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TERMINAL QUOTIENT SINGULARITIES

IN DIMENSIONS THREE AND FOUR

DAVID R. MORRISON1 AND GLENN STEVENS2

Abstract. We classify isolated terminal cyclic quotient singularities in dimension

three, and isolated Gorenstein terminal cyclic quotient singularities in dimension

four. In addition, we give a new proof of a combinatorial lemma of G. K. White

using Bernoulli functions.

Let A' be a smooth algebraic variety over C, and let ux be the canonical bundle of

X. For each n > 0, if T(X, to®") ^ 0, there is a natural pluricanonical map <p„:

X -> PT( X, o)®")*. An algebraic variety is of general type if i>n is a birational map for

n sufficiently large. For a variety of general type, the pluricanonical images <t>n(X)

are the most natural birational models of X to study.

Canonical singularities are the singularities which may occur in the pluricanonical

models of varieties of general type. In dimension 1, the pluricanonical models are

smooth so there are no canonical singularities; in dimension 2 the canonical

singularities coincide with the classical rational double points. One characterization of

the rational double points is as quotient singularities: if G is any finite subgroup of

Sl(2, C), then the quotient C2/G has a rational double point, and every rational

double point is analytically isomorphic to such a quotient singularity. Reid and

Shepherd-Barron [10], and independently Tai [14], have given a condition for

quotient singularities to be canonical in arbitrary dimensions (although not all

canonical singularities are quotient singularities in dimensions greater than two).

Terminal singularities are a class of canonical singularities which play an im-

portant role in birational geometry (as evidenced by recent work of Mori [8], Reid

[12], and Tsunoda [15]). In this note we study cyclic quotient singularities which are

terminal. In dimension three we explicitly describe all isolated terminal cyclic

quotient singularities, while in dimension four, we describe isolated terminal cyclic

quotient singularities which are also Gorenstein. The description uses a combina-

torial lemma due to G. K. White [17]; we have given a new proof of this lemma

(Corollary 1.4 below) using Bernoulli functions.
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1. Bernoulli functions. The material in this section is all quite standard (except for

the last two corollaries); we have adapted the presentation in the first chapter of

Kubert and Lang [7] to suit our purposes.

If x is a rational number, we let (x) denote the rational number such that

x = (x) modZ, and 0 < (*)< 1. Define

,   \ _ j (x)— |     if x is not an integer,

1 [0 if x is an integer.

Let N be a natural number, let C(N) = (l/N)Z/Z, and let G(N) = (Z//YZ).

G(N) acts on C(N) by multiplication, and there is an embedding G(N) -> C(N)

given by a -» a/N.

Let x: G(N) -» C* be a character of conductor N and define

B,,x=     2    x(«)B,(f).
aeG(N)

The following classical theorem is essentially due to Dirichlet; a nice proof can be

found in [5, §2, Theorem 2].

Theorem 1.1. If x is an odd character (that is, x(~a) = ~x(a) for a^ a £ G(N),

where N is the conductor of \), then Bx x=£ 0.

Now fix a natural number N > 2, and denote C(N) and G(N) by C and G,

respectively. Let V = C(G) be the group algebra of G generated (as a C-vector

space) by elements aa for a G G. We define a function 5: C -» Kby

S(jc) =   2 B,(ax)oa.

Let If be the subspace of V generated by(5(x):x G C}, and let A = Ann( W) C V*.

For each a G G, let Xa = a* + o*a G V*. Note that

\a(S(x)) = Bx(ax) + Bx(-ax) = 0

for all x since B, is an odd function. Thus, Xa G A.

Proposition 1.2. A is generated (as a C-vector space) by {\a: a G G). In

particular, dimc(A) = dimc(W) — ip(N)/2, where <¡> is Euler's ^-function.

Proof. Let x be an (arbitrary) odd character on G, M the conductor of x. and

H = G(M). There is a well-defined map H -> C = (l/N)Z/Z given by a -* a/M.

We define an element vvx G H7 by

"X=   Z X(a)s(£).

In terms of the given basis of V, we may write

"5c =   2   (   2 X(«)B,(§))ab.
bfEG \a<EH V     J  ' /
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Thus, the coefficient of a, is

2x(«)B,(^)=B,,x^0,
afEH

so wx ¥= 0.

There is a natural action of G on V = C(G). Under this action, c G G sends wx to

ac~xb'
2   I   2 x(a)B,(^)U=   2     2 X(«)B,

fteC \ »EH V " ' I b'GG a<EH

=   22   x(a'c)Bx   ^—- )ah. = x(c)wx.
b'(EG a'(EH V   m   '

Thus, w>x lies in the x-eigenspace of the G-action. Since each wx # 0, we see that

{wx: x is an odd character} is a linearly independent subset of W, so dimc(W) >

<j>(N)/2. On the other hand, by considering the elements Xa, we see that codimc( W)

= dimc(A) > <¡>(N)/2. Since dimc(F) = <¡>(N), the inequalities are equalities, and

the proposition follows.

Corollary 1.3. Let a, b,c,d G G and suppose, for all x G C, Bx(ax) + Bx(bx) +

Bx(cx) — Bx(dx). Then, after reordering a, b, c, we have a = -b (N), and c = d(N).

Proof. Let \ = o* + o¿ + a* — a* G V*. By hypothesis, À G A. But A is gener-

ated by {a* + o*a}, so the corollary is clear.

Corollary 1.4 (White [17, Theorem 2], Frumkin [3] and Danilov [2]). Let a,

b, c be integers relatively prime to N. Suppose, for all k G Z — NZ, (ak/N) +

(bk/N)+ (ck/N)> 1. Then, after reordering a, b, c, we have a + b = 0 (N).

Proof. First note that if ( ak/N > + ( bk/N > + < ck/N > s= 2, then

fh (-S )+ (4 )=> - (f )♦■ - (3 )>■- - (S)«'-»-.,
which contradicts our hypothesis. Thus,

Let d = a + b + c. Since

(f)+(f)+(^)-(f) -«■
we must have

for each k G Z — NZ. In particular, c/ is relatively prime to N. In addition, by

subtracting \ from both sides of the above equation, we get

Bx(ax) + Bx(bx) + Bx(cx) = Bx(dx)

for all x = k/N G Z. On the other hand, this identity is trivially satisfied for x = 0.

This corollary now follows from the preceding one.
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2. Quotient singularities. Throughout this section T will be a finite subgroup of

Gl(«, C), and Xr = C/T. We will study the singularity of A'p at the origin O G C".

g G r is called a quasi-reflection if rank(g — /) — 1. A classical theorem of

Shephard and Todd [13] and Chevalley [1] says that A'p is smooth if and only if T is

generated by quasi-reflections. If T is arbitrary, let Tq be the largest subgroup of T

generated by quasi-reflections, and let f = T/T . Then it is clear that A'p a Af ; in

studying quotient singularities, we may therefore restrict to groups T such that

r = {/}. Such a group is called small.

The following lemma is quite standard (cf. [4 or 9] for a proof).

Lemma 2.1. Let T C G1(«,C) be a small group, and let S = {x G C\g(x) = x for

some g ¥= 1}. Then the singular locus of XT is S/T.

Corollary 2.2. // T C Gl(n, C) is a small cyclic group of order N, then XT has an

isolated singularity if and only if all eigenvalues of a generator g of Y are primitive Nth

roots of unity.

The duality sheaf ux of a quotient singularity has been studied by Khinich [6],

Watanabe [16], Reid and Shephard-Barron [10], Reid [11], and Tai [14]. We

summarize their results as follows.

Theorem 2.3. Let T C Gl(n, C) be a small group. For each g G T of order M ¥= 1

and each primitive Mth root of unity £, write the eigenvalues of g as f"',..., Ja\ with

0 < a,< M, and define e(g, f ) = ax/M + ■■■ +an/M.

(i) (Khinich and Watanabe) A'p is Gorenstein if and only ifT C Sl(«, C).

(ii) (Reid, Shephard-Barron, and Tai) A'p is canonical if and only if e(g,Ç) > 1 for

all primitive f and all g ¥= 1.

(iii) (Reid) Ar is terminal if and only ife(g, Ç) > 1 for all primitive f and all g^ 1.

We can now state our main result.

Theorem 2.4. Let T C Gl(«, C) be a small cyclic group of order N.

(i) If n — 3, then XT is an isolated terminal singularity if and only if, for each g G T,

det g is one of the eigenvalues of g.

(ii) If n — 4, then Xr is an isolated Gorenstein terminal singularity if and only if

T C Sl(2, C) X Sl(2, C) C Gl(4, C) in such a way that the projections pr,: T --» Sl(2, C)

are faithful representations of T.

Remark 2.5. Choose a primitive A'th root of unity f. In suitable coordinates on

C", the conditions above are equivalent to

(i) There is some a with (a, N) — 1 such that T is generated by

Í
r
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(ii) There is some a with (a, N) = 1 such that T is generated by

r'
r

This provides the explicit description promised in the introduciton.

Proof, (i) Let g be a generator of T, f a primitive Nth root of unity, and f°, f6, f''

the eigenvalues of g, with 0 < a, b, c < N. By Corollary 1.2 XT is isolated if and only

if (a, N) = (6, N) = (c, N) = 1. On the other hand, by 2.3(iii), A> is terminal if

and only if (ak/N)+ (bk/N)+ (ck/N)> 1 for each kGZ- NZ.By Corollary

1.4 we have a + b = 0 (N) after rearranging, so the determinant is fc, which is one

of the eigenvalues.

(ii) Let g be a generator of T, f a primitive A^th root of unity, and f, £*, fe, frf the

eigenvalues of g with 0 < a, b, c, d < N. By Corollary 1.2 and Theorem 2.3(i) and

(iii), A'p is isolated terminal Gorenstein if and only if a + b + c + d = 0 (N),

(a, N) = (b, N) = (c, N) = (d, N) = 1, and

(f)+(S)+(S)+(S)»
for all k G Z - #Z. Since a + ¿> + c + d = 0 (N), we see that

is an integer, so that this is true if and only if

(#)+(#}+<f}+(f H
or

(#)+<£)+(fH-(fH+(-f>-
This is greater than 1, so we may again apply Corollary 1.4, to get a + b = 0 (N)

after rearranging; hence, c + d = 0 (N) as well, and we see that T C Sl(2, C) X

Sl(2, C) with each induced representation in Sl(2, C) being faithful.
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