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Statement of results

Let p be a prime > 2 and N be a positive integer with p 6 |N . Let f be a classical newform over

Γ0(Np) of even weight k0 + 2 ≥ 2 and assume f is split multiplicative at p, thus

ap(f) = pk0/2

where ap(f) is the eigenvalue of the U -operator at p acting on f . Under these hypotheses, Coleman

[3] defined an L-invariant L(f) which he conjectured to be equal to the higher weight Mazur-Tate-

Teitelbaum L-invariant [16]. In this paper we will prove Coleman’s conjecture. More precisely, let

X := Z/(p− 1)Z×Zp with Z embedded in X diagonally and let Lp(f,−) : X −→ Cp be the p-adic

L-function attached to f as in [16]. We will prove the following theorem.

Main Theorem. L′p(f, 1 + k0/2) = L(f) · L∞(f, 1 + k0/2).

In the special case of weight two (k0 = 0), in which case, L(f) takes the familiar form L(f) =

log(qf )/ord(qf ) when f has rational fourier coefficients, this was conjectured by Mazur, Tate, and

Teitelbaum [16] and proved by Ralph Greenberg and the author in [11, 12]. In case f is split

multiplicative of weight k0 + 2 > 2, Mazur, Tate, and Teitelbaum offered no precise formula for
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L(f), but they did predict that L(f) could be described purely in terms of local p-adic data

associated to f and that, in particular, L(f) should not change when f is twisted by a Dirichlet

character χ with χ(p) = 1. Three separate and apparently independent definitions of L(f) were

later proposed. The first was given by Jeremy Teitelbaum [18], but only in the case where f

corresponds to a quaternionic modular form via the Jacquet-Langands correspondence. Robert

Coleman gave an analogous definition in [3] in the general case, which we will briefly recall in

section 2 of this paper. A third definition was proposed by Fontaine and Mazur [15] based on

Fontaine’s theory of semistable p-adic galois representations. These three definitions gave rise to

three separate conjectures of Mazur-Tate-Teitelbaum type. All three of these conjectures have now

been proved.

The L-invariants of Coleman and Teitelbaum can be approximated p-adically on a computer,

which enabled early numerical confirmation of the Coleman and Teitelbaum conjectures [6, 7, 18].

On the other hand, the Fontaine-Mazur L-invariant appears to be beyond the reach of a computer.

Nevertheless, it was the Fontaine-Mazur version of the conjecture that was the first to be proved – in

1996, by Kato, Kurihara, and Tsuji [13]. The Coleman version of the conjecture was established by

the author shortly thereafter and described in [17], thus also proving indirectly that the Fontaine-

Mazur and Coleman L-invariants are the same. Coleman and Iovita [5] later gave a direct proof that

all three L-invariants—including Teitelbaum’s invariant when it is defined—are the same. For an

excellent overview of the history of the L-invariant and the Mazur-Tate-Teitelbaum conjecture, see

Colmez’s survey [10]. The connection with Kato’s Euler systems and the p-adic Birch-Swinnerton-

Dyer conjecture, including the proof by Kato, Kurihara, and Tsuji given in the language of (ϕ,Γ)-

modules, is also beautifully described in Colmez’s Bourbaki seminar notes [9].

As in the weight two case (see [11, 12]), our proof of Coleman’s conjecture in the higher weight

case divides naturally into two steps (Theorems A and B below). To state Theorems A and B,

we first recall that Coleman [2] constructed a p-adic analytic family fk of overconvergent p-adic

modular forms passing through our fixed newform f . This family is defined for k in an open set

B ⊆ X containing k0 and satisfies fk0 = f . Coleman’s family is an eigenfamily for the U -operator

and we may therefore consider the eigenvalue α(k) of U acting on fk. The function α(k) is a p-adic

analytic function of k ∈ B so we may consider the derivative of α at the special point k0 ∈ B.

Theorem A. L′p(f, 1 + k0/2) = −2 · p−k0/2 · α′(k0) · L∞(f, 1 + k0/2).

Just as in the weight two case, the proof of Theorem A depends on the existence of a two variable

p-adic L-function with certain properties. The existence of such a p-adic L-function was proved



COLEMAN’S L-INVARIANT 3

in the higher weight case in [17]. With the two-variable p-adic L-function in hand, the proof of

theorem A proceeds exactly as in the weight two case (see [11, 12]).

The rest of this note is dedicated to proving the following theorem.

Theorem B. L(f) = −2 · p−k0/2 · α′(k0).

The Main Theorem is an immediate consequence of Theorems A and B. We remark that Colmez

[8] has also proven Theorem B, but in terms of the Fontaine-Mazur L-invariant.

1. The Gauss-Manin connection with Frobenius structure

We adopt Coleman’s notations as in [3] with only one modification. Namely, we will add full

level 2 structure to the moduli space. This rigidifies the setup and simplifies the calculations (see

especially the proof of Proposition 3.1(2)). We let X be the modular curve X(Np, 2) with level Np

structure (a cyclic subgroup of order Np) plus full level 2 structure. (If 2|N we assume that the

additional level 2 structure extends the 2-part of the level N structure.) The p-adic rigid analytic

space Xan attached to X is the union of three disjoint parts, namely,

Xan = Z∞ ∪W ∪ Z0

where Z∞ and Z0 are the ordinary affinoids containing the ∞ and 0-cusps respectively, and W is the

union of the supersingular annuli. Following Coleman, we write W∞ = Z∞∪W and W0 = Z0∪W .

Let Y = Y (Np, 2) denote X with the cusps deleted. Let π : E −→ Y be the universal elliptic

curve with level structure over Y and let H be the relative de Rham cohomology sheaf over X with

log singularities at the cusps. Then H is a coherent O-module locally free of rank 2 over X. As

Katz explains in [14] we have a canonical decomposition

H = ω−1 ⊕ ω

where ω := π∗Ω1
E/Y For any nonnegative integer k we let

Hk := Symmk(H) = ω−k ⊕ ω2−k ⊕ · · · ⊕ ωk.

The Gauss-Manin connection ∇ : H −→ H⊗ Ω induces a connection

∇ : Hk −→ Hk ⊗ Ω

for each integer k ≥ 0, which we also call the Gauss-Manin connection.

The Deligne-Tate map ([14]) preserves Z∞ and extends to a wide open neighborhood of Z∞

properly contained in W∞. Accordingly, the Gauss-Manin connection is endowed with a natural

frobenius structure over some sufficiently small wide open neighborhood of Z∞. Katz spells out
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precisely how big this neighborhood can be, but this is a technical point that we will not need. It

will be convenient to simplify the notation and write Z†∞ to denote a choice of such a wide open

neighborhood of Z∞ with the additional property that the intersection of Z†∞ with any supersingular

annulus is a concentric subannulus.

For k an integer, let M †
k+2 := ωk+2(Z†∞) denote the space of overconvergent p-adic modular

forms of weight k + 2 and level (Np, 2) as before. For k ≥ 0 we let

κ : M †
k+2 −→ Hk ⊗ Ω(Z†∞)

be the Kodaira Spencer map (see §4 of [1]). The canonical projection Hk −→ ω−k induces a

surjection Hk(Z
†
∞) −→M †

−k, and Coleman proves in [1] that there is a canonical Qp-linear section

ν : M †
−k −→ Hk(Z†∞)

satisfying the equation

∇(ν(g)) = κ(θk+1g)/k! ∈ Hk ⊗ Ω(Z†∞)

for any g ∈M−k. Here θk+1 : M †
−k −→M †

k+2 is the operator defined on q-expansions by

θk+1 :
∑
n≥0

anq
n 7−→

∑
n≥0

nk+1anq
n.

For details, see Proposition 4.3 of [1].

Following Katz [14], Coleman [3] also defines a Frobenius structure on Z†∞ which gives rise to a

“Frobenius operator” Φ acting on the cohomology of Hk, ωk, and Ω. Morevover, Φ commutes with

∇ : Hk −→ Hk ⊗ Ω on Z†∞ (see §11 of [3]). On q-expansions of modular forms of weight k, Φ is

given by Φ = pkV where V is the operator on q-expansions given by V (f)(q) = f(qp), i.e.

V :
∑
n≥0

anq
n 7−→

∑
n≥0

anq
np,

2. Coleman’s L-invariant.

In this section we recall Coleman’s definition of the L-invariant L(f) of a split multiplicative

p-newform f of weight k0 + 2 ≥ 2. Let H∗
k0

denote the complex of sheaves associated to Hk0

∇−→

Hk0 ⊗Ω and consider the hypercohomology H1(X,H∗
k0

) with respect to the covering {W∞,W0} of

X. The Hecke operators act on this space and the systems of eigenvalues that occur in it are the

same as those that occur in the space of classical modular forms of weight k0 and corresponding

level. In particular, letting K be the field generated over Qp by the eigenvalues of the Hecke

operators acting on f , we obtain a Qp-subspace H(f) ⊆ H1(X,H∗
k0

) endowed with an action of

the field K with the property that H(f) is a 2-dimensional K-vector space on which the Hecke
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operators act as scalars according to the eigenvalues of f . Using his theory of p-adic integration,

Coleman endows H(f) with a natural monodromy module structure in which the monodromy is

non-trivial. In [15], Mazur attaches an L-invariant to any two dimensional monodromy module

with non-trivial monodromy. Coleman’s L-invariant can be defined simply as the L-invariant of

Coleman’s monodromy module.

We will use the more concrete definition that Coleman gives in [3]. For simplicity, we assume

k0 > 0 so that there are no nonzero horizontal sections of Hk0 defined on all of W∞ nor on all of

W0, i.e. H0(W∞,H∗
k0

) = H0(W0,H∗
k0

) = 0. On the other hand, one generally does find non-zero

horizontal sections of Hk0 on the supersingular annuli W = W∞∩W0. Indeed, Coleman constructs

two maps

σ, ρ : Mk0+2 −→ H0(W,H∗
k0

)

defined on the space Mk0+2 of classical modular forms of weight k0 + 2 and appropriate level. The

map σ is defined using Coleman integration (Definition 2.1 below) while the map ρ is defined in

terms of residues (Definition 2.2).

Let k ≥ 0 and f ∈Mk+2 be a classical Hecke eigenform. Let α be the eigenvalue of the U -operator

acting on f . We suppose α 6= 0. The differential form ωf := κ(f) ∈ Hk ⊗ Ω(W∞) represents a

cohomology class [ωf ] ∈ H1(W∞,Hk) and the Frobenius operator Φ acts on ωf and also on [ωf ].

Indeed, we have Φ([ωf ]) = pk+1

α · [ωf ]. Now Coleman’s integration theory gives us a well-defined

flabby antiderivative I∞(f) defined on all of W∞ which is rigid analytic on the ordinary residue

disks, is log-analytic on the supersingular annuli and satisfies the following two properties

• I∞(f) satisfies the differential equation

∇(I∞(f)) = ωf on W∞.

• the flabby analytic section

I∞(f)− α

pk+1
Φ(I∞(f))

ofHk is rigid analytic on Z†∞ (i.e. not only on Z∞, but also on some wide open neighborhood

of Z∞).

Similar considerations give rise to a well-defined flabby analytic section I0(f) of Hk over W0 satis-

fying the differential equation

∇(I0(f)) = ωf on W0.

Both I0(f) and I∞(f) are defined on the overlap W = W∞ ∩W0. Coleman makes the following

definition.
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Definition 2.1. If f ∈ Mk+2 is a classical Hecke eigenform then we define σ(f) ∈ H0(W,H∗
k) to

be the horizontal section of Hk on W given by

σ(f) := I∞(f)|W − I0(f)|W .

The residue map ρ : Mk+2 −→ H0(W,H∗
k) is defined using the map

Res : Hk ⊗ Ω(Z†∞) −→ H0(W,H∗
k)

which in turn is defined by Res(ω) := the unique horizontal section of Hk on W whose restriction

to Z†∞ ∩W is the residue of ω restricted to this disjoint union of oriented annuli. Note that here as

elsewhere we use the standard orientation of the annuli, i.e. the orientation in which Z∞ is interior

to W .

Definition 2.2. Given f ∈M †
k+2, we let ωf := κ(f) ∈ Hk × Ω(Z†∞) and define ρ(f) := Res(ωf ).

Definition 2.3. Coleman’s L-invariant of a split multiplicative newform f ∈ Mk+2 is defined to

be the unique element L(f) ∈ K for which σ(f) = L(f) · ρ(f).

The existence and uniqueness of such an L-invariant was, of course, proved by Coleman (see [3]).

3. Families of modular forms

First of all we have the Eisenstein family. For each integer k there is an overconvergent p-adic

modular form Ek of weight k whose q-expansion is given by

Ek := 1 + 2ζp(1− k)−1
∑
k≥1

σ∗k+1(n)qn.

Here ζp(s) is the Kubota–Leopoldt p-adic zeta function and when k = 0 the above equality is

understood to mean E0 = 1. (Recall ζp(s) has a simple pole at s = 1). For integral k ≥ 0 we set

tk :=
1
2
ζp(1 + k) · E−k and Gk :=

1
2
ζp(−1− k) · Ek+2.

Then tk ∈ M †
−k is an overconvergent modular form of weight −k and Gk ∈ Mk+2 is a classical

modular form of weight k + 2. The family tk extends to a meromorphic family of Eisenstein series

for k ∈ X with a simple pole at k = 0 and Gk defines a meromorphic family with a simple pole

at k = −2. Moreover Gk = t−2−k. The special point k = 0 will play a crucial role in the proof of

Theorem B.
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Proposition 3.1. The following assertions hold.

(1) The family tk, k ∈ X , has a simple pole at k = 0 with residue given by

lim
k→0

ktk =
1
2
·
(

1− 1
p

)
.

(2) The residue of G0 along any supersingular annulus is 1/2:

ρ(G0) = −1
2
.

Proof. The first assertion is an immediate consequence of the well-known fact that the Kubota-

Leopoldt p-adic zeta function ζp(s) has a simple pole at s = 1 and that the residue at s = 1 is given

by

lim
s→1

(s− 1)ζp(s) =
(

1− 1
p

)
.

To prove the second assertion, we first consider the special case N = 1. Then η = κ(G0) is a

section of Ω over Y which extends to a meromorphic section over X with simple poles along the

cusps. We want to compute Res(η) ∈ H0(W ). We remark first of all that since the eigenvalues of

the Hecke operators acting on η are known, they are also known on Res(η). Indeed, the eigenvalues

are the same as those acting on constant functions on W . Hence Res(η) is a constant. To determine

what the constant is we use the fact that the sum of the residues along the oriented annuli at the

“edges” of W∞ \ {cusps} is equal to zero. For the supersingular annuli this is the orientation we

used above to define ρ(f). However, the annuli around the cusps are orientated so that the cusps are

exterior to the annuli, which is opposite the one used to compute the constant terms of Eisenstein

series.

Under our assumption N = 1, there are a total of three cusps in W∞ corresponding to the three

cusps of X(2). The constant terms of G0 are the same at all of these cusps since G0 is modular of

level p. Since the natural map X −→ X0(p) is ramified of order 2 at each of these cusps and since

the constant term of G0 at the infinity cusp is (1− p)/24 we conclude that the sum of the residues

along the oriented annuli around the cusps is (p − 1)/4. Hence the sum of the residues along the

supersingular annuli is (1− p)/4. But a simple calculation shows that the number of supersingular

annuli in X is (p− 1)/2. Hence the residue along any supersingular annulus is −1/2. This proves

(2) when N = 1.

The general case follows at once since for arbitrary N , the map X(Np, 2) −→ X(p, 2) is unram-

ified over the supersingular annuli. This completes the proof of the proposition. �

We can remove Euler factors at p using the operator V on overconvergent modular forms defined

on q-expansions by the formula V (f)(q) = f(qp). If F is an eigenform, then we let F 0 denote the
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eigenform obtained by removing the Euler factor at p. Thus, we have the families

t0k := tk − V (tk)

G0
k := Gk − V (Gk)

f0
k := fk − α(k)V (fk)

For k ≥ 0 we let ηk := κ(Gk) and η0
k := κ(G0

k) where κ : Mk+2 −→ Hk ⊗Ω is the Kodaira-Spencer

map. We also set gk := ν(tk) and g0
k := ν(t0k). Then since θk+1t0k = G0

k it follows that

∇(g0
k) = G0

k.

Finally, for each integer k ≥ 0 we may let sk := I∞(fk) be the Coleman integral of fk defined in

section 1. Then sk is a flabby section of Hk over W∞. This section is characterized by the property

that

s0k := sk −
α(k)
pk+1

· Φ(sk)

is a rigid analytic section of Hk over Z†∞. Hence there is an overconvergent modular form φ0
k ∈M

†
−k

such that

ν(φ0
k) = s0k.

Hence θk+1(φ0
k) = f0

k . Finally, set

ωk := κ(fk),

ω0
k := κ(f0

k ).

4. Some Pairings

As in the introduction, we fix an integer k0 ≥ 0. For each integer k ≥ 0 cup product on the de

Rham cohomology of the fibers of E/X induces a natural pairing [·, ·] : Hk ×Hk+k0 −→ Hk0 . This

pairing induces natural pairings

[·, ·] : Hk ×Hk+k0 ⊗ Ω −→ Hk0 ⊗ Ω;

[·, ·] : Hk ⊗ Ω×Hk+k0 −→ Hk0 ⊗ Ω.

Proposition 4.1. These pairings satisfy the following identity for all x ∈ Hk, and y ∈ Hk+k0

∇[x, y] = [x,∇y] + [∇x, y].

Proof. This follows from the product formula for differentiation. �

We will use a superscript † to denote overconvergent sections of a sheaf. For example, H†
k :=

Hk(Z
†
∞). We may then define pairings

〈·, ·〉 : H†
k ×H†

k+k0
⊗ Ω† −→ H0(W,H∗

k0
)

〈·, ·〉 : H†
k ⊗ Ω† ×H†

k+k0
−→ H0(W,H∗

k0
)
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by defining 〈x, y〉 := Res([x, y]) where Res : H†
k0
−→ H0(W,H∗

k0
) is the residue map.

Recall the Hecke operators U := Up and w from §8 of [3]. On q-expansions of modular forms U

is given by

U :
∑
n≥0

anq
n 7−→

∑
n≥0

anpq
n.

The operator w acts on Hk0(W ) and satisfies w2 = pk0 on this space. Hence

Wp := p−k0/2w

acts as an involution. Moreover, from §11 of [3] we have Φ = w on horizontal sections of Hk0 over

W , hence Φ = pk0/2Wp on H0(W,H∗
k0

).

Proposition 4.2. Let k, k0 be non-negative integers and let g ∈M †
−k, f ∈M

†
k+k0

, and h ∈M †
k+2.

Then the following assertions hold.

(1) For x = ν(g) ∈ H†
k and ω = κ(f) ∈ H†

k+k0
⊗Ω† we have 〈x,Φ(ω)〉 = pk+

k0
2

+1·Wp(〈U(x), ω〉);

(2) For η = κ(h) ∈ H†
k ⊗ Ω† and y ∈ H†

k+k0
we have 〈η,Φ(y)〉 = pk+

k0
2 ·Wp(〈U(η), y〉).

Proof. Since pk0/2Wp = Φ and p · Φ ◦Res = Res ◦ Φ we have

pk+
k0
2

+1 ·Wp(〈U(x), ω〉) = pk · 〈ΦU(x),Φω〉

= pkρ(ΦU(g) · Φ(f))

= ρ(g · Φ(f))

= 〈x,Φ(ω)〉.

This proves (1) and (2) is proved similarly. �

5. Proof of Theorem B

The operator Wp is an involution on H0(W,Hk0). We let superscript + denote projection to the

+-component under the action of Wp. Consider the function ψ : X −→ H0(W,Hk0)
+ defined by

ψ(k) := ρ(t0kf
0
k+k0

)+ ∈ H0(W,Hk0)
+.

Since t0kf
0
k+k0

is an analytic family of overconvergent modular forms of weight k0 we see at once that

ψ(k) is an analytic function of k defined on a neighborhood of 0 in X . For the proof of Theorem

B we will calculate ψ(0) in two ways. First, by direct calculation we express ψ(0) in terms of ρ(f).

Then we apply the product rule (Proposition 2) to express ψ(0) in terms of σ(f). Comparing these

two expressions, Theorem B follows.

Define u(k) := p−k0/2 · α(k), the “unit part” of α(k).
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Lemma 5.1. We have

ψ(0) = −1
2
·
(

1− 1
p

)
· u′(k0) · ρ(f).

Proof. For an arbitrary integer k ≥ 0 we have

ψ(k) = ρ
(
t0kf

0
k+k0

)+ = 〈g0
k, ω

0
k+k0

〉+.

We also have

〈g0
k, ω

0
k+k0

〉 = 〈gk, ω
0
k+k0

〉

=
〈
gk, ωk+k0 −

α(k+k0)

pk+k0+1 Φ(ωk+k0)
〉

= 〈gk, ωk+k0〉 −
α(k+k0)

pk0/2 Wp(〈U(gk), ωk+k0〉)

= 〈gk, ωk+k0〉 − u(k + k0) ·Wp(〈gk, ωk+k0〉).

The first equality above follows from three facts: (1) g0
k − gk is in the image of Φ; (2) ω0

k+k0
is in

the kernel of U ; and (3) the image of Φ is perpendicular to the kernel of U by Proposition 4.2. The

third equality follows from Proposition 4.2(1). The last equality above follows from the fact that

the Eisenstein series tk is an eigenform for the U -operator with eigenvalue 1, hence U(gk) = gk.

Now project the above identity to the +-component for Wp to get

ψ(k) = (1− u(k + k0)) · 〈gk, ωk+k0〉+

=
1− u(k + k0)

k
· ρ(ktkfk+k0)

+.

Letting k → 0, using Propostion 3.1(1), and noting that ρ(f)+ = ρ(f) we obtain

ψ(0) = −1
2
·
(

1− 1
p

)
· u′(k0) · ρ(f)

and the lemma is proved. �

Let C∞ := Z†∞ \Z∞. Then C∞ is a union of concentric annuli in the supersingular annuli. Note

that the pairings 〈x, y〉 are well-defined so long as x, y are rigid on C∞. In particular we have a

well-defined pairing

〈·, ·〉 : Ω1(C∞)×Hk0(C∞) −→ Hk0(W )∇.

defined by 〈ω, h〉 = ResW (hω), where this latter is defined to be the unique horizontal section on

W extending ResC∞(hω).

We now turn to an application of Coleman’s integration theory. In what follows, we will write

a subscript flog to denote flabby log-analytic sections of a rigid analytic sheaf. Such sections are,

by definition, rigid analytic on the residue disks in the ordinary part of X and are log-analytic on

the supersingular annuli. For details, see §10 of [3] and also [4].
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Lemma 5.2. Let e ∈ Oflog(W∞) be any Coleman integral of η0 (well-defined up to a constant).

Restrict e to the supersingular annuli W and let h = e −Wp(e) ∈ Olog(W ). Let z = h · ρ(f) ∈

Hk0,log(W ), and let z0 := z−p−1−k0/2Φ(z) ∈ Hk0,log(C∞). Then z, z0 have the following properties.

(1) z0 is rigid on C∞.

(2) sk0 + z is rigid on W .

(3) 〈η0, z
0〉 = 0.

(4) Wp(z) + z = 0 on the supersingular annuli W .

Proof. (1) Since e is a Coleman integral of η0, we have e0 := e − p−1Φ(e) is rigid on Z†∞. Since

Wp(η0) = −η0 on X, we have Wp(e)+ e is constant on W . It follows that h0 := h− p−1Φ(h) is also

rigid on C∞. On the other hand, Φ(ρ(f)) = pk0/2ρ(f). Hence z0 = h0 · ρ(f), which is rigid on C∞.

(2) By definition,∇(sk0) = κ(f). Hence, ResW (∇(sk0)) = ρ(f). On the other hand, ResW (∇(z)) =

ResW (dh) ·ρ(f). But dh = 2η0 and we have shown in Proposition 3.1 that ResW (η0) = −1/2, hence

ResW (∇(z)) = ρ(f). We therefore have ResW (∇(sk0 + z) = 0 and it follows that sk0 + z is rigid on

W , as claimed.

(3) We have 〈η0, z
0〉 = 〈η0, h

0〉 · ρ(f). Moreover, 〈η0, h
0〉 = 〈η0

0, h
0〉 because the image of Φ is

orthogonal to the kernel of U . But, 〈η0
0, h

0〉 = ResW (h0η0
0) = 1

2ResW (h0dh0) = 0, since h0dh0 is an

exact differential on C∞.

(4) Since Wp(ρ(f)) = ρ(f), this follows immediately from the definition of z.

This completes the proof of Lemma 5.2. �

Lemma 5.3. ψ(0) =
1
4

(
1− 1

p

)
σ(f).

Proof. As in the first line of the proof of Lemma 5.1 we have

ψ(0) = 〈g0
0, ω

0
k0
〉+.

But ω0
k0

is an exact differential, indeed ∇s0k0
= ω0

k0
. Moreover, ∇g0

0 = η0
0. Hence, by Proposition

4.1 we have

∇[g0
0, s

0
k0

] = [η0
0, s

0
k0

] + [g0
0, ω

0
k0

].

Taking residues of both sides of this equality along the supersingular annuli we obtain

0 = 〈η0
0, s

0
k0
〉+ 〈g0

0, ω
0
k0
〉.
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Hence ψ(0) = −〈η0
0, s

0
k0
〉+, which we calculate as follows:

〈η0
0, s

0
k0
〉 = 〈η0, s

0
k0
〉

= 〈η0, s
0
k0

+ z0〉

= 〈η0, (sk0 + z)− 1
pk0/2+1 · Φ(sk0 + z)〉

= 〈η0, sk0 + z〉 − 1
pWp(〈η0, sk0 + z〉)

= 〈η0, sk0 + z〉 − 1
pWp(〈η0, sk0 + z〉)

Projecting to the +-component for Wp we obtain

ψ(0) =
(

1− 1
p

)
· 〈η0, sk0 + z〉+.

On the other hand, we have

〈η0, sk0 + z〉+ = 1
2 ·

(
〈η0, sk0 + z〉+Wp (〈η0, sk0 + z〉)

)
= 1

2 ·
(
〈η0, sk0 + z〉 − 〈Wp(η0),Wp(sk0 + z)〉

)
= 1

2 ·
(
〈η0, sk0 + z〉+ 〈η0,Wp(sk0 + z)〉

)
= 1

2 · 〈η0, (sk0 + z) +Wp(sk0 + z)〉

= 1
2 · 〈η0, sk0 +Wp(sk0)〉

= 1
2 · 〈η0, σ(f)〉.

Finally, we use Proposition 3.1(2) to conclude that 〈η0, σ(f)〉 = −1
2 ·σ(f). Hence ψ(0) =

1
4

(
1− 1

p

)
σ(f)

and Lemma 5.3 is proved �

Proof of Theorem B. Combining Lemma 5.1 and Lemma 5.3 we obtain

−2 · u′(k0) · ρ(f) = σ(f).

Hence L(f) = −2 · u′(k0) = −2 · p−
k0
2 · α′(k0) and Theorem B is proved. �
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