_2 .

A straightforward calculation shows that the map $f \mapsto \Phi_f$ commutes with the action of Σ^+ . We have the following theorem of Shimura [Sh].

(4.8) **Theorem.** Let $f \in \mathscr{G}_k(\Gamma_1(Np^r))$ be a Hecke eigenform of weight $k \ge 2$ and let K(f) be the field generated by the Hecke eigenvalues of f. Then for either choice of sign \pm , the Hecke eigenspace associated to f in $\operatorname{Symb}_{\Gamma_1(Np^r)}(\operatorname{Sym}^{k-2}(K(f)^2))^{\pm}$ is one dimensional over K(f). Moreover, there are 'periods' $\Omega_f^{\pm} \in \mathbb{C}^*$ such that the modular symbols $\Psi_f^{\pm} = (\Omega_f^{\pm})^{-1} \Phi_f^{\pm}$ are defined over K(f) and span the associated eigenspaces, that is

$$0 \neq \Psi_f^{\pm} \in \operatorname{Symb}_{\Gamma_1(Np^r)}(\operatorname{Sym}^{k-2}(K(f)^2))^{\pm}.$$

Recall from Theorem 2.6b that $\mathscr{X}^{\text{arith}} = \mathscr{X}^{\text{arith}}(\widetilde{\mathscr{R}})$ parametrizes the ordinary *p*-stabilized newforms of level Np^r , r > 0.

(4.9) **Definition.** For each $\kappa \in \mathscr{X}^{\text{arith}}$ we fix the following data and notations.

a. K_{κ} is the *p*-acid completion of $K(\mathbf{f}_{\kappa})$ with respect to our fixed embedding (0.4).

b. \mathbf{W}_{κ} is the Hecke eigenspace in $\operatorname{Symb}_{\Gamma_1(Np^r)}(\operatorname{Sym}^{k-2}(K_{\kappa}^2))$ associated to \mathbf{f}_{κ} . Here k is the weight of \mathbf{f}_{κ} .

c. We fix, once and for all, two periods $\Omega_{\mathbf{f}_{\kappa}}^{\pm} \in \mathbf{C}^{*}$ as in Theorem 4.8 and let $\Psi_{\mathbf{f}_{\kappa}}^{\pm} \in \mathbf{W}_{\kappa}^{\pm}$ be the associated generators.

Consistent with the notational conventions of "section 2" (see (2.8)) we will write $K_{\kappa,k}$ and $\mathbf{W}_{\kappa,k}$ to denote $K_{\kappa(\kappa)}$ and $\mathbf{W}_{\kappa(\kappa)}$, respectively.

Special values of L-functions

Modular symbols provide us with a convenient tool for studying values of L-functions. We will attach "special values of L-functions" to modular symbols and show how the critical values of the L-function of a cusp form of weight $k \ge 2$ can be described in terms of the "special values of the L-function" of the associated modular symbol.

(4.10) **Definition.** Let $\Phi \in \text{Symb}(A)$. Then the special value of the L-function of Φ is defined to be the element $L(\Phi)$ of A given by $L(\Phi) = \Phi(\{0\} - \{i \infty\})$.

Let $\psi: \mathbb{Z} \to R$ be a primitive Dirichlet character of conductor $m \ge 1$. Then we may also define "special values of *L*-functions twisted by ψ ". For simplicity, suppose $\Gamma = \Gamma_1(M)$ for some positive integer *M*. Define the *twist operator* $R_{\psi}: \operatorname{Symb}_{\Gamma}(A) \to \operatorname{Symb}(A)$ by the formula

$$\Phi|R_{\psi} \stackrel{\text{def}}{=} \sum_{a=0}^{m-1} \psi(a) \Phi| \begin{pmatrix} 1 & a \\ 0 & m \end{pmatrix}.$$

(4.11) **Definition.** The special value of the L-function of Φ twisted by ψ is $L(\Phi, \psi) = L(\Phi|R_{\psi})$. In case Φ is a modular symbol of weight $k \ge 2$ over R then the special value $L(\Phi, \psi)$ is a homogeneous polynomial of degree k-2 in X

and Y If the binomial coefficients $\binom{k-2}{r}$, $0 \le r \le k-2$, are not zero divisors in R, then we define the 'special values' $L(\Phi, \psi, s_0) \in R$, for integers s_0 with $0 < s_0 < k$, to be the unique elements of R for which

(4.12)
$$L(\Phi, \psi) = \sum_{s_0=1}^{k-1} {\binom{k-2}{s_0-1}} (-1)^{s_0-1} \cdot L(\Phi, \psi, s_0) \cdot X^{s_0-1} Y^{k-s_0-1}.$$

These definitions are motivated by the following well known example. If $f(z) = \sum_{n=1}^{\infty} a_n e^{2\pi i n z}$ is the Fourier expansion of a weight k cusp form $f \in \mathscr{S}_k(\bar{\mathbf{Q}})$ and if $\psi : \mathbf{Z} \to \mathbf{C}$ is a primitive Dirichlet character with conductor m > 0, then the complex L-function of f twisted by ψ is defined by the Dirichlet series

$$L_{\infty}(f, \psi, s) = \sum_{n=1}^{\infty} \psi(n) a_n n^{-s}$$
 for $\text{Re}(s) > \frac{k+1}{2}$.

This function extends to an entire function in s. We are interested in its values at integers $s = s_0$ in the 'critical strip' $0 < s_0 < k$. For such values of s_0 we define

(4.13)
$$\Lambda(f,\psi,s_0) \stackrel{\text{def}}{=} m^{s_0-1}(s_0-1) ! \frac{\tau(\psi) L_{\infty}(f,\bar{\psi},s_0)}{(2\pi i)^{s_0-1}}$$

where $\tau(\psi)$ is the Gauss sum $\sum_{a=0}^{m-1} \psi(a) e^{2\pi i a/m}$. If ψ is the trivial Dirichlet character,

a=0then we will suppress it from the notation and write simply $L_{\infty}(f, s)$ and $\Lambda(f, s_0)$ instead of $L_{\infty}(f, \psi, s)$ and $\Lambda(f, \psi, s_0)$ respectively.

(4.14) **Theorem.** For every primitive Dirichlet character ψ and each integer s_0 with $0 < s_0 < k$ we have

$$L(\Phi_f, \psi, s_0) = \Lambda(f, \psi, s_0).$$

The proof is a straightforward calculation.

p-adic L-functions attached to p-stabilized ordinary newforms

For an arbitrary topological \mathbb{Z}_p -algebra R, we let $\text{Meas}(\mathbb{Z}_p^*, R)$ denote the R-module of all bounded R-valued distributions on \mathbb{Z}_p^* (see [Mz-SwD]). For fixed $\mu \in \text{Meas}(\mathbb{Z}_p^*, R)$ we associate to each continuous character $\sigma: \mathbb{Z}_p^* \to R^*$ the element

(4.15)
$$L_p(\mu, \sigma) = \int_{\mathbf{z}_p^*} \sigma(t) \, d\mu(t) \in \mathbb{R}$$

in the usual way (see, for example, [Mz-SwD]). The resulting function of σ will be called the *R*-valued *Iwasawa function* associated to μ .

For each $\kappa \in \mathscr{X}^{\text{arith}}$ we follow [Mz-T-T] and define measures $\mu_{\kappa}^{\pm} \in \text{Meas}(\mathbb{Z}_{p}^{*}, K_{\kappa})$ by setting

(4.16)
$$\mu_{\kappa}^{\pm}(a+p^{m}\mathbf{Z}_{p}) = a_{p}(\kappa)^{-m} \Psi_{\mathbf{f}_{\kappa}}^{\pm}\left(\left\{\frac{a}{p^{m}}\right\}-\left\{i\infty\right\}\right)\Big|_{X=0, Y=1}$$

for each $a \in \mathbb{Z}$ prime to p, and each m > 0. We then define the p-adic L-function

(4.17)
$$L_p(\mathbf{f}_{\kappa}, \psi, s) = L_p(\mu_{\kappa}^{\operatorname{sgn}(\psi)}, \psi \langle \cdot \rangle^{s-1})$$

for each $\kappa \in \mathscr{X}^{\text{arith}}$. If ψ is the trivial character, then we will suppress it from the notation and write simply $L_p(\mathbf{f}_{\kappa}, s)$. We have the following theorem.

(4.18) **Theorem.** Let $\kappa \in \mathscr{X}_{arith}$ be an arithmetic point of weight k. Let ψ be a finite character of \mathbb{Z}_p^* of conductor p^m , $m \ge 0$ and let s_0 be an integer with $0 < s_0 < k$. Then

$$L_p(\mathbf{f}_{\kappa},\psi,s_0) = a_p(\kappa)^{-m} \cdot (1-a_p(\kappa)^{-1}\psi\omega^{1-s_0}(p)p^{s_0-1}) \cdot \frac{\Lambda(\mathbf{f}_{\kappa},\psi\omega^{1-s_0},s_0)}{\Omega_{\mathbf{f}_{\kappa}}^{\mathrm{sgn}(\psi)}}.$$

For more details of the construction of the *p*-adic *L*-function and a proof of Theorem 4.18, see [Mz-T-T].

5. A-adic modular symbols and two-variable p-adic L-functions

Fix a prime number p > 0 and a positive integer N which is not divisible by p. Let $\Gamma = \Gamma_1(N)$. In this section we examine the structure of the group of modular symbols over Γ which take values in the module **D** of \mathbb{Z}_p -valued measures on $(\mathbf{Z}_p^2)'$ (= the set of primitive elements of \mathbf{Z}_p^2). Such modular symbols will be referred to as Λ -adic modular symbols. Our interest in Symb_r(**D**) stems from two facts. First of all, the module D is rich enough to admit non-trivial morphisms to each of the modules $\operatorname{Sym}^{r}(\mathbb{Z}_{p}^{2})$, $r \geq 0$. Thus a measure gives rise to a family of elements in Sym^{r} as r varies, and correspondingly, a Λ -adic modular symbol gives rise to a family of modular symbols of varying weights. The second reason for our interest in **D** rests on the fact that the elements of **D** give rise in a natural way to two variable *p*-adic *L*-functions. The main results of this section are Theorems 5.13 and 5.15. Theorem 5.13, which is proved in the next section, asserts the existence of ordinary A-adic modular eigensymbols which are p-adic deformations of the modular symbols associated to any given ordinary p-stabilized newform. In Theorem 5.15 we describe the analytic properties of the two-variable p-adic L-function associated to such an eigensymhol.

Let $\operatorname{Cont}(\mathbb{Z}_p^2)$ denote the \mathbb{Z}_p -module of continuous \mathbb{Z}_p -valued functions on \mathbb{Z}_p^2 and let $\operatorname{Step}(\mathbb{Z}_p^2)$ be the submodule of locally constant functions. The group $\widetilde{\mathbf{D}}$ of \mathbb{Z}_p -valued measures on \mathbb{Z}_p^2 is defined to be $\widetilde{\mathbf{D}} = \operatorname{Hom}_{\mathbb{Z}_p}(\operatorname{Step}(\mathbb{Z}_p^2), \mathbb{Z}_p)$. As is well known, every $\mu \in \widetilde{D}$ has a unique extension to a \mathbb{Z}_p -homomorphism $\operatorname{Cont}(\mathbb{Z}_p^2) \to \mathbb{Z}_p$ which is continuous with respect to the supremum norm on

Cont (\mathbb{Z}_p^2) . If $\mu \in \tilde{\mathbb{D}}$, $\phi \in \text{Cont}(\mathbb{Z}_p^2)$ and $K \subseteq \mathbb{Z}_p^2$ is a compact open set, we will use the integral notation and write

for the value of μ on the product of φ with the characteristic function of K. In case φ is identically 1, we will also write $\mu(K)$ for this integral.

We will be particularly interested in a certain direct summand **D** of $\tilde{\mathbf{D}}$ which may defined as follows. Let $(\mathbf{Z}_p^2)'$ denote the primitive elements of \mathbf{Z}_p^2 , i.e. those elements which are not divisible by p. Then **D** is the submodule of $\tilde{\mathbf{D}}$ consisting of measures which are supported on $(\mathbf{Z}_p^2)'$. Restriction of measures from \mathbf{Z}_p^2 to $(\mathbf{Z}_p^2)'$ gives a projection from $\tilde{\mathbf{D}}$ to **D**, hence **D** is a direct summand of $\tilde{\mathbf{D}}$.

There is a natural continuous action of $M_2(\mathbb{Z}_p)$ on $\tilde{\mathbf{D}}$. To describe this action we regard the elements of \mathbb{Z}_p^2 as row vectors and let $M_2(\mathbb{Z}_p)$ act by matrix multiplication on the right. Then $M_2(\mathbb{Z}_p)$ acts covariantly on $\text{Step}(\mathbb{Z}_p^2)$ by the formula $\varphi \mapsto (g \varphi : \mathbf{x} \in \mathbb{Z}_p^2 \mapsto \varphi(\mathbf{x}g))$. The contravariant action on $\tilde{\mathbf{D}}$ is given by $\mu \mapsto \mu | g$ where $\mu | g$ is given by the integration formula

$$\int_{\mathbf{Z}_p^2} \varphi \, d(\mu \,|\, g) = \int_{\mathbf{Z}_p^2} g \, \varphi \, d \, \mu.$$

Since the kernel of the natural projection $\tilde{\mathbf{D}} \to \mathbf{D}$ is preserved by this action of $M_2(\mathbf{Z}_p)$ we also obtain an induced action of $M_2(\mathbf{Z}_p)$ on \mathbf{D} . We will take this induced action as the natural action of $M_2(\mathbf{Z}_p)$ on \mathbf{D} . Note, that while the action has been defined to commute with the natural surjection $\tilde{\mathbf{D}} \to \mathbf{D}$, it does not respect the natural inclusion $\mathbf{D} \hookrightarrow \tilde{\mathbf{D}}$.

The group \mathbb{Z}_p^* acts continuously on \mathbb{D} and $\tilde{\mathbb{D}}$ via the scalar matrices in $M_2(\mathbb{Z}_p)$. We extend this to a continuous action of the algebra $\mathbb{Z}_p[[\mathbb{Z}_p^*]]$. Note that the action of $M_2(\mathbb{Z}_p)$ commutes with these $\mathbb{Z}_p[[\mathbb{Z}_p^*]]$ -structures on \mathbb{D} and $\tilde{\mathbb{D}}$. Now restrict the action of $M_2(\mathbb{Z}_p)$ to an action of Σ . Since Hypothesis P (1.3) is satisfied, we may form the \mathscr{H} -modules

(5.1)
$$\mathbf{W} = \operatorname{Symb}_{\Gamma}(\mathbf{D}) \text{ and } \widetilde{\mathbf{W}} = \operatorname{Symb}_{\Gamma}(\widetilde{\mathbf{D}}).$$

Restriction of measures induces a natural surjective \mathscr{H} -morphism $\tilde{\mathbf{W}} \rightarrow \mathbf{W}$.

We now describe a simple procedure for attaching *p*-adic *L*-functions to the elements of **W**. Recall (1.11)c that \mathscr{X}_0 is the space of $\bar{\mathbf{Q}}_p$ -valued points on $\mathbf{Z}_p[[\mathbf{Z}_p^*]]$. To each $\Phi \in \mathbf{W}$ we attach its 'special value of the *L*-function' $\mu_{\Phi} = L(\Phi) \in \mathbf{D}$ as in the last section (4.10) and define the standard 2-variable *p*-adic *L*-function associated to Φ to be the $\bar{\mathbf{Q}}_p$ -valued function $L_p(\Phi)$ on $\mathscr{X}_0 \times \mathscr{X}_0$ given by

(5.2) a.
$$L_p(\Phi, \kappa, \sigma) = \int_{\mathbf{Z}_p^* \times \mathbf{Z}_p^*} \kappa(x) \, \sigma(y/x) \, d\, \mu_{\Phi}(x, y)$$

for $(\kappa, \sigma) \in \mathscr{X}_0 \times \mathscr{X}_0$. If σ is an arithmetic point, then its restriction to \mathbb{Z}_p^* is an arithmetic character of the form $\sigma_{r,\psi}$. We can then extend σ to a continuous multiplicative function $\mathbb{Z}_p \to \overline{\mathbb{Q}}_p$ by the convention $\sigma(p) = p^r$ if ψ is the trivial character and $\sigma(p) = 0$ otherwise. With this convention, we define the

improved 2-variable p-adic L-function associated to Φ to be the function $L_p^*(\Phi)$ on $\mathcal{X}_0 \times \mathcal{X}_0^{\text{arith}}$ given by

(5.2) b.
$$L_p^*(\Phi, \kappa, \sigma) = \int_{\mathbf{z}_p^* \times \mathbf{z}_p} \kappa(x) \, \sigma(y/x) \, d\mu_{\Phi}(x, y)$$

for $(\kappa, \sigma) \in \mathscr{X}_0 \times \mathscr{X}_0^{\text{arith}}$.

It is clear from the definitions that $L_p(\Phi, \kappa, \sigma)$ is analytic in (κ, σ) and that $L_p^*(\Phi, \kappa, \sigma)$ is analytic in κ for each $\sigma \in \mathscr{X}_0^{\operatorname{arith}}$. Moreover, for fixed σ there are unique $\mathbb{Z}_p[[\mathbb{Z}_p^*]]$ -morphisms

(5.3)
$$L_p(\cdot, \sigma) \colon \mathbf{W} \to \mathbf{Z}_p[[\mathbf{Z}_p^*]]$$
 for fixed $\sigma \in \mathscr{X}_0$, and $L_p^*(\cdot, \sigma) \colon \mathbf{W} \to \mathbf{Z}_p[[\mathbf{Z}_p^*]]$ for fixed $\sigma \in \mathscr{X}_0^{\text{arith}}$,

such that $\kappa(L_p(\Phi, \sigma)) = L_p(\Phi, \kappa, \sigma)$ and $\kappa(L_p^*(\Phi, \sigma)) = L_p^*(\Phi, \kappa, \sigma)$ for all $\kappa \in \mathscr{X}_0$.

Now fix a continuous $\mathbb{Z}_p[[\mathbb{Z}_p^*]]$ -algebra R. Let $\mathbb{D}_R = \mathbb{D} \otimes_{\mathbb{Z}_p[[\mathbb{Z}_p^*]]} R$ and $\mathbb{W}_R = \mathbb{W} \otimes_{\mathbb{Z}_p[[\mathbb{Z}_p^*]]} R$. There is a natural isomorphism $\mathbb{W}_R \cong \operatorname{Symb}_{\Gamma}(\mathbb{D}_R)$ of \mathscr{H} -modules. Extending the maps (5.3) by R-linearity, we obtain R-homomorphisms $L_p(\cdot, \sigma), L_p^*(\cdot, \sigma): \mathbb{W}_R \to R$. We may therefore extend our definitions (5.2) and associate to each $\Phi \in \mathbb{W}_R$ a two-variable p-adic L-function $L_p(\Phi)$ on $\mathscr{X}(R) \times \mathscr{X}_0$ and an improved p-adic L-function $L_p^*(\Phi)$ on $\mathscr{X}(R) \times \mathscr{X}_0^{\operatorname{artih}}$ by the formulas

(5.4)
$$L_p(\Phi, \kappa, \sigma) = \kappa(L_p(\Phi, \sigma)) \quad \text{for } (\kappa, \sigma) \in \mathscr{X}(R) \times \mathscr{X}_0, \text{ and} \\ L_p^*(\Phi, \kappa, \sigma) = \kappa(L_p^*(\Phi, \sigma)) \quad \text{for } (\kappa, \sigma) \in \mathscr{X}(R) \times \mathscr{X}_0^{\text{arith}}.$$

In Proposition 5.8 we will prove a fundamental interpolation property of these *p*-adic *L*-functions. In particular we will show that they interpolate special values of *L*-functions attached to a certain family Φ_{κ} , $\kappa \in \mathscr{X}^{\operatorname{arith}}(R)$, of modular symbols of integral weights attached to Φ . This family of modular symbols is defined as follows. For each $\kappa \in \mathscr{X}^{\operatorname{arith}}(R)$ with weight $k \ge 2$ and character ε define the specialization map $\phi_{\kappa} \colon \mathbf{D} \to \operatorname{Sym}^{k-2}(\overline{\mathbf{Q}_{p}^{2}})$ by the integration formula

(5.5) a.
$$\phi_{\kappa}(\mu) = \int_{\mathbf{Z}_{p}^{*} \times \mathbf{Z}_{p}} \varepsilon(x) \cdot (x Y - y X)^{k-2} d\mu(x, y)$$

and extend this to the unique map $\phi_{\kappa}: \mathbf{D}_R \to \operatorname{Sym}^{k-2}(\bar{\mathbf{Q}}_p^2)$ which intertwines κ . If, moreover, the character ε is trivial, then we also define a map $\tilde{\phi}_{\kappa}: \tilde{\mathbf{D}} \to \operatorname{Sym}^{k-2}(\bar{\mathbf{Q}}_p^2)$ by

(5.5) b.
$$\widetilde{\phi}_{\kappa}(\mu) = \int_{\mathbf{Z}_{p}^{2}} (x Y - y X)^{k-2} d\mu(x, y)$$

and extend this to a map $\tilde{\phi}_{\kappa}: \tilde{\mathbf{D}}_R \to \operatorname{Sym}^{k-2}(\bar{\mathbf{Q}}_p^2)$ intertwining κ as well. A simple calculation shows that if the conductor of ε divides p^r and r > 0 then ϕ_{κ} commutes with the action of $\Sigma_1(p^r)$. Hence, ϕ_{κ} induces an $\mathscr{H}[\iota, W_N]$ -morphism $\phi_{\kappa, \star}: \mathbf{W}_R \to \operatorname{Symb}_{\Gamma_1(Np^r)}(\operatorname{Sym}^{k-2}(\bar{\mathbf{Q}}_p^2))$. If ε is trivial, then $\tilde{\phi}_{\kappa}$ commutes with all of Σ , hence $\tilde{\phi}_{\kappa}$ induces an $\mathscr{H}[\iota, W_N]$ -morphism

$$\widetilde{\phi}_{\kappa,*}: \widetilde{\mathbf{W}}_{R} \to \operatorname{Symb}_{\Gamma_{1}(N)}(\operatorname{Sym}^{k-2}(\overline{\mathbf{Q}}_{p}^{2})).$$

We may therefore make the following definitions.

(5.6) **Definition.** Let $\Phi \in \mathbf{W}_R$.

a. For each arithmetic point $\kappa \in \mathcal{X}^{\operatorname{arith}}(R)$ we define Φ_{κ} to be the image of Φ under $\phi_{\kappa,*}$.

b. For each κ with trivial character, we also define $\tilde{\Phi}_{\kappa}$ to be the image of Φ under $\tilde{\phi}_{\kappa,*}$.

In Proposition 5.8 we will describe the behavior of the *p*-adic *L*-functions when Φ is transformed by the operator T_p . For this purpose, it will be useful to first record a few facts about the Hecke operators at *p* acting on **W**. We will say that a modular symbol $\Phi \in \tilde{\mathbf{W}}$ is supported on a given compact open subset U of \mathbf{Z}_p^2 , if, for every $D \in \mathcal{D}_0$, the measure $\Phi(D) \in \tilde{\mathbf{D}}$ is supported on *U*. Hence, **W** may be described as the set of modular symbols in $\tilde{\mathbf{W}}$ which are supported on $(\mathbf{Z}_p^2)'$. Since the scalar matrix pI transforms any modular symbol $\Phi \in \tilde{\mathbf{W}}$ to one supported on $p\mathbf{Z}_p^2$, we see that $[p]_p$ annihilates **W**.

The action of the operator T_p and its powers T_p^m , m > 0, on W can be described as follows. Consider the reduction map $(\mathbb{Z}_p^2)' \to \mathbb{P}^1(\mathbb{Z}/p^m\mathbb{Z})$. For each $\mathbf{x} \in \mathbb{P}^1(\mathbb{Z}/p^m\mathbb{Z})$ the preimage of \mathbf{x} in $(\mathbb{Z}_p^2)'$ is a compact open set which we denote by $U(\mathbf{x}, p^m)$. Choose an element $g_{\mathbf{x}, p^m} \in \Sigma_1(N)$ with determinant p^m for which $U(\mathbf{x}, p^m) \subseteq ((\mathbb{Z}_p)^2)' g_{\mathbf{x}, p^m}$. The coset $\Gamma g_{\mathbf{x}, p^m}$ is independent of the choice of $g_{\mathbf{x}, p^m}$ with this property. The *m*th power of T_p acting on $\Phi \in \mathbf{W}$ is then given by

(5.7)
$$\Phi \mid T_p^m = \sum_{\mathbf{x} \in \mathbf{P}^1(\mathbf{Z}/p^m\mathbf{Z})} \Phi \mid g_{\mathbf{x}, p^m}$$

This decomposes $\Phi | T_p^m$ into a sum of modular symbols which are supported on the disjoint compact open sets $U(\mathbf{x}, p^m), \mathbf{x} \in \mathbf{P}^1(\mathbf{Z}/p^m\mathbf{Z})$. We will say that a pair of arithmetic points $(\kappa, \sigma) \in \mathscr{X}_0^{\operatorname{arith}}(R) \times \mathscr{X}_0^{\operatorname{arith}}$ is critical

We will say that a pair of arithmetic points $(\kappa, \sigma) \in \mathscr{X}^{\text{arith}}(R) \times \mathscr{X}_{0}^{\text{arith}}$ is critical if the weight of κ is greater than or equal to the weight of σ . This is equivalent to saying that $\kappa \sigma^{-1}$ defines an arithmetic character on \mathbb{Z}_{p}^{*} .

(5.8) **Proposition.** Let $\Phi \in \mathbf{W}_R$ and $(\kappa, \sigma) \in \mathscr{X}(R) \times \mathscr{X}_0$.

1. (Relation Between the Standard and Improved *p*-adic *L*-functions.) If $\sigma \in \mathscr{X}_0^{\text{arith}}$ then

$$L_p(\Phi \mid T_p, \kappa, \sigma) = L_p^*(\Phi \mid T_p, \kappa, \sigma) - \sigma(p) \cdot L_p^*(\Phi, \kappa, \sigma).$$

Here $\sigma(p)$ *is defined as in the paragraph preceding* (5.2)b.

2. (Interpolation.) Suppose the pair (κ, σ) is critical and suppose $\sigma = \sigma_{r,\psi}$ where r is an integer ≥ 0 and ψ is a finite character of \mathbb{Z}_p^* of conductor p^m , with $m \geq 0$. Then

$$L_n^*(\Phi \mid T_n^m, \kappa, \sigma) = L(\Phi_\kappa, \psi, r+1)$$

where Φ_{κ} is the specialization defined by (5.6)a and $L(\Phi_{\kappa}, \psi, r+1)$ is defined by (4.12).

3. (Functional Equation for the standard *p*-adic *L*-function.) Let $W_N = \begin{pmatrix} 0 & 1 \\ -N & 0 \end{pmatrix}$.

$$L_{p}(\Phi,\kappa,\sigma) = -\sigma^{-1}(-N) \cdot L_{p}(\Phi|W_{N},\kappa,\kappa\sigma^{-1}).$$

4. (Functional Equation for the Improved *p*-adic *L*-functions.) Suppose the pair (κ, σ) is critical and that both κ and σ have trivial characters and fix $r \ge 0$ so that $\sigma = \sigma_r$. Then

$$L_p^*(\Phi,\kappa,\sigma) - \sigma(-N)^{-1} L_p^*(\Phi | W_N,\kappa,\kappa\sigma^{-1}) = L_p(\Phi,\kappa,\sigma) + L(\tilde{\Phi}_{\kappa},r+1).$$

Proof. Each of these statements is verified by a straightforward calculation. We will only sketch the details. We restrict ourselves to the special case $R = \mathbb{Z}_p[[\mathbb{Z}_p^*]]$, since the general case then follows by linearity.

Let $\mu = L(\Phi) \in \mathbf{D}$. Then for each m > 0 we can write $L(\Phi \mid T_p^m)$ in the form

(5.9)
$$L(\Phi | T_p^m) = \sum_{\mathbf{x} \in \mathbf{P}^1(\mathbf{Z}/p^m \mathbf{Z})} \mu_{\mathbf{x}} | g_{\mathbf{x}, p^m}$$

where $\mu_{\mathbf{x}} = \Phi(\mathbf{g}_{\mathbf{x}, p^m} \cdot (\{0\} - \{i \infty\}))$. As remarked above, the decomposition (5.9) exhibits $L(\Phi | T_p^m)$ as a sum of measures supported on the disjoint compact open sets $U(\mathbf{x}, p^m)$, for $\mathbf{x} \in \mathbf{P}^1(\mathbf{Z}/p^m \mathbf{Z})$. Since the standard and improved *p*-adic *L*-functions are defined as integrals over $\mathbf{Z}_p^* \times \mathbf{Z}_p^*$ and $\mathbf{Z}_p^* \times \mathbf{Z}_p$, respectively, only those terms in (5.9) associated to \mathbf{x} of the form $\mathbf{x} = [1, a]$ with $a \in \mathbf{Z}_p/p^m \mathbf{Z}_p$ will enter. Moreover, when $\mathbf{x} = [1, a]$ we may choose $g_{\mathbf{x}, p^m} = \begin{pmatrix} 1 & a \\ 0 & p^m \end{pmatrix}$. Now a simple calculation shows that when $\begin{pmatrix} 1 & a \\ 0 & p^m \end{pmatrix}$ operates on the characteristic function of $U([1, a], p^m)$ the result is the characteristic function of $\mathbf{Z}_p^* \times \mathbf{Z}_p$. Hence we easily obtain

(5.10)
$$L_{p}(\Phi | T_{p}^{m}, \kappa, \sigma) = \sum_{a \in (\mathbb{Z}/p^{m}\mathbb{Z})^{*}} \int_{\mathbb{Z}_{p}^{*} \times \mathbb{Z}_{p}} \kappa(x) \sigma(a + p^{m}y/x) d\mu_{a}(x, y)$$
$$L_{p}^{*}(\Phi | T_{p}^{m}, \kappa, \sigma) = \sum_{a \in \mathbb{Z}/p^{m}\mathbb{Z}} \int_{\mathbb{Z}_{p}^{*} \times \mathbb{Z}_{p}} \kappa(x) \sigma(a + p^{m}y/x) d\mu_{a}(x, y)$$

where we have written μ_a for the measure $\Phi(\{a/p^m\} - \{i \infty\})$.

Now consider the first assertion of the proposition. Setting m=1 in (5.10) and calculating the difference of the two expressions occurring there we see that only the term corresponding to a=0 survives. Thus

$$L_p^*(\Phi \mid T_p, \kappa, \sigma) - L_p(\Phi \mid T_p, \kappa, \sigma) = \sigma(p) \int_{\mathbf{Z}_p^* \times \mathbf{Z}_p} \kappa(x) \, \sigma(y/x) \, d\mu_0(x, y).$$

But $\mu_0 = L(\Phi)$ so 1 follows.

We now turn to the proof of 2. Fix an arithmetic point $\kappa \in \mathscr{X}^{arith}$ of weight $k \ge 2$. We must prove the identity $L_p^*(\Phi | T_p^m, \kappa, \sigma_{r,\psi}) = L(\Phi_{\kappa}, \sigma_{r,\psi})$ for every finite character ψ on \mathbb{Z}_p^* of conductor p^m and every integer r with $0 \le r \le k-2$. Fix the character ψ of conductor p^m . Using (5.10) one easily calculates

$$\sum_{r=0}^{k-2} {\binom{k-2}{r}} (-1)^r \cdot L_p^*(\Phi \mid T_p^m, \kappa, \sigma_{r, \psi}) \cdot X^r Y^{k-2-r}$$

=
$$\sum_{a \in \mathbb{Z}/p^m} \psi(a) \int_{\mathbb{Z}_p^k \times \mathbb{Z}_p} \varepsilon(x) \left(x(y-aX) - y(p^mX) \right)^{k-2} d\mu_a(x, y).$$

On the other hand, from the definition of Φ_{κ} (5.6)a and the definition of $L(\Phi_{\kappa}, \psi, r+1)$ (4.12) we have

$$\sum_{r=0}^{k-2} {\binom{k-2}{r}} (-1)^r \cdot L(\Phi_{\kappa}, \psi, r+1) \cdot X^r Y^{k-2-r}$$
$$= \sum_{a \in \mathbb{Z}/p^m} \psi(a) \int_{\mathbb{Z}_p^*} \varepsilon(x) (xY - yX)^{k-2} d\mu_a(x, y) \begin{vmatrix} 1 & a \\ 0 & p^m \end{vmatrix}$$

where the last |-operator denotes the action on the given homogeneous polynomial of degree k-2 in Sym^{k-2} (\overline{Q}_p^2). Now 2 follows easily by comparing the last two displayed equalities.

To prove the functional equation 3, we just notice that since W_N interchanges the cusps ∞ and 0, we have $\mu_{\Phi | W_N} = -\mu_{\Phi} | W_N$. Now a simple calculation proves 3. The last property 4 follows from an application of the inclusion-exclusion

principle. We have

$$L(\tilde{\Phi}_{\kappa}, \sigma) = \int_{(Z_{p}^{2})'} \kappa \sigma^{-1}(x) \sigma(y) d\mu(x, y)$$
$$= \int_{\mathbf{z}_{p}^{*} \times \mathbf{z}_{p}} + \int_{\mathbf{z}_{p} \times \mathbf{z}_{p}^{*}} - \int_{\mathbf{z}_{p}^{*} \times \mathbf{z}_{p}^{*}}$$

The first of these three integrals is $L_p^*(\Phi, \kappa, \sigma)$ and the last is $L_p(\Phi, \kappa, \sigma)$. The middle integral can easily be calculated as in the proof of the functional equation 3 and is equal to $-\sigma([-N]_n)^{-1}L_n^*(\Phi|W_N,\kappa,\kappa\sigma^{-1})$. This completes the proof of Proposition 5.8.

Recall the notations of (2.4) where \mathcal{R} is the universal ordinary Hecke algebra, $\mathscr{K} = \mathscr{R} \otimes_{\mathcal{A}} \mathscr{L}$, and $\mathscr{X} = \mathscr{X}(\widetilde{\mathscr{R}})$. For each $\kappa \in \mathscr{X}$ let $\mathscr{R}_{(\kappa)}$ be the localization of $\widetilde{\mathscr{R}}$ at κ . The fraction field $\mathscr{K}_{(\kappa)}$ of $\mathscr{R}_{(\kappa)}$ is a direct factor of \mathscr{K} and correspondingly, the $\mathscr{K}_{(\kappa)}$ -space $\mathbf{W}_{\mathscr{K}_{(\kappa)}}$ is a direct factor of $\mathbf{W}_{\mathscr{K}}$. We will say that an element $\Phi \in \mathbf{W}_{\kappa}$ is regular at κ if the projection of Φ to $\mathbf{W}_{\mathscr{K}_{(\kappa)}}$ lies in the $\mathscr{R}_{(\kappa)}$ -submodule $\mathbf{W}_{\mathscr{X}_{(\kappa)}}$. Every $\Phi \in \mathbf{W}_{\mathscr{X}}$ is regular at all but finitely many κ in \mathscr{X} . To each $\Phi \in \mathbf{W}_{\mathscr{X}}$ we associate elements $L_p(\Phi, \sigma) \in \mathscr{K}$, for $\sigma \in \mathscr{X}_0$, and $L_p^*(\Phi, \sigma_0) \in \mathscr{K}$, for arithmetic $\sigma_0 \in \mathscr{X}_0^{\text{arith}}$, as in (5.3). If Φ is regular at κ , then $L_p(\Phi, \kappa, \sigma)$ and $L_p^*(\Phi, \kappa, \sigma_0)$ are defined as in (5.4).

We are going to recast Proposition 5.8 in terms of the local charts (2.8). Fix an arithmetic point $\kappa \in \mathcal{X}^{\text{arith}}$ of weight k_0 and character ε . Let $\Phi \in \mathbf{W}_{\mathscr{K}}$ be a modular symbol which is regular at κ . Let U_{κ} be the domain of convergence about κ (see the remarks before (2.8)) and define the *domain of analyticity* of Φ about κ to be the open set

$$U_{\kappa, \phi} \stackrel{\text{def}}{=} \{ k \in U_{\kappa} | \phi \text{ is regular at } \kappa^{(k)} \}.$$

This is just U_{κ} minus a finite set. For each rational integer $k \ge 2$ in $U_{\kappa, \Phi}$, let $\Phi_{\kappa,k}$ denote the specialization of Φ to $\kappa^{(k)}$. Then $\Phi_{\kappa,k}$ is a modular symbol of weight k and character $\varepsilon \omega^{k_0-k}$. For arbitrary $k \in U_{\kappa,\Phi}$, and for ψ a finite character of \mathbb{Z}_{n}^{*} , $s \in \mathbb{Z}_{n}$, and $s_{0} \in \mathbb{Z}^{+}$ we define

(5.11)
$$L_p(\Phi, \kappa, k, \psi, s) \stackrel{\text{def}}{=} L_p(\Phi, \kappa^{(k)}, \psi \langle \cdot \rangle^{s-1});$$
$$L_p^*(\Phi, \kappa, k, \psi, s_0) \stackrel{\text{def}}{=} L_p^*(\Phi, \kappa^{(k)}, \psi \langle \cdot \rangle^{s_0-1}).$$

We will be especially interested in these functions when Φ is an eigensymbol for the Hecke operators.

(5.12) **Definition.** For each arithmetic point $\kappa \in \mathscr{X}$, let $h_{(\kappa)} : \mathscr{H} \to \mathscr{R}_{(\kappa)}$ be the composition of the natural map $h: \mathcal{H} \to \mathcal{R}$ defined in (2.4) a with the localization morphism. Define $W_{(\kappa)}$ to be the $h_{(\kappa)}$ -eigenmodule in $W_{\mathscr{R}_{(\kappa)}}$.

The involution *i* preserves these modules. Let $\mathbf{W}_{(\kappa)}^{\pm}$ denote the \pm eigenmodules for *i*. The following version of Hida's Control Theorem will be proved in the next section.

(5.13) **Theorem.** Suppose $p \ge 5$. Then for every $\kappa \in \mathscr{X}^{\text{arith}}$, and for either choice of sign +, the following are true.

- **a.** $\mathbf{W}_{(\kappa)}^{\pm}$ is a free rank one $\mathscr{R}_{(\kappa)}$ -module.
- **b.** The specialization map $\phi_{\kappa,*}$: $\Phi \mapsto \Phi_{\kappa}$ (5.6) induces an isomorphism

$$\mathbf{W}_{(\kappa)}^{\pm}/P_{\kappa}\,\mathbf{W}_{(\kappa)}^{\pm}\cong\mathbf{W}_{\kappa}^{\pm}$$
.

If Φ is in one of the spaces $\mathbf{W}_{(\kappa)}^{\pm}$, then for each integer $k \ge 2$ in the domain of analyticity of Φ about κ , the specialization $\Phi_{\kappa,k}$ lies in the Hecke eigenspace $\mathbf{W}_{\kappa,k}^{\pm}$ associated to $\kappa^{(k)}$ by (4.9). This is a one dimensional $K_{\kappa,k}$ -vector space generated by the element $\Psi_{\mathbf{f}_{\kappa,k}}^{\pm}$ defined in (4.9). Thus there is a unique 'period' $\Omega_{\kappa,k}(\Phi) \in K_{\kappa,k}$ such that

(5.14)
$$\Phi_{\kappa,k} = \Omega_{\kappa,k}(\Phi) \cdot \Psi_{\mathbf{f}_{\kappa,k}}^{\pm}$$

If k is equal to the weight of κ , then we will suppress it from the notation and write simply $\Omega_{\kappa}(\Phi)$. Of course, our definition of the periods $\Omega_{\kappa,k}$ depends on the choice of complex periods used to define $\Psi_{f_{\kappa}}^{\pm}$. It is interesting to ask whether there is a natural choice of complex periods and a choice of Φ so that $\Omega_{\kappa}(\Phi)$ extends to an analytic function of $\kappa \in \mathcal{R}$? It follows from Theorem 5.13 that there is an element $\Phi \in \mathbf{W}_{(\kappa)}^{\pm}$ for which $\Omega_{\kappa}(\Phi) = 1$. This is enough for our purposes.

Consider the sesquilinear map $*: \mathbf{W}_{\mathscr{K}} \to \mathbf{W}_{\mathscr{K}}$ defined on \mathbf{W} by $\Phi \mapsto \Phi^* \stackrel{\text{def}}{=} \Phi | W_N$ and extended to $\mathbf{W}_{\mathscr{K}}$ by sesquilinearity: $(a\Phi)^* = a^* \Phi^*$ where * is the involution on \mathscr{K} defined in (2.9). A simple calculation shows that, for $\kappa \in \mathscr{X}^{\text{arith}}$, if $\Phi \in \mathbf{W}_{(\kappa)}$ then $\Phi^* \in \mathbf{W}_{(\kappa^*)}$. Note that * is not an involution though, by (1.8), we do have the simple relation $(\Phi^*)^* = \Phi | [-N]_p$ for any $\Phi \in \mathbf{W}_{\mathscr{K}}$. In particular, since $[-N]_p$ acts invertibly on \mathbf{W} , the map $*: \mathbf{W}_{(\kappa)} \to \mathbf{W}_{(\kappa^*)}$ is an isomorphism.

(5.15) **Theorem.** Let $\kappa \in \mathscr{X}^{\operatorname{arith}}$ be an arithmetic point of weight k_0 and character ε and let ψ be a finite character of \mathbb{Z}_p^* . Fix an eigensymbol $\Phi \in W^{\operatorname{sgn}(\psi)}_{(\kappa)}$ and let $U = U_{\kappa,\Phi}$ be the domain of analyticity of Φ about κ . Then the following assertions are true.

a. (Analyticity.) $L_p(\Phi, \kappa, k, \psi, s)$ is analytic for $(k, s) \in U \times \mathbb{Z}_p$ and is an Iwasawa function in the variable s (up to multiplication by a constant). For each positive integer s_0 , $L_p^*(\Phi, \kappa, k, \psi, s_0)$ is analytic for $k \in U$.

b. (Specialization of the weight variable.) For each rational integer $k \ge 2$ in U we have the following identity of Iwasawa functions in s.

$$L_p(\Phi, \kappa, k, \psi, s) = \Omega_{\kappa, k}(\Phi) \cdot L_p(\mathbf{f}_{\kappa, k}, \psi, s)$$

c. (Functional Equation.) Let ε_p be the p-component of ε . Then for $(k, s) \in U \times \mathbb{Z}_p$ we have

$$L_p(\Phi,\kappa,k,\psi,s) = -\psi^{-1}(-N)\langle -N\rangle^{1-s} \cdot L_p(\Phi^*,\kappa^*,k,\varepsilon_p\,\omega^{k_0-2}\psi^{-1},k-s).$$

d. (Specialization to critical values.) For every $k \in U$ and every positive integer s_0 we have

(i)
$$L_{p}(\Phi,\kappa,k,\psi,s_{0}) = (1 - a_{p}(\kappa,k)^{-1}\psi\omega^{1-s_{0}}(p)p^{s_{0}-1}) \cdot L_{p}^{*}(\Phi,\kappa,k,\psi,s_{0})$$

Moreover, if k is an integer ≥ 2 in U and if $0 < s_0 < k$, then

(*ii*)
$$L_p^*(\Phi, \kappa, k, \psi, s_0) = \Omega_{\kappa}(\Phi) \cdot a_p(\kappa, k)^{-m} \cdot \frac{\Lambda(\mathbf{f}_{\kappa, k}, \psi \omega^{1-s_0}, s_0)}{\Omega_{\mathbf{f}_{\kappa, k}}^{\mathrm{sgn}(\psi)}}.$$

e. (Functional Equation for the improved p-acid L-function.) Suppose the pcomponent of ε is a power of the Teichmüller character, say $\varepsilon_p = \omega^n$. Then for every integer $k \ge 2$ in U satisfying the congruence $k \equiv n + k_0 - 2 \pmod{p-1}$ and for every integer s_0 with $0 < s_0 < k$ we have

$$L_{p}^{*}(\Phi,\kappa,k,\omega^{s_{0}-1},s_{0}) - (-N)^{1-s_{0}} L_{p}^{*}(\Phi^{*},\kappa^{*},k,\omega^{k-s_{0}-1},k-s_{0})$$

= $L_{p}(\Phi,\kappa,k,\omega^{s_{0}-1},s_{0}) + L(\tilde{\Phi}_{\kappa,k,s_{0}}).$

Proof. The first assertion a follows at once from the definitions. The assertions c, d(i), and e follow at once from 1, 3, and 4 of Proposition 5.8. Assertion d(ii) follows from 2 of (5.8), together with (5.14) and Theorem 4.14. To prove b we note that from d and Theorem 4.18 the desired equality holds if $s_0 = 1$ and ψ is any nontrivial character. Since both sides of the equation are Iwasawa functions they are determined by these values. This completes the proof of Theorem 5.15.

Note that since the map $\Phi \mapsto \Phi^*$ is not an involution, the functional equations **c** and **e** are not symmetric in Φ and Φ^* . Using the identity $(\Phi^*)^* = \Phi | [-N]_p$ and applying **c** with (Φ^*, κ^*) replacing (Φ, κ) we obtain

$$L_p(\Phi^*, \kappa^*, k, \psi, s)$$

= $-\varepsilon_p \omega^{k_0 - 2} \psi^{-1}(-N) \langle -N \rangle^{k-s-1} \cdot L_p(\Phi, \kappa, k, \varepsilon_p \omega^{k_0 - 2} \psi^{-1}, k-s).$

A similar identity is easily derived for the functional equation of the improved *p*-adic *L*-function. In case the *N*-component of ε is trivial the next lemma shows that Φ is actually an eigensymbol for the operator *. In that case the functional equations (5.15)**c** and **e** take on a simpler, more symmetric form which we will exhibit in Corollary 5.17 below.

(5.16) **Lemma.** Let $\kappa \in \mathscr{X}$ be an arithmetic point of weight k_0 and character ε and suppose the conductor of ε is prime to N. Then * acts on $\mathbf{W}_{(\kappa)}$ as multiplication by an element $\mathbf{w} \in \mathscr{R}_{(\kappa)}$ where $\mathbf{w}^2 = h_{(\kappa)}([-N]_p)$. Hence for k in the domain of convergence about κ , we have $\mathbf{w}(\kappa, k) = w \cdot \langle -N \rangle^{\frac{k-2}{2}}$ where $w \in \mathbb{Z}_p^*$ is a square root of $\varepsilon \omega^{k_0-2}(-N)$.

Proof. The condition that ε_N is trivial guarantees that the involution * fixes $\mathscr{R}_{(\kappa)}$ elementwise. Hence * induces an automorphism of $\mathbf{W}_{(\kappa)}$ and this automorphism is identical with W_N . Moreover, using (1.8) and the fact that $\varepsilon_N(-1)=1$, we see that * preserves the \pm submodules $\mathbf{W}_{(\kappa)}^{\pm}$. Since these are free of rank one over $\mathscr{R}_{(\kappa)}$, * acts on each of them as multiplication by a unit in $\mathscr{R}_{(\kappa)}$. Now specialize to \mathbf{W}_{κ} and use the fact that W_N acts by a scalar on \mathbf{W}_{κ} to deduce that \mathbf{w} acts on all of $\mathbf{W}_{(\kappa)}$ by the same

unit in $\mathscr{R}_{(\kappa)}$. The identity $\mathbf{w}^2 = h_{(\kappa)}([-N]_p)$ now follows from the fact that $(\Phi^*)^* = \Phi[[-N]_p$ for all $\Phi \in \mathbf{W}$. The last assertion follows from the identity $\tilde{\kappa}([-N]_p, k) = \varepsilon \omega^{k_0 - 2}(-N) \langle -N \rangle^{k - 2}$. This completes the proof of the lemma.

(5.17) **Corollary.** Let $\Phi \in \mathbf{W}_{(\kappa)}$ where $\kappa \in \mathscr{X}^{\operatorname{arith}}$ is an arithmetic point of weight k_0 and character ε with conductor prime to N. Let w be the square root of $\varepsilon \omega^{k_0-2}$ (-N) determined by κ as in Lemma 5.16. Then

 $εω^{k_0-2}$ (-N) determined by κ as in Lemma 5.16. Then **a.** $L_p(Φ, κ, k, ψ, s) = -w · ψ^{-1}(-N) · \langle -N \rangle^{\overline{2}-s}$. $L_p(Φ, κ, k, εω^{k_0-2}ψ^{-1}, k-s)$; and

b. Suppose $\varepsilon = \omega^n$. Then for each integer $k \ge 2$ in U satisfying $k \equiv n + k_0 - 2 \pmod{p-1}$ and for each integer s_0 satisfying $0 < s_0 < k$ we have

$$L_{p}^{*}(\Phi, \kappa, k, \omega^{s_{0}-1}, s_{0}) - w \cdot \langle -N \rangle^{\frac{k}{2}-s_{0}} \cdot L_{p}^{*}(\Phi, \kappa, k, \omega^{k-s_{0}-1}, k-s_{0})$$

= $L_{p}(\Phi, \kappa, k, \omega^{s_{0}-1}, s_{0}) + L(\tilde{\Phi}_{\kappa,k}, s_{0}).$

(5.18) **Example.** As an illustration we will construct the two-variable *p*-adic *L*-function described in the introduction associated to $E = X_0(11)$, p = 11, and verify the properties (0.8). Let Ω_E be the real period of *E* and let

$$\Psi_E^+ = \frac{1}{\Omega_E} \cdot \Phi_{f_E}^+ \in \operatorname{Symb}_{\Gamma_1(11)}(\mathbf{Q})$$

where $\Phi_{f_E}^+$ is the plus part of the modular symbol associated to f_E by (4.7). Then the *p*-adic *L*-function $L_p(E, s)$, $s \in \mathbb{Z}_p$, is given by (4.16) and (4.17). In (2.11) we showed that $\Re = \Lambda$ in this case. Let $\kappa = \sigma_2$ be the unique arithmetic point on Λ of weight two and trivial character and use Theorem 5.13 to choose a modular symbol $\Phi \in \mathbb{W}_{(\kappa)}^+$ with nonzero specialization to κ . Since $\Re = \Lambda$ we can also assume that Φ^+ is integral, i.e. $\Phi \in \mathbb{W}^+$, by 'clearing denominators'. Now define $L_p(k, s) = \Omega_{\kappa}(\Phi)^{-1} L_p(\Phi, \kappa, k, s)$ and $L_p^*(, k, 1) = \Omega_{\kappa}(\Phi)^{-1} L_p^*(\Phi, \kappa, k, 1)$ for $k, s \in \mathbb{Z}_p$. It is clear from the definitions (5.2) that these are Iwasawa functions in both variables (up to multiplication by a scalar). Since the tame level is equal to 1, we have $\Phi^* = \Phi | W_1$. But Φ is invariant with respect to $SL(2, \mathbb{Z})$ and is therefore fixed by W_1 . Thus $\Phi^* = \Phi$. The properties (0.8) now follow from Theorem 5.15 and its corollary 5.17.

6. Existence of Λ -adic eigensymbols

In this section we will prove Theorem 5.13. The proof is based on the following two propositions.

(6.1) **Proposition.** The group \mathbf{W}^0 of ordinary Λ -adic modular symbols is a free Λ -module of finite rank. For each arithmetic point $\kappa \in \mathscr{X}_0^{\text{arith}}$ let $P_{\kappa} \subseteq \mathbf{Z}_p[[\mathbf{Z}_p^*]]$ be the prime ideal associated to κ . Then for $\Phi \in \mathbf{W}^0$ we have $\Phi_{\kappa} = 0 \Leftrightarrow \Phi \in P_{\kappa} \mathbf{W}^0$.

(6.2) **Proposition.** There is a natural injective \mathscr{H} -homomorphism $Ta_p(J_{\infty})^0 \to \mathbf{W}_{\mathscr{L}}^0$.

Proof of Theorem 5.13. Let $\kappa \in \mathscr{X}^{\operatorname{arith}}$. Since $h(T_p) = a_p$ is a unit in \mathscr{R} , the module $\mathbf{W}_{(\kappa)}$ is contained in the ordinary part $\mathbf{W}^0 \otimes_A \mathscr{R}_{(\kappa)}$. Since, by Proposition 6.1, \mathbf{W}^0 is a free \mathcal{A} -module of finite rank, $\mathbf{W}_{(\kappa)}$ is a free $\mathscr{R}_{(\kappa)}$ -module of finite rank.

From the last assertion of Proposition 6.1 and the fact that κ is unramified over Λ (Hida's Theorem (2.6)a), we conclude that the kernel of $\phi_{\kappa,*}$ in $\mathbf{W}^{0}_{\mathscr{H}(\kappa)}$ is $P_{\kappa} \mathbf{W}^{0}_{\mathscr{H}(\kappa)}$. In particular we see that the linear map $\mathbf{W}_{(\kappa)}/P_{\kappa} \mathbf{W}_{(\kappa)} \to \mathbf{W}_{\kappa}$ induced by $\phi_{\kappa,*}$ is injective.

Since \mathbf{W}_{κ} has dimension two (Theorem 4.8), surjectivity of the map $\mathbf{W}_{(\kappa)}/P_{\kappa}\mathbf{W}_{(\kappa)} \to \mathbf{W}_{\kappa}$ will follow if we show that $\mathbf{W}_{(\kappa)}$ has $\mathcal{H}_{(\kappa)}$ -rank at least two. Recall the submodule $\mathbf{T} = Ta_p(J_{\infty})_{\text{prim}}^0$ of $Ta_p(J_{\infty})^0$ from "section 2". By Hida's Theorem 2.6c we know that $\mathbf{T}_{\mathscr{S}}$ is a free \mathscr{K} -module of rank two. Using Proposition 6.2 we lift this to a free rank two \mathscr{K} -submodule of $\mathbf{W}_{\mathscr{S}}^0$. Since \mathscr{K} is a semisimple \mathscr{L} -algebra, this space projects injectively to the *h*-eigenspace in $\mathbf{W}^0 \otimes_{\mathscr{A}} \mathscr{K}$. The intersection of this eigenspace with $\mathbf{W}_{\mathscr{A}_{(\kappa)}}$ is a rank two $\mathscr{R}_{(\kappa)}$ -submodule of $\mathbf{W}_{(\kappa)}$. Hence $\mathbf{W}_{(\kappa)}$ has rank exactly 2 and the specialization morphism induces an isomorphism $\mathbf{W}_{(\kappa)}/P_{\kappa}\mathbf{W}_{(\kappa)} \cong \mathbf{W}_{\kappa}$. Since specialization commutes with the complex conjugation involution, (5.13) b follows. Assertion (5.13) a is a consequence of (5.13) b. This completes the proof.

Proof of Proposition 6.1

Our proof of Proposition 6.1 will be based on two simple lemmas. Fix $\kappa \in \mathscr{X}_0^{\operatorname{arith}}$. We will say that a function $\varphi: (\mathbf{Z}_p^2)' \to \overline{\mathbf{Q}}_p$ is homogeneous of degree κ if $\varphi(t\mathbf{x}) = \kappa(t) \varphi(\mathbf{x})$ for every $t \in \mathbf{Z}_p^*$ and every $\mathbf{x} \in (\mathbf{Z}_p^2)'$. The following lemma follows easily from the definitions.

(6.3) **Lemma.** A measure $\mu \in \mathbf{D}$ lies in $P_{\kappa} \mathbf{D}$ if and only if $\int \varphi d\mu = 0$ for every continuous function φ on $(\mathbf{Z}_p^2)'$ which is homogeneous of degree κ .

For each integer m > 0 let $\varphi_{\kappa}^{(m)}$ be the continuous function on $(\mathbb{Z}_p^2)^{\gamma}$ given by

 $\varphi_{\kappa}^{(m)}(a,b) = \begin{cases} \kappa(a) & \text{if } b \equiv 0 \mod p^{m}; \\ 0 & \text{otherwise.} \end{cases}$

(6.4) **Lemma.** Let $\Phi \in \mathbf{W}$ be a Λ -adic modular symbol. Then the following are equivalent.

a. $\Phi \in P_{\kappa} \mathbf{W}$.

b. $\int \phi \, d\Phi(D) = 0$ for all $D \in \mathcal{D}_0$ and all continuous functions ϕ homogeneous of degree κ .

c. $\int \varphi_{\kappa}^{(m)} d\Phi(D) = 0$ for all $D \in \mathcal{D}_0$ and all m > 0.

Proof. Since P_{κ} is a principal ideal, we have $P_{\kappa} \mathbf{W} = \operatorname{Symb}_{\Gamma}(P_{\kappa} \mathbf{D})$. From this it follows that $\Phi \in P_{\kappa} \mathbf{W} \Leftrightarrow \Phi(D) \in P_{\kappa} \mathbf{D}$ for all $D \in \mathcal{D}_0$. So the equivalence $\mathbf{a} \Leftrightarrow \mathbf{b}$ follows from Lemma 6.3. The implication $\mathbf{b} \Rightarrow \mathbf{c}$ follows *a priori*. Now assume **c** is true. Then for every $\gamma \in \Gamma$, $\int \gamma \varphi_{\kappa}^{(m)} d\Phi(D) = \int \varphi_{\kappa}^{(m)} d\Phi(\gamma D) = 0$. So b follows from the fact that every continuous function φ which is homogeneous of degree κ is the uniform limit of a sequence of linear combinations of the functions $\gamma \varphi_{\kappa}^{(m)}$. This completes the proof of Lemma 6.4.

Proof of Proposition 6.1. We first prove the equality $\ker(\phi_{\kappa,*}^0) = P_{\kappa} \mathbf{W}^0$. Recall from (5.6) a that for $\Phi \in \mathbf{W}$ the specialization Φ_{κ} is the element of $\operatorname{Symb}_{\Gamma}(\operatorname{Sym}^{k-2}(\overline{\mathbf{Q}}_p^2))$ whose value on a divisor $D \in \mathcal{D}_0$ is given by

(6.5)
$$\Phi_{\kappa}(D) = \int_{\mathbf{Z}_{p}^{*} \times \mathbf{Z}_{p}} \varepsilon(x) (x Y - y X)^{k-2} d\Phi(D).$$

Since the integrand is homogeneous of degree κ , the inclusion $\ker(\phi_{\kappa,*}) \supseteq P_{\kappa} \mathbf{W}$ follows from the implication $\mathbf{a} \Rightarrow \mathbf{b}$ of (6.4). Conversely, suppose $\Phi \in \mathbf{W}^0$ and that $\Phi_{\kappa} = 0$. We will show that $\Phi \in P_{\kappa} \mathbf{W}^0$ by using $\mathbf{c} \Rightarrow \mathbf{a}$ from the last lemma. Fix m > 0 and $D \in \mathcal{D}_0$. Since Φ is ordinary, there is a $\Psi \in \mathbf{W}^0$ such that $\Psi | T_p^m = \Phi$. Using the notation of (5.7) we then have the identity

$$\int \varphi_{\kappa}^{(m)} d\Phi(D) = \sum_{\mathbf{x}} \int g_{\mathbf{x}, p^{m}} \varphi_{\kappa}^{(m)} d\Psi(g_{\mathbf{x}, p^{m}} \cdot D)$$

where the above sum runs over $\mathbf{x} \in \mathbf{P}^1(\mathbf{Z}/p^m \mathbf{Z})$. But $g_{\mathbf{x}, p^m} \varphi_{\kappa}^{(m)} = 0$ unless $\mathbf{x} = [1, 0]$. Hence the above integral is equal to

$$\int g_{[1,0],p^m} \varphi_{\kappa}^{(m)} d\Psi(g_{[1,0],p^m} \cdot D) = \int_{\mathbf{Z}_p^* \times \mathbf{Z}_p} \varepsilon(x) x^{k-2} d\Psi(g_{[1,0],p^m} \cdot D).$$

But this vanishes since it is the coefficient of Y^r in $\phi_{\kappa}^*(\Phi)(g_{[1, 0], p^m} \cdot D)$ (see (6.5)). We have therefore proven the equality $\ker(\phi_{\kappa,*}^0) = P_{\kappa} \mathbf{W}^0$, or equivalently, that $\phi_{\kappa} = 0 \Leftrightarrow \Phi \in P_{\kappa} \mathbf{W}^0$. It follows from this and the compact version of Nakayama's lemma that \mathbf{W}^0 is a free Λ -module of finite rank. The proof of Proposition 6.1 is complete.

Proof of Proposition 6.2

The proof of Proposition 6.2 is based on a study of the cohomology exact sequence attached to \mathbf{D} by Theorem 4.3. It will be convenient to simplify the notation and write

(6.6)
$$\mathbf{B} = \operatorname{Bound}_{\Gamma}(\mathbf{D}), \quad \mathbf{W} = \operatorname{Symb}_{\Gamma}(\mathbf{D}), \quad \mathbf{V} = H_{\operatorname{par}}^{1}(\Gamma, \mathbf{D}).$$

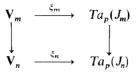
It is easy to see that are no nonzero Γ -invariant measures in **D**, hence Theorem 4.3 gives us an exact sequence

(6.8) **Lemma.** There is a natural \mathscr{H} -isomorphism $Ta_p(J_{\infty}) \cong \mathbf{V}$.

Proof. Since the operator W_N intertwines the covariant and the contravariant actions of \mathscr{H} on \mathbf{V} , it will suffice to give an isomorphism $\pi: \mathbf{V} \cong Ta_p(J_{\infty})$ for the covariant \mathscr{H} -structure on \mathbf{V} . For each integer $n \ge 0$ let $H_1(X_n(\mathbf{C}), \mathbf{Z}_p)$, $H^1(X_n(\mathbf{C}), \mathbf{Z}_p)$ be the singular homology, respectively cohomology of the compact Riemann surface $X_n(\mathbf{C})$. Then the Albanese map gives us a canonical isomorphism Alb: $H_1(X_n(\mathbf{C}), \mathbf{Z}_p) \cong Ta_p(J_n)$ of \mathscr{H} -modules. Moreover, by Poincaré duality the intersection pairing gives us an isomorphism $H^1(X_n(\mathbf{C}), \mathbf{Z}_p) \cong H_1(X_n(\mathbf{C}), \mathbf{Z}_p)$ which intertwines the covariant action of \mathscr{H} on cohomology with the natural (covariant) action on homology. Now write \mathbf{V}_n for $H^1_{\text{par}}(\Gamma_1(Np^n), \mathbf{Z}_p)$ equipped with the covariant action of \mathscr{H} . Then the Eichler-Shimura theorem gives us a canonical isomorphism $ES: \mathbf{V}_n \cong H^1(X_n(\mathbf{C}), \mathbf{Z}_p)$ of \mathscr{H} -modules. We define ξ_n to be the composition

$$\xi_n: \mathbf{V}_n \xrightarrow{ES} H^1(X_n(\mathbf{C}), \mathbf{Z}_p) \xrightarrow{PD} H_1(X_n(\mathbf{C}), \mathbf{Z}_p) \xrightarrow{\text{Alb}} \mathrm{Ta}_p(J_n).$$

For positive integers m, n with m > n, we have a commutative diagram of \mathcal{H} -modules



where the vertical arrow on the left is the corestriction morphism $\operatorname{cores}_{m,n}$. We may therefore construct the limit $V_{\infty} = \lim_{\leftarrow} V_n$ and patch together an isomorphism

$$\xi_{\infty} \colon \mathbf{V}_{\infty} \to Ta_p(J_{\infty}).$$

For each n > 0, consider the map $\pi_n: \mathbf{D} \to \mathbf{Z}_p$, given by $\mu \mapsto \mu((0, 1) + p^n \mathbf{Z}_p^2)$. This map commutes with the action of Γ_n , hence induces a map $\pi_{n*}: \mathbf{V} \to \mathbf{V}_n$. A simple verification shows $\pi_{n*} = \operatorname{cores}_{m,n} \circ \pi_{m*}$. Thus there is a natural homomorphism

$$\pi_*: \mathbf{V} \to \mathbf{V}_{\infty}$$
.

We will prove that π_* is an isomorphism by using Shapiro's Lemma and the simple observation that **D** is naturally isomorphic to a projective limit of induced modules. For each integer $n \ge 0$, let $\mathbf{M}_n = ((\mathbf{Z}/p^n \mathbf{Z})^2)'$ denote the primitive vectors in $(\mathbf{Z}/p^n \mathbf{Z})^2$. Let $\mathbf{D}_n = \{\mu_n : \mathbf{M}_n \to \mathbf{Z}_p\}$ be the \mathbf{Z}_p -valued functions on \mathbf{M}_n and let Γ act on \mathbf{D}_n by the rule $(\mu_n | \gamma)(v_n) = \mu_n (v_n \gamma^{-1})$. Since Γ acts transitively on \mathbf{M}_n and Γ_n is the stabilizer of (0, 1) we see that \mathbf{D}_n is an induced Γ -module. Hence, by Shapiro's lemma, the map $\mathbf{D}_n \to \mathbf{Z}_p$, $\mu_n \mapsto \mu_n((0, 1))$ induces an isomorphism $H^1_{\text{par}}(\Gamma_1(N), \mathbf{D}_n) \cong H^1_{\text{par}}(\Gamma_n, \mathbf{Z}_p) = \mathbf{V}_n$. For each $m \ge n$, let $\mathbf{M}_m \to \mathbf{M}_n$ be the natural projection and define the connect-

For each $m \ge n$, let $\mathbf{M}_m \to \mathbf{M}_n$ be the natural projection and define the connecting homomorphism $\delta_{m,n}$; $\mathbf{D}_m \to \mathbf{D}_n$ by $\delta_{m,n}(\mu_m) = \mu_n$ where for each $v_n \in \mathbf{M}_n$, $\mu_n(v_n) = \sum \mu_m(v_m)$ where the sum is over all $v_m \in \mathbf{M}_m$ lying over v_n . The maps $\mathbf{D} \to \mathbf{D}_n$ given by $\mu \mapsto \mu_n$ where $\mu_n(v_n) = \mu(v_n + p^n \mathbf{M})$ for $v_n \in \mathbf{M}_n$ commute with the connecting homomorphisms $\delta_{m,n}$ and induce an isomorphism

$$\mathbf{D} \cong \lim \mathbf{D}_n$$
.

Since Γ -cohomology commutes with projective limits in the category of compact Γ -modules we conclude

$$\mathbf{V} \cong \lim H^1(\Gamma(N), \mathbf{D}_n) \to \lim \mathbf{V}_n.$$

This completes the proof of Lemma 6.8.

To complete the proof of Proposition 6.2 we need to construct a Hecke equivariant splitting of the exact sequence (6.7). In general such a splitting does not exist over Λ . The obstruction is a group analogous to the classical cuspidal divisor class group. We need to first extend scalars to the quotient field \mathcal{L} of Λ . Then, as in the classical setting, we will apply the Manin-Drinfeld principle to produce the desired splitting over \mathcal{L} . In order to use the Manin-Drinfeld principle we first need to analyze the structure of the \mathcal{H} -module $\mathbf{B} = \text{Bound}_{\Gamma}(\mathbf{D})$. The next lemma shows that \mathbf{B} is a free $\mathbf{Z}_{p}[[\mathbf{Z}_{p}^{n}]]$ -module of finite rank and

gives an explicit description of the action of the Hecke operators T_l for $l \equiv 1 \pmod{N}$.

For each $\mathbf{x} \in \mathbf{P}^1(\mathbf{Q})$ let $\Gamma_{\mathbf{x}} \subseteq \Gamma$ be the unipotent stabilizer of \mathbf{x} in Γ . Also, let $\mathbf{M}_{\mathbf{x}}$ denote the 'line' in $(\mathbf{Z}_p^2)'$ which is stabilized by $\Gamma_{\mathbf{x}}$.

(6.9) Lemma.

a. Let $\operatorname{cusps}(\Gamma) \subseteq \mathbf{P}^1(\mathbf{Q})$ be a complete set of representatives of the Γ -orbits in $\mathbf{P}^1(\mathbf{Q})$. Then there is a natural isomorphism of $\mathbf{Z}_p[[\mathbf{Z}_p^*]]$ -modules

$$\mathbf{B} \cong \bigoplus_{\mathbf{x} \in \operatorname{cusps}(\Gamma)} \operatorname{Dist}(\mathbf{M}_{\mathbf{x}}).$$

Hence **B** is a free $\mathbb{Z}_p[[\mathbb{Z}_p^*]]$ -module of rank $\# \operatorname{cusps}(\Gamma)$. **b.** If l is a prime different from p which is congruent to 1 modulo N then $T_l - l[l] - 1$ annihilates **B**.

Proof. A function $\Phi: \mathbf{P}^1(\mathbf{Q}) \to \mathbf{D}$ represents a boundary symbol $\Phi \in \mathbf{B}$ if and only if $\Phi(\gamma \mathbf{x}) = \Phi(\mathbf{x}) | \gamma$ for all $\mathbf{x} \in \mathbf{P}^1(\mathbf{Q})$ and $\gamma \in \Gamma$. Hence $\Phi(\mathbf{x}) \in \mathbf{D}^{r_x}$ and the map

$$B \to \bigoplus_{\mathbf{x} \in \operatorname{cusps}(\Gamma)} D^{\Gamma_{\mathbf{x}}}$$

$$\phi \mapsto \sum_{\mathbf{x} \in \operatorname{cusps}(\Gamma)} \phi(\mathbf{x})$$

is an isomorphism. Thus our problem is reduced to a determination of all measures on $(\mathbb{Z}_p^2)'$ which are invariant under Γ_x . We can obtain examples of such measures by 'extending by zero' measures on \mathbb{M}_x . More precisely, define i_x : Dist $(\mathbb{M}_x) \to \mathbb{D}^{\Gamma_x}$ by $i_x(v) = \mu$ where $\mu \in \mathbb{D}$ is given by the integration formulas

$$\int \varphi(x) \, d\mu(x) = \int_{\mathbf{M}_{\mathbf{x}}} \varphi(v) \, dv(v)$$

for all locally constant functions $\varphi \in \text{Step}((\mathbb{Z}_p^2)^r)$. Lemma 6.9a follows immediately from the following lemma.

(6.10) **Lemma.** The map i_x : Dist $(\mathbf{M}_x) \rightarrow \mathbf{D}^{\Gamma_x}$ is an isomorphism of $\mathbf{Z}_p[[\mathbf{Z}_p^*]]$ -modules.

Proof. We will prove this assertion for any congruence group Γ whose level is prime to p. The collection of all such groups is closed under conjugation by elements of $SL_2(\mathbb{Z})$. Since $\mathbb{P}^1(\mathbb{Q})$ is acted on transitively by $SL_2(\mathbb{Z})$, it suffices to prove the lemma in the special case $\mathbf{x} = \infty$. The map i_{∞} is clearly injective. We must show that it is surjective. So let $\mu \in \mathbb{D}^{\Gamma_{\infty}}$. We need to show that μ is supported on the line $\mathbb{M}_{\infty} = \{(0, r) | r \in \mathbb{Z}_p^*\}$. Let U be an arbitrary compact open subset of $(\mathbb{Z}_p^2)'$ which is disjoint from \mathbb{M}_{∞} . We will show $\mu(U) = 0$.

Choose a positive integer m_0 such that $v + p^{m_0} \mathbf{Z}_p^2 \subseteq U$ for every $v \in U$. Each v in U can be expressed as $v = (p^r a, b)$ for some $a \in \mathbf{Z}_p^*$, $b \in \mathbf{Z}_p$, and $r \ge 0$. Since the set $v + p^{m_0} \mathbf{Z}_p^2$ is contained in U it does not intersect \mathbf{M}_{∞} . Hence $0 \notin p^r a + p^{m_0} \mathbf{Z}_p$ and consequently $r < m_0$. Now fix an arbitrary integer $n \ge 0$. Then U is the disjoint union of sets of the form $V = v + p^{m_0 + n} \mathbf{Z}_p^2$. The open sets $V_k = (p^r a + p^{m_0 + n} \mathbf{Z}_p) \times (b + p^{n + m_0} k + p^{2m_0 + 2n - r} \mathbf{Z}_p), k = 0, 1, \dots, p^{m_0 + n - r} - 1$, are all Γ_{∞} -equivalent to one another. Indeed $V_k = V_0 \cdot \begin{pmatrix} 1 & p^{m_0 + n - r} k a^{-1} \\ 0 & 1 \end{pmatrix}$. Hence all of these sets have the same measure under u. Since V is the disjoint union of

these sets have the same measure under μ . Since V is the disjoint union of the V_k we conclude that $\mu(V) = p^{m_0+n-r}\mu(U_0) \equiv 0 \pmod{p^n}$. Since U is a disjoint union of such sets it follows that $\mu(U) \equiv 0 \pmod{p^n}$. But n is arbitrary. Thus $\mu(U)=0$. This completes the proof of Lemma 6.10 and hence also the proof of assertion **a** of Lemma 6.9.

To prove **b** of Lemma 6.9, we let *l* be a prime which is congruent to one modulo Np and compute $\Psi | T_l$ for an arbitrary element $\Psi \in \mathbf{B}$. Let $\mathbf{x} \in \mathbf{P}^1(\mathbf{Q})$ and choose $g \in SL_2(\mathbf{Z})$ so that $g\mathbf{x} = \infty$. For k = 0, ..., l-1 let $\sigma_k = g^{-1} \begin{pmatrix} 1 & k \\ 0 & l \end{pmatrix} g$ and let $\sigma_l = g^{-1} \begin{pmatrix} l & 0 \\ 0 & 1 \end{pmatrix} g$. Using the fact that $l \equiv 1 \pmod{N}$ it is easy to see that

the Hecke operator T_l is represented by the double coset $\Gamma \sigma_l \Gamma$. Moreover this double coset can be expressed as the disjoint union of the right cosets $\Gamma \sigma_k$, $k=0, \ldots, l$. Thus

$$(\Phi \mid T_l)(\mathbf{x}) = \sum_{k=0}^{l} \Phi(\sigma_k \mathbf{x}) |\sigma_k.$$

Since each σ_k fixes **x** we have $(\Phi | T_l)(\mathbf{x}) = \sum_{k=0}^{l} \Phi(\mathbf{x}) | \sigma_k$. A simple calculation shows

that σ_l acts trivially on $\mathbf{M}_{\mathbf{x}}$ and that for $k = 0, ..., l-1, \sigma_k$ acts on $\mathbf{M}_{\mathbf{x}}$ by multiplication by *l*. Hence $\Phi(\mathbf{x}) | \sigma_k = [l] \Phi(\mathbf{x})$ for k = 0, ..., l-1 and $\Phi(\mathbf{x}) | \sigma_l = \Phi(\mathbf{x})$. Now **b** follows easily, and Lemma 6.9 is proved.

(6.11) **Lemma.** Let $l \neq p$ be a positive prime with $l \equiv 1$ modulo N and let $\eta_l = T_l - l[l] - 1 \in \mathcal{H}$. Then η_l acts invertibly on $\mathbf{V}_{\mathscr{L}}^0$ and annihilates **B**. Moreover, the exact sequence

$$0 \to \mathbf{B}^0_{\mathscr{L}} \to \mathbf{W}^0_{\mathscr{L}} \to \mathbf{V}^0_{\mathscr{L}} \to 0$$

admits a unique splitting which commutes with \mathcal{H} .

Proof. The fact that η_l annihilates **B** was proved in Lemma 6.9b. By the Weil bounds we see that the kernel of η_l acting on $Ta_p(J_{\infty})$ is trivial. So, by Lemma 6.8, the same is true of **V**. Hence η_l acts invertibly on the finite dimensional \mathscr{L} vector space $\mathbf{V}_{\mathscr{L}}^0$. This proves the first assertion of the proposition. To construct a section $s: \mathbf{V}_{\mathscr{L}}^0 \to \mathbf{W}_{\mathscr{L}}^0$ we proceed as follows. For each $v \in \mathbf{V}_{\mathscr{L}}^0$ choose an element $\tilde{w} \in \mathbf{W}_{\mathscr{L}}^0$ lying over $\eta_l^{-1} v$ and set $s(v) = \eta_l \tilde{w}$. Clearly s(v) lies over v. It does not depend on the choice of \tilde{w} since η_l annihilates **B**. This splitting is Hecke equivariant since \mathscr{H} is commutative. If s' is another such section, then s - s' is a morphism from $\mathbf{V}_{\mathscr{L}}^0$ to $\mathbf{B}_{\mathscr{L}}^0$ which intertwines η_l . Hence s = s' and Lemma 6.11 is proved.

Proof of Proposition 6.2. By composing the isomorphism (6.8) $Ta_p(J_{\infty})^0 \to \mathbf{V}^0$ with the section $\mathbf{V}_{\mathscr{L}}^0 \to \mathbf{W}_{\mathscr{L}}^0$ constructed in Lemma 6.11, we obtain a natural injective \mathscr{H} -homomorphism $Ta_p(J_{\infty})^0 \to \mathbf{W}_{\mathscr{L}}^0$. This completes the proof of Proposition 6.2.

(6.12) **Remark.** A more careful analysis of the proof of Lemma 6.9b reveals explicit formulas for the action of the Hecke operators T_l for any prime l not

dividing N, including l=p. In particular, we have $\mathbf{B}=\mathbf{B}^0$. As a consequence we find that the splitting of Lemma 6.11 extends to a splitting of the sequence

$$0 \to \mathbf{B}_{\mathscr{L}} \to \mathbf{W}_{\mathscr{L}} \to \mathbf{V}_{\mathscr{L}} \to 0.$$

Indeed, we have $\mathbf{W}^{\text{nil}} = \mathbf{V}^{\text{nil}}$. By analogy with the classical situation, it is natural to regard the *p*-adic *L*-functions defined in the last section as being associated to elements of $Ta_p(J_{\infty})$. More precisely, for each $x \in Ta_p(J_{\infty})$, we view x as an element of **V** by Lemma 6.8 and then use the splitting s of the above sequence to lift x to a Λ -adic modular symbol $\Phi_x \in \mathbf{W}_{\mathscr{D}}$. Since s is not in general defined over Λ , we cannot say that $\Phi_x \in \mathbf{W}$. There will, in general, be denominators and we can ask what kind of poles these denominators will pass on to the *p*-adic *L*-functions associated to Φ_x . We can say the following.

First, it is not difficult to see that the standard 2-variable *p*-adic *L*-function $L_p(\Phi_x)$ has no poles. Indeed, we can find another modular symbol $\Phi'_x \in \mathbf{W}$ which is congruent to Φ_x modulo $\mathbf{B}_{\mathscr{L}}$, i.e. $\Phi_x = \Phi'_x + \Psi$ for some $\Psi \in \mathbf{B}_{\mathscr{L}}$. But $L(\Psi) \in \mathbf{D}$ is a measure which, by (6.10) and the definition of $L(\Psi)$, is supported on the set $\{(a, b) \in \mathbf{Z}_p^2 | ab = 0\}$. Since $L_p(\Psi)$ is defined by an integral over $\mathbf{Z}_p^* \times \mathbf{Z}_p^*$ (see 5.2 a) we have $L_p(\Psi) = 0$. So $L_p(\Phi_x) = L_p(\Phi'_x)$ and this is everywhere regular since Φ'_x is everywhere regular.

Second, we can bound the denominators which arise in the Λ -adic modular symbols Φ_x for $x \in Ta_p(J_{\infty})$ as follows. The submodule $s^{-1}(\mathbf{W}) \subseteq \mathbf{V}$ is clearly preserved by the Hecke operators. In fact, it can be shown that $s^{-1}(W)$ corresponds to a Galois invariant submodule S of $Ta_p(J_{\infty})$. The quotient $C = Ta_n(J_{\infty})/S$ is a natural analog of the classical cuspidal divisor class group. It would be interesting to analyze the structure of C and to attempt an Eisenstein descent along the lines of [Mz1]. From the above discussion we see that C is annihilated by the operators $T_l - 1 - l[l]$ for primes $l \equiv 1 \mod N$ with $l \neq p$. Hence C is a torsion A-module which is annihilated by $a_l - 1 - l[l]$. From this it follows that the denominator in Φ_x is a divisor of $a_l - 1 - l[l]$ for every positive prime $l \equiv 1$ modulo N. While the denominator in Φ_x does not contribute poles to the standard 2-variable p-adic L-function (see last paragraph), we expect that it will contribute poles to the improved p-adic L-function $L_p^*(\Phi_x)$. Note that, by the Weil bounds, $a_l - 1 - l[l]$ does not vanish at any arithmetic point $\kappa \in \mathscr{X}^{\text{arith}}$. Hence each Φ_x is regular at these points, and correspondingly $L_n^*(\Phi_x, \kappa, \sigma)$ is regular at arithmetic points.

7. The main theorem

We are now ready to prove our main theorem.

(7.1) **Theorem.** Suppose f is a weight 2 newform which is split multiplicative at a prime $p \ge 5$. Then $L_p(f, 1) = 0$ and

$$L'_p(f,1) = \mathfrak{L}_p(f) \cdot \frac{L_{\infty}(f,1)}{\Omega_f^+}.$$

Proof. The assertion $L_p(f, 1) = 0$ follows from the interpolation properties of $L_p(f, s)$ described in Theorem 4.18. Indeed, the eigenvalue of T_p acting on f

is 1, hence the 'Euler factor' appearing in 4.18 vanishes when $s_0 = 1$ and ψ is trivial.

Let N be the tame level of f and let $\kappa \in \mathscr{X}^{\operatorname{arith}}$ be the arithmetic point of weight two for which $f = \mathbf{f}_{\kappa}$. Using Theorem 5.13 we can choose an eigensymbol $\Phi \in \mathbf{W}_{(\kappa)}^+$ so that $\Phi_{\kappa} = \Psi_{\mathbf{f}_{\kappa}}^+$. Let $L_p(\Phi, \kappa, k, s)$, $L_p(\Phi^*, \kappa^*, k, s)$, $L_p^*(\Phi, \kappa, k, s)$ and $L_p^*(\Phi^*, \kappa^*, k, s)$ be the functions defined in (5.11). They are defined and analytic for all $(k, s) \in U \times \mathbf{Z}_p$ for some neighborhood U of 2 in \mathbf{Z}_p . Since f is split multiplicative at p, its nebentype character ε satisfies $\varepsilon(p) = 1$. Hence, by (2.9)b, we have $a_p(\kappa, k) = a_p(\kappa^*, k)$. We call this function $a_p(k)$ and note that $a_p(2) = 1$. From 5.15d(i) we deduce the identities

(7.2)
$$L_{p}(\Phi, \kappa, k, 1) = (1 - a_{p}(k)^{-1}) \cdot L_{p}^{*}(\Phi, \kappa, k, 1),$$
$$L_{p}(\Phi^{*}, \kappa^{*}, k, 1) = (1 - a_{p}(k)^{-1}) \cdot L_{p}^{*}(\Phi^{*}, \kappa^{*}, k, 1).$$

In particular, each of the functions $L_p(\Phi, \kappa, k, s)$ and $L_p(\Phi^*, \kappa^*, k, s)$ vanishes at (k, s) = (2, 1). In fact, we will show that the Taylor expansions of these two functions have the same linear terms around the point (2, 1). To see this we define constants $c, d \in \bar{\mathbf{Q}}_p$ (in fact, we have $c, d \in K_{\kappa}$) for which

$$L_p(\Phi, \kappa, k, s) \sim c(-\frac{1}{2}(k-2) + (s-1)) + d(k-2)$$

where $f(k, s) \sim g(k, s)$ means that f and its first partials agree with g and its first partials at the point (2, 1). Replacing s by k-s in the functional equation 5.15c, we obtain

$$L_p(\Phi,\kappa,k,k-s) = -\langle -N \rangle^{1+s-k} L_p(\Phi^*,\kappa^*,k,s).$$

Hence $L_p(\Phi^*, \kappa^*, k, s) \sim -L_p(\Phi, \kappa, k, k-s)$ and we easily calculate its linear terms

$$L_p(\Phi^*, \kappa^*, k, s) \sim c(-\frac{1}{2}(k-2) + (s-1)) - d(k-2).$$

Hence $L_p(\Phi, \kappa, k, s) - L_p(\Phi^*, \kappa^*, k, s) \sim 2d(k-2)$. To see that d=0 we set s=1 and calculate this difference using (7.2).

(7.3)
$$L_{p}(\Phi,\kappa,k,1) - L_{p}(\Phi^{*},\kappa^{*},k,1) = (1 - a_{p}(k)^{-1}) \cdot (L_{p}^{*}(\Phi,\kappa,k,1) - L_{p}^{*}(\Phi^{*},\kappa^{*},k,1)).$$

From 5.15e we have $L_p^*(\Phi, \kappa, 2, 1) - L_p^*(\Phi^*, \kappa^*, 2, 1) = L_p(\Phi, \kappa, 2, 1) + L(\tilde{\Phi}_{\kappa}, 1)$ where $\tilde{\Phi}_{\kappa}$ is the tame specialization of Φ defined in (5.6)b. We have already seen $L_p(\Phi, \kappa, 2, 1) = 0$. As for $L(\tilde{\Phi}_{\kappa}, 1)$, we note that $\tilde{\Phi}_{\kappa}$ is a weight 2 modular symbol over $\Gamma_1(N)$ with the same eigenvalues as f for the Hecke operators $T_l, l \not > N p$. But f is a newform whose level is divisible by p. Hence we must have $\tilde{\Phi}_{\kappa} = 0$. In particular, $L(\tilde{\Phi}_{\kappa}, 1) = 0$, and it follows that $L_p^*(\Phi, \kappa, 2, 1) - L_p^*(\Phi^*, \kappa^*, 2, 1) = 0$. Thus the expression in (7.3) has a double zero at k = 2, and consequently d = 0. We therefore have

(7.4)
$$L_p(\Phi, \kappa, k, s) \sim c(-\frac{1}{2}(k-2)+(s-1)).$$

We complete the proof, as in the introduction, by calculating the constant c in two ways. From 5.15b we have $L_p(\Phi, \kappa, 2, s) = L_p(f, s)$. Hence, setting k=2 in (7.4) we obtain

$$c = L'_p(f, 1).$$

On the other hand, setting s=1 in (7.4) and differentiating the first identity of (7.2) with respect to k we find

$$-\frac{1}{2} \cdot c = a'_p(2) \cdot L^*_p(\Phi, \kappa, 2, 1).$$

But from Theorem 3.18 we have $a'_p(2) = -\frac{1}{2}\mathfrak{L}_p(f)$ and since $\Omega_{\kappa}^+(\Phi) = 1$, Theorem 5.15d(*ii*) gives us the identity $L_p^*(\Phi, \kappa, 2, 1) = L_{\infty}(f, 1)/\Omega_f^+$. Hence

$$c = \mathfrak{L}_p(f) \cdot \frac{L_\infty(f,1)}{\Omega_f^+}$$

and the proof is complete.

References

- [A-S] Ash, A., Stevens, G.: Modular forms in characteristic *l* and special values of their *L*-functions. Duke Math. J. **53**, 849–868 (1986)
- [A-L] Atkin, A.O.L., Li, W.: Twists of Newforms and Pseudo-Eigenvalues of W-operators. Invent. Math. 48, 221–243 (1978)
- [A-V] Amice, Y., Vélu, J.: Distributions p-adiques associées aux séries de Hecke. Astérisque, No. 24/25. Soc. Math. Fr. Paris, 1975, pp. 119-131
- [D] Deligne, P.: Formes modulaires et représentations *l*-adiques. Séminaire Bourbaki 355 (1969)
- [D-R] Deligne, P., Rapoport, M.: Schémas de modules de courbes elliptiques. Lect. Notes Math., 349, 143-316 (1973)
- [Gr] Greenberg, R.: Iwasawa theory for *p*-adic representations. Advance Studies in Pure Mathematics **17**, 97–137 (1989)
- [H1] Hida, H.: Galois representations into $GL_2(\mathbb{Z}_p[[X]])$ attached to ordinary cusp forms. Invent. Math. 85, 545-613 (1986)
- [H2] Hida, H.: Iwasawa modules attached to congruences of cusp forms. Ann. Sci. École Norm. Sup. 19, 231–273 (1986)
- [H3] Hida, H.: On *p*-adic Hecke algebras for GL_2 over totally real fields. Ann. Math. **128**, 295–384 (1988)
- [Kz] Katz, N.: p-Adic L-Functions for CM Fields. Invent. Math. 49, 199–297 (1978)
- [K] Kitagawa, K.: On standard p-adic L-functions of families of elliptic cusp forms. UCLA PhD Thesis, 1991
- [KI] Klingenberg, C.: On *p*-adic *L*-functions of Mumford curves. Preprint, March 1990
- [Man1] Manin, J.: Cyclotomic fields and modular curves. Russian Math. Surveys 26(6), 7-78 (1971)
- [Man2] Manin, J.: Parabolic points and zeta functions of modular curves. Izv. Akad. Nauk SSSR (AMS translation) 6(1), 19–64 (1972)
- [M^cC] M^cGabe, J.: *p*-adic Theta Functions. Harvard Ph.D. Thesis 1968
- [Mo] Morikawa, H.: On theta functions and abelian varieties over valuation fields of rank one, I and II. Nagoya Math. J. **20**, 1–27 and 231–250 (1962)
- [Mz1] Mazur, B.: Modular Curves and the Eisenstein Ideal. Publ. Math. I.H.E.S. 47, 33-189 (1977)
- [Mz2] Mazur, B.: Two-variable *p*-adic *L*-functions. Unpublished Harvard Lecture Notes (1985)

- [Mz-SwD] Mazur, B., Swinnerton-Dyer, P.: Arithmetic of Weil curves. Invent. Math. 25, 1-61 (1974)
- [Mz-T-T] Mazur, B., Tate, J., Teitelbaum, J.: On *p*-adic analogs of the conjectures of Birch and Swinnerton-Dyer. Invent. Math. **84**, 1–48 (1986)
- [Mz-W] Mazur, B., Wiles, A.: On p-adic analytic families of Galois representations. Compos. Math. 59, 231-264 (1986)
- [N] Nagata, M.: Local Rings. Interscience Tracts in Pure and Applied Mathematics 13 (1962). John Wiley & Sons, Inc., New York, London
- [O] Ohta, M.: On *l*-adic representations attached to automorphic forms. Jpn J. Math.
 8, No. 1, 1–47 (1982)
- [Ser] Serre, J-P.: Corps Locaux. Publications de l'Institut de Mathématique de l'Université de Nancago VII; Herman, Paris 1968
- [Sh1] Shimura, G.: An *l*-adic method in the theory of automorphic forms. (1968, unpublished)
- [Sh2] Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Princeton University Press, 1971
- [Vi] Vishik, M.: Nonarchimedean measures connected with Dirichlet series. Math. USSR Sb. 28, 216–228 (1976)
- [W] Wiles, A.: On ordinary λ-adic representations associated to modular forms. Invent. Math. 94, 529- 573 (1988)