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1 Introduction

Let G g be a connected reductive algebraic group defined over Q, let p be a prime for which G is
split over Qp, and let T)g, C G/g, be a Q,-split torus of maximal rank. Let X be the Q,-rigid
analytic “weight space” that parametrizes Q,-Frechet-algebra-valued characters of T(Z,) — see §3.5.

Our guiding problem in this paper is to construct a universal eigenvariety over X that parametrizes
analytic families of packets of Hecke eigenvalues that occur in OC cohomology. By OC (overcon-
vergent) cohomology, we mean the cohomology of an arithmetic subgroup of G(Q) with coefficients
in a module of distributions on the big cell associated to G g,. This concept generalizes that of
the oveconvergent modular forms of Katz.

We attain this goal to a large extent for in OC cohomology of finite slope, obtaining much
of what Hida gets in his theory of ordinary modular forms. However, in this paper, we will only
construct a universal eigenvariety locally over X. We expect that these local constructions will
patch together, but there are some technical problems we haven’t yet considered.

Before entering into technicalities, let us state a rough version of our results. In the remainder
of the introduction we will give a more accurate account of the contents.

For certain characters ¢ of T(Z,), in §3.7 we construct the universal highest weight module D,
with highest weight c. It is the topological completion of a p-adic analogue of a Verma module.
If we choose for ¢ the universal character (Theorem 3.5.4), we obtain the module D. For any
admissible open Q C X, define Do = OX(Q)®OX(X)D. For each k € X, we obtain the module Dy.
These are all modules of distributions on the big cell of G /g,, which is a p-adic manifold.

There is a unique continuous map b : Do — Dy for any k € €, taking the maximal vector to
the maximal vector (Theorem 3.7.2). If k € X is dominant integral, we have the finite dimensional
irreducible representation Vi with highest weight k. There is a unique continuous map ay : Dy — Vj,
taking the maximal vector to the maximal vector (Theorem 3.7.3).

Let (T, S) be a congruence Hecke pair in G(Q) modeled at p on the Iwahori subgroup I or a
subgroup of finite index in I, as explained further in §1.2. Let H = H(T', S) be the Hecke algebra,
assumed commutative. (In actual fact, we work adelically.) We fix a strictly positive 7 € S (§1.2)
and let U denote the Hecke operator I'#I'. For any p-adic module M on which U acts, and any
nonnegative rational number h, we let M}, be the subset of M on which U acts with slopes < h. If
M is an S-module, define the H-module

H(M) := @;H (', M).
We summarize our main results in the following three theorems:

Theorem 1. For dominant integral k, let m(k) be the positive piecewise linear function defined
in §3.11 (21). Then if h < m(k),

ay : H(Dy)p — H(Vi)n
is an isomorphism.
This is Theorem 6.4.1.

Theorem 2. For any k € X, any h > 0, there exists an admissible affinoid open neighborhood €2
of k such that H(Dgq);, is finitely generated over Ox(Q2). Moreover, for any k' € €2, specialization
induces a map

by « H* (Do) —H"(Di')n



such that any system of Oy (£2)-valued Hecke eigenvalues occurring in H (Dq, )5, specializes at £’ to
a system of eigenvalues occurring in H(Dy ), or to zero.

This follows immediately from Theorem 6.2.1.

A converse of Theorem 2 holds. The best way to express this is to make the following definition:
Let the reduced Ox(€2)-algebra R(Q2, h) be the image of H in the endomorphisms of H(Dq)y,
modulo nilpotents. Denote the tautological map by A : H — R(, h).

Theorem 3. For any £ € X, any h, take the admissible affinoid open neighborhood € of k
given by Theorem 2. The structure map of rings Ox(2) — R(,h) is a finite morphism. Let
Kk X(Q,h) — Q be the associated affinoid space morphism. Then

e For any P € X(Q,h), the specialization Ap : H — C, is a system of Hecke eigenvalues
occurring in H(D(py)n-

e X (£, h) is a universal object in the category of reduced rigid analytic spaces V equipped with
morphisms &' : V — @ and X : H — O(V) such that for all P in some Zariski dense subset
of V, the specialization A\ is a system of Hecke eigenvalues occurring in H (D (P))n-

This theorem follows immediately from the more general Theorem 4 given below in §1.7.

1.1 OC and Automorphic Cohomology

We say that a system of Hecke eigenvalues is “OC” of weight k € &', if it occurs in the cohomology
H*(Sk,Dy), where Sk is the Shimura manifold associated to some open compact subgroup Ky p

and 5k: is the local system on Sk associated to Dy — see §2.1.

If k € X can be written as k = 1) + € where ¢ = 1, is a dominant highest weight for G(Q,) and
€ is a finite order character, we say that k is “arithmetic”. We denote by X the set of arithmetic
weights. If k is arithmetic, we say that a system of Hecke eigenvalues is “automorphic” of weight
k, if it occurs in the cohomology H* (S, f/k), and Vk is the local system on Sk associated to V.

1.2 Graded Hecke Pairs and Algebras

We let I, be an Iwahori subgroup of G(Z,) and A a certain free finitely generated abelian subgroup
of T(Qp) which generalizes {diag (p**,...,p"") | a1,...,an € Z} when G = GL(n) — see §2.5. The
subsemigroup AT consists of those x € A on which the positive roots have a nonnegative p-adic
ord. We say z is “strictly positive” if all these p-adic ords are positive.

We set ¥, to be the semigroup generated by I, and AT. The triple (I,,3,,A) is an example
of what we call “a graded Hecke pair” (Definition 2.5.2). If R is any ring, the Hecke algebra H,
of double cosets I,\Y, /I, is naturally isomorphic to R[AT]. We fix a strictly positive 7 € A™ and
denote by U the corresponding Hecke operator.

In fact, we work with arbitrarily deep level structures inside I,,. For s € A™, let I® = s_llpsﬂlp
and X% = s71¥,s N %, — see §3.1.

We fix a Hecke pair (Kj,,X,) in G(Ay) with K, a compact open subgroup and we suppose
this data factors as:

Ky, = H Ky, and X, = H "%,

(<00 (<0



where each K; C G(Qy) is a compact open subgroup and ¥, is a subsemigroup of G(Qy) containing
Ky and at p we assume the pair (K, X,) is the Hecke pair (I*,%%) for some s € A™.
For any ring R we define the abstract Hecke algebra

Hr = Hr(Ka,, Sa,)

as the double coset algebra with coefficients in R. We assume the above data has been chosen so
that Hg is commutative. Let H = Hg,.

1.3 Eigenvarieties

Let €2 C X be an arbitrary open Qp-analytic subvariety of X. An “eigenvariety” over {2 is a triple
(V, k, X) consisting of a reduced Q,-rigid analytic variety V, a locally finite morphism

1%

k|
Q

and a ring homomorphism

A H—O(V),

where O(V) is the ring of global Q,-rigid analytic functions on V.
An eigenvariety (V, k, A) over Q is said to be “automorphic” (resp. “OC”) of level K} if there
is a set S of arithmetic points on V such that

1. S is Zariski dense in V, and

2. for every P € S, the specialization Ap : H — C, of A at P is automorphic (resp. OC) of
weight k(P).

The standard example of an eigenvariety is the Coleman-Mazur eigencurve for GL(2) of tame
level 1, which is defined over the full weight space X.

There is an obvious way to define morphisms so that we have a category of eigenvarieties
over €. We wish to construct an automorphic (resp. OC) eigenvariety (V,k,\) over £ which is
universal in the sense that any other automorphic (resp. OC) eigenvariety (V, ko, A\g) admits a
unique morphism to (V, k, A).

1.4 Universal S-Eigenvarieties

In this paper we construct local universal eigenvarieties in the presence of a certain finite slope
hypothesis on A. To explain this slope hypothesis, consider more generally a multiplicative subset
S of H 4(q), where A(£2) denotes the ring of rigid analytic functions on §2. Typically, S will consist
of certain polynomials in A(Q2)[U].

An S-eigenvariety over € is an eigenvariety (V, k,A) over €2 such that for every point P € V,
there exists an s € S such that Ap(s) = 0.

An OC S-eigenvariety over 2 is an OC S-eigenvariety over ) that is OC. An automorphic
S-eigenvariety over () is an automorphic S-eigenvariety over {2 that is automorphic and such that
there is a Zariski dense subset S C V of automorphic points with the property that for every
P e S, HD.(P))s — H(Vi(P))s is an isomorphism. The concept of universal automorphic or
OC S-eigenvariety is clear.



If h € Q2% we define a certain S;, with the property that for any P and s, Ap(s) = 0 implies
that the Hecke eigenvalue A(U) has p-adic ord < h — see §1.6 below for more details.

One of our main results can be phrased as asserting the following: For any h € Q=° and k € X
there exists an admissible affinoid open neighborhood €2 of k and a universal OC Sp-eigenvariety
over §2. We prove this by constructing it, as follows.

1.5 Construction Using Universal Highest Weight Modules.

Our approach to constructing a universal eigenvariety is to use the cohomology of the universal
highest weight modules Dg. These modules are Frechet spaces. In fact they are projective limits
of orthonormalizable Banach modules over Ox(2). Since Dq consists of distributions on the big
cell, it is also endowed with a right action of X, (for s € AT sufficiently large, depending on €.)
The cohomology thus acquires a Hecke action.

In fact, Do can be naturally embedded into a certain induced module from I, to X, in a way
compatible with its being a projective limit of Banach modules — see §5.5 and Proposition 5.6.1. The
machinery in Chapter 5 is developed in order to keep track of the Hecke actions on the cohomology
of all these modules.

Before continuing, let us make note of three technical challenges (that do not occur when dealing
with classical modular forms) which must be overcome when working with a general group G.

First, the coboundaries may not be closed in the cochains. Earlier authors have avoided this by
working in situations in which the coboundaries are 0. To handle nontrivial coboundaries, we lift
U to the level of orthonormalizable cochains, work there, and then pass to cohomology — see §2.6
and §2.7.

Second, for a fixed 4, H' is not an exact functor on coefficient modules. We deal with this
by using the ring-theoretic Theorem 6.1.1 to keep track of Hecke eigenpackets. The proof of this
theorem exploits the long exact sequence of cohomology.

Third, we have to introduce some new ideas in the higher rank case to factor the Fredholm
determinant of the U operator on the cohomology, so that we can apply Coleman’s method of Riesz
factorizations of Banach modules. These involve the “factorization” of Newton polygons as well as
of power series — see Chapter 4, especially Theorems 4.4.2 and 4.5.1.

We may also remark here that our method, pursued always over Q,, does not enable us to keep
track of p-torsion in the cohomology.

1.6 S Decompositions

The cohomology of the Shimura manifold Sk with coefficients in Dq is presumably of infinite
rank over Ox(Q2). To find Hecke eigenpackets occurring in the cohomology, we must cut down the
cohomology to something of finite rank. This is done using slope decompositions with respect to
U. However, as mentioned in §1.5, we have to work with a non-unique lift of U to the cochain level.
To show that the slope decomposition we get doesn’t depend on the lift, we use a purely algebraic
concept of S-decompositions, defined in §4.1 and with properties contained in Proposition 4.1.2.

We believe S-decompositions will be useful in many situations. When S-decompositions exist,
most of Hida’s ring theoretic lemmas can be proved.

Let R be a commutative noetherian ring, R a commutative R-algebra, and § C R is a mul-
tiplicative subset. For any R-module H define Hs := {h € H | 3o € § such that ah =0}. An
S-decomposition of H is an R-module decomposition H = Hg @ H', such that Hg is finitely gen-
erated as R-module; and H' is an R-submodule of H on which every element of S acts invertibly
(i.e. has a two-sided inverse in Endg (H")).



Note that we build into the definition the finite generation of Hg over R.

Now assume that R is a Banach ring and R = R[U] for some endomorphism U of H. For any
polynomial Q(T), let Q*(T) = T9EQQ(T~!). Let Sy be the multiplicative subset of R consisting
of @*(U) where @ runs over all polynomials in R[T] satisfying: (a) the leading coefficient of @
is a multiplicative unit, and (b) @ has slope < h. Then Lemma 4.6.4 says that a “slope < h
decomposition” of H is exactly a Sp-decomposition of H.

When Q is an open affinoid in S and R = A(2), we obtain slope decompositions by factoring
the Fredholm determinant det (1 —7'U) of U acting on cochains C' with values in Dq. However, in
the proof of Theorem 4.5.1, we have to shrink 2 to a subaffinoid open 2y to get the appropriate
factorization.

Since Csg, is finitely generated over A(2), we can get control of the Hecke eigenpackets occurring
in it. To do this, we use the ring theoretic construction, which is true in a very general situation
as follows:

For any ring A, define A,oq to be A modulo its nilradical. Let R be a noetherian ring, (T', %)
a Hecke pair, and denote the Hecke algebra over R as Hpr := H(I',X) ® R. We assume Hp is
commutative. Let S be a multiplicative subset of Hgr. Let M be an R[¥]-module, so that the
cohomology H (M) := @ H*(I', M) is an Hpr-module.

Let Z be an ideal in R that is generated by a finite M-regular sequence. We assume that H (M)
has an S-decomposition, from which it follows easily that H(M/ZM) has one too. For any module
R[¥]-module N, define R(N) =Im (Hr — Endgr(H(N)s) and R(N) = R(N)rea. When we need
to include § in the notation, we will write R(N,S).

We call the natural map Hr — R(N) the “tautological map.” Note that ring homomorphisms
from R(N) to a field L correspond to L-valued Hecke eigenpackets that occur in H(N).

Then we prove Theorem 6.1.1: there is a natural isomorphism (R(M)/ZR(M))red = R(M/I).
This enables us to compare Hecke eigenpackets occurring in the cohomology of Dgq with those
occurring in the cohomology of Dy, since Dy, ~ Dq/IDg where Z is the ideal of functions in A(€2)
that vanish at k. The isomorphism of Theorem 6.2.1,

(R(DQ)/IR(DQ))red = R(Dk)7

which holds for sufficiently small Q containing k, lies at the core of the universality of R(Dq).

1.7  Universality

Theorem 4. Let 2 C X be open and § a multiplicative subset of H (). Suppose H(Dgq) has an S-
decomposition. Let R((2,S) = R(Dq, S) and denote the tautological map by A : Hq) — R(€2,S).
Then

e The natural map of rings A(Q2) — R(Q2,S) is a finite morphism, so that R(Q2,S) is the ring
of rigid analytic functions on its associated affinoid space X (2, S).

o Let ¢ be the natural map X(Q2,S) — Q. Then (X(9,S),¢,\) is an OC eigenvariety over 2
of type S. (Note that ¢ need not be surjective.)

o (X(92,8),c¢,\) is universal for all OC eigenvarieties over {2 of type S.

e Suppose moreover that (X(€,S),¢, ) is an automorphic eigenvariety. Then (X (€2, S), ¢, A)
is universal for all automorphic eigenvarieties over 2 of type S.



Proof. The first two items follow from the definitions. For the next one, let (V,k, ) be an
OC eigenvariety over {2 of type S. We may assume that V is affinoid. We must find a ring
homomorphism « : R(Q2,S) — O(V) such that 4 = A o . Since A is surjective, « is uniquely
determined, if it exists.

So we must show that Ker(A) C Ker(u). Suppose h € H such that A(h) = 0. We will show
wu(h) = 0 point by point on V.

Choose P € V. We want to show pup(h) = 0. It suffices to do this for a Zariski dense set of
P, so we may assume that pp is the Hecke eigenpacket of some OC cohomology class of type S.
That is, pup is a Hecke eigenpacket occurring in H (D,,b( p))s and therefore pp factors through some
algebra homomorphism 3 : R(Dy(p),S) — C,.

Let vp : Haq) — R(Dy(p),S) be the tautological map. Then up(h) = B(yp(h)) € C,. By the
ring-theoretic Theorem 6.1.1, R(Dy(p),S) is a quotient of R(€2, S). Therefore, we can pull 3 back
to a homomorphism 31 : R(Q,S) — C,. It follows that up(h) = BT(A(h)) = 0.

The proof of the last item is the same, with “OC” replaced by “automorphic”.

1.8 Other Constructions of Eigenvarieties

Other approaches to constructing eigenvarieties for general G split at p are due to Emerton [Em]
and Urban [U]. The introduction of Emerton’s paper gives an excellent overview of the situation
from his point of view.
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In the whole paper, we fix a prime number p and all references to Banach spaces, Banach
algebras, etc. will be to p-adic Banach spaces, p-adic Banach algebras, etc.

2 Generalities on cohomology and Hecke algebras

In this chapter, we recall the adelic construction of arithmetic locally symmetric spaces and their
cohomology. We can also view this cohomology as group cohomology for the corresponding arith-
metic groups. The adelic construction is more convenient for handling the global Hecke algebra,
whose action on the cohomology we recall.

In section 2.5 we construct the local Hecke algebra at a prime p which we will use in the rest
of the paper.

In the last two sections, we assume that the coefficient module we use for the cohomology is
an ON-able Banach space. We consider resolutions of Z such that the cochains inherit a structure



of ON-able Banach space and that certain Hecke operators u can be lifted to operators U that act
completely continuously on the cochains.

In the last section we construct the Fredholm power series of U on the cochains. It depends on
various choices we have made.

2.1 Shimura manifolds.

Let G be a connected reductive algebraic group over Q and choose a decomposable compact open
subgroup Ku, := [[, K¢ of G(Ay). Let G(R)° denote the connected component of G(R) and
fix a maximal compact subgroup K, of G(R)°. Then H := G(R)°/K is the symmetric space
associated to G. Set

Ky ::KOOXKAf, and K= G(R)OXKAf,
and define
Mg = G(Q\G(A)/Kp. (1)

For each = € G(A) we let MY (z) be the connected component of Mg containing the image of
under the natural map G(A)— M. Since the double coset space G(Q)\G(A)/K is finite, we can
choose a finite set {x;} of representatives in G(A) and then

Mg = H M (z:) (2)

is the decomposition of My into its finitely many connected components. For any z € G(A) the

group
I'(z) = G(Q) N (zKz™)

is an arithmetic subgroup of G(Q) and the map pr, : H—MY (x) defined by

pr,: H 5 K/Kp — M9, (z)
2K — 2zKpy +— G(Q)zzKy

descends to a homeomorphism

In what follows we will always impose the following assumption:
['(x) is torsion-free for all x € G(A). (3)

We note that this is a condition on the compact open subgroup K, and that this condition is
satisfied for all sufficiently small choices of K ,. Under assumption (3), My is clearly a manifold.
We call Mg the Shimura manifold of level K.

2.2 Local coefficient systems on Shimura manifolds.

Let R be a commutative ring and consider the category of R-modules endowed with a right /C-
module structure and also a left G(Q)-module structure, both actions commuting with each other.
We will suppress mention of R and refer to any object in this category as a G(Q) x K-module.



Let D be any right R[K]-module. We regard D as a G(Q) x K-module by letting G(Q) act
trivially on the left. On the space G(A) x D we let K, act diagonally on the right, and let G(Q)
act diagonally on the left and form the quotient

D = G(Q)\(G(A) x D)/Kx.
Projection to the first factor gives us a natural projection
& D—M K-

It is easy to see that (ID,€) is a local coefficient system on Mg. Indeed, for each z € G(A)
we let D(z) be the left R[I'(z)]-module whose underlying R-module is D with I'(z) acting by the
formula

Vo= plz )
for any v € I'(xz) and p € D. Let

D(x) := D(2)\(H x D(x))—M (x)

be the associated coefficient system on M- (z). Then we have a well-defined map

D(x) — D
[(z)  (zKp,pn) — <G(Q)ﬂ:2KA,,u|z_1>

where 2Ky € K/Ky = H and p € D(z) = D. A straightforward verification shows that this map
identifies D(x) with the restriction of D to M9 (z).

2.3 The cohomology of D.

Having fixed representatives {z;} for the double cosets G(Q)\G(A)/K, we could study the coho-
mology of the local system D on Mg using the canonical isomorphism

(Mg, D @H* (@) (4)

and applying the theory of arithmetic groups to the right hand side. In this section we introduce
an adelic description of the cohomology.

Let Si(H) be the complex of singular chains on H endowed with the natural left action of
G(Q) induced by the action of G(Q) on H. Since H is simply connected, we have a canonical
exact sequence

S (H) Sy (H)— -+« — Sy (H) —Z—0

in the category of G(Q)-modules. Moreover, S,(H) is, in fact a free Z[I'|-resolution of Z for any
torsion-free arithmetic subgroup I' C G(Q). In particular, we may use this resolution to compute
the I'(x)-cohomology of D(x).

To facilitate the adelic point of view, we define the complex

S, := S.(H) ® Z|G(A)]

which we regard as a complex of G(Q) x K-modules by letting G(Q) act diagonally on the left and
letting K acting diagonally on the right, where the right action of £ on S.(H) is taken to be the
trivial action. Since Z[G(A)] is a free Z[G(Q)]-module, it follows that the complex

—Spp1—S— - —S)—Z[G(A)]—0

10



is an exact sequence of free Z|G(Q)]-modules endowed with a right action of K.
Now let D be a right K-module and regard D as a G(Q) x K-module as before. Define the
complex C*(D) := Homgq)xx (S«, D).

Proposition 2.3.1 There is a canonical isomorphism
H*(Mg,D) = H(C*(D)).
Proof. First, we note that for any left G(Q)-module A with trivial right action by K, the map
Homgg)xx (A ® Z[G(A)],D) — @, Homp(,,) (4, D(z;))
¢ — (i)

defined by ¢;(a) := ®(a ® x;) is an isomorphism. In particular we have

C*(D) = @) Homr (5. (H), D(:)).

Since S.(H) is a free I'(z;)-resolution of Z for each i, we have canonical isomorphisms

H(C"(D)) = @H*(F(xi)am)(xi)) ~ H* (Mg, D)

and the proposition is proved.

2.4 Hecke algebras and their action on the cohomology of D

Let X5, € G(Ay) be a semigroup containing K, , and let D be a right >4 .-module. In particular, we
let K act on DD via the natural homomorphism —X ; given by the composition X — Ky P XA p
where the first map is the natural projection and the second is the natural inclusion. So we may
form the cohomology H*(D) := H*(Mp,D) as in the last section. The additional structure on D
given by the action of X4 ; allows us to define Hecke operators on H*(ID). More precisely, the pair
(Ka;,Xa,) is a Hecke pair. So we may form the Hecke algebra

Hp :=Hr(Ka; Xa,)

in the usual way as a convolution algebra of double cosets over the base ring R.
The algebra Hpg acts naturally on C*(D) as follows. First, let X4, act on Homg(Q)(S*,D) by
the formula o : ® — ®|o, where ®|o is defined by

(®lo)(z) = ®(zo)|o, (x€S.)
for o € ZAf and ® € HomG(Q)(S*,]D)). Thus

C*(D) = {@ € Homg q) (S, D) | ®|k =& for all k € Ky, }

and Hp acts in the usual way. In particular, if h, := [Ka ; oKy f] € Hp is the element represented
by the characteristic function of the double coset Ky aKy ., then for any ® € C*(D) we have

®|h, = Z_<I>|aj (5)

where KAJ,O'KAJ, = Hj KAfaj is the right coset decomposition.
The action of Hr on C*(D) commutes with the coboundary maps and therefore induces an
action of Hp on the cohomology H*(D):

Hpr—Endg (H*(D)).
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2.5 The Iwahori Hecke pair at p.

Recall that G is a connected, reductive, algebraic group defined over Q. Let G = G(Q)). Inside G
fix a maximal Q,-split torus T. Corresponding to T(Q,) there is an apartment in the building for
G and we fix a chamber in the apartment. Its stabilizer is an Iwahori subgroup I of G [C p. 140].

Let M be the centralizer of T(Q,) in G and P a parabolic subgroup of G such that (P, T(Q,))
is a parabolic pair. Then P = MN is a minimal Q,-parabolic subgroup of G, where N = R, (P)
is the unipotent radical of P. Then M consists of the Q,-points of a connected and reductive
algebraic group defined over Q, and P = MN is a Levi decomposition of P, so that M NN =1
and M normalizes N. We let MY denote the unique maximal compact subgroup of M. ([C] pp.
127, 134-5).

Let P°PP = M N°PP be the opposite parabolic subgroup and its Levi decomposition, where
NOPP = R, (P°PP). Note that PP NP = M ([C] p. 128). Weset NT = NNI, N~ = N°°P N [
and T'= T(Qp,) NI = T(Z,,).

Then M° N T(Q,) = T, the maximal compact subgroup of T(Q,) and M°T(Q,) has finite
index in M ([C] p. 135). Define

TH={teT(@Q,) |t 'Nttc NT}.

We set M+t = MOT+,

We have the Iwahori decomposition : I = N~“MN* (and in fact this gives a unique factoriza-
tion of each element of I). Moreover, if m € M then mN~-m~! C N~ and m~'N*tm c N+ ([C]
p. 140 and [T] p. 50 last paragraph of 3.1.1 where € is taken to be an open facet).

Set ¥ = IT*]I.

Lemma 2.5.1 (I,Y) is a Hecke pair.

Proof. There are two things that need to be proved. First we must show that ¥ is closed under
multiplication. In fact, if b,c € T we will show that IbIcl = IbcI. The left hand side clearly
contains the right hand side. So we must show that blc C Ibcl.

Let « € I and write = n~mnt with n* € N* and m € M. Then

brc=bn " mntc= nl_bcmnf € Ibcl

for some nf € N*.

To see that ¥ commensurates I, it suffices to check that any b € T+ commensurates I =
N-MON*. Now b centralizes M?. As for its conjugation action on N*, use the fact that N* is
generated by root subgroups to see that b commensurates it.

We will need the following definition:

Definition 2.5.2 A graded Hecke pairin G is a triple (I, X, A) consisting of a Hecke pair (7, ) in
G and a free finitely generated abelian subgoup A C G satisfying the following properties:

(a) there is a (unique) partial ordering < on A for which AT := A N X is the monoid of non-
negative elements of A;

(b) the canonical map AT—TI\X/I is a bijection;

(c) the map 6 : ¥—— AT defined by composing ¥——TI\X/I with the inverse of (b) is a multi-
plicative homomorphism;

12



(d) for all o,7 € ¥ with §(0) < §(7), we have

0¥ N 7Y is non-empty <= o € 7X.

The condition (d) can be restated as follows. Let ¥7! := {o7!|oc € ¥} and extend § to a
function § : XX LU XTIE——A by §(or7!) = 6(77 o) = 6(0) - §(7)7L, for all 0,7 € X. Then
condition (d) is equivalent to the assertion

E:{JGEZ}_lﬂE_lE‘(S(U)ZI}. (6)

We want to extend (I,%) to a graded Hecke pair.
Let X*(T) denote the free abelian group of Q,-characters of T and X, (T) = Homgz(X.(T),Z).
The map ord : T(Q,) — X,(T) is defined by the equation

< ord(z), A >= ord ,A(2)

for all z € T(Qp), A € X*(T). The kernel of ord is . We let A(T) denote the image of ord ([C],
pp. 134-5).

We choose a splitting of A(T) back into T(Q)) and call the image A. So A C T(Q)) is a free
abelian group. We define AT = ANT.

We will identify A to its image in M/M°. Note that M° = M NI and A has finite index in
M/MP° ([C] p. 140).

Clearly, TT = A™T, so that ¥ = IT"1 = IA™TI.

Theorem 2.5.3 (I,%,A) is a graded Hecke pair.

Proof. We will check conditions (a)-(d).

(a) We must check that ANY = AT. The left hand side clearly contains the right hand side.
So suppose that a € ANX. Then a € A and a = xby for some z,y € [ and b € A™.

The Bruhat-Tits decomposition ([C] p. 140 and [T] p. 51) says that G is the disjoint union of
double cosets TwiI, where wy runs over the affine Weyl group (M/M°)W (where W is the usual
Weyl group of G). Therefore x =y =1and a=be€ At.

(b) We have a map ¥ — AT defined by sending 0 = zby to b where z,y € [ and b € AT.
By the Bruhat-Tits decomposition, this map is well-defined and it descends to a surjective map
§: I\X/I — AT,

To show injectivity, suppose Iol and Io’'I have the same image. Then o = xby and ¢’ = 2'by/
with z,2',y,y' € I and b € A*. Then o/ = 2’2~ 'oy~ 'y € Iol and Iol = Io'I.

(c) We must show that § is multiplicative. That is, if b,c € A" we must show that Iblcl = Tbcl.
The left hand side clearly contains the right hand side. So we must show that blc C Ibcl. We
proved this already in the proof of Lemma 2.5.1.

(d) Before we prove this, we need the following lemma.

Lemma 2.5.4 Let X = P°PPN. (i) Anyo € X has a unique decomposition o = utv withu € N°PP,

te Mandv € N. (i) X C X. (ii) For any 0 = utv € X, 0 € ¥ if and only if u € N,
te MOAT =M" andv e NT.
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Proof of Lemma 2.5.4. (i) We know that P°°P N N C P°°°P N P = M, so that P°PP N N =
M NN =1. Given ¢ € X, we can certainly write it in some way as ¢ = utv as claimed. If now
(with obvious notation) utv = u/t'v’ then v'v=! € P°°P N N, and hence v = v’ and then ¢ = ' and
u=u

(ii) First suppose that ¢ = zby € ¥, where as usual z,y € [ and b € AT. Then z = nl_mln;r
and y = ny mgn§r with nfE e N* and m; € M°. We will use similar notation for other elements of
N*. Recall that M° normalizes both N* and N~ because M normalizes both N and N°PP and
M°cC 1.

Then o = nymin]bny mong = nymibninymeng. Since nin, € I, we can rewrite it as
nymynyt. So o = nymibny mynmend = ngmibmygmond € N"MOATNT C X.

(iii) One implication is obvious. For the other, suppose o = utv € X. Then also ¢ = zby
with 2 € N7, b € M°AT and y € N as we saw in (ii). By the uniqueness (i) we see that
u=uzx,t=bv=y.

Now we can prove (d) in the form of (6). We must show that if g € ¥X"!NY71¥ and if §(g) > 1
then g € 3.

By the Lemma, any element of ¥ can be written in the form n~m%n*t with n* € N+, m°® € M©
and b € AT. We use the obvious notation for various such decompositions.

Write

g= nl_m(fbmfbgflmgn; = n;bgflmgngbzlmgni
and note that because d(g) > 1 we have that biby ™! = b3~ 'hy € AT,

We need to show g € . Since ¥ is closed under right or left multiplication by M°, and MY
normalizes N+, N~ and centralies AT, without loss of generality we may assume that m? =1 for
all i (cancel mYm9 on the left and mdm$ on the right.) Since ¥ is closed under right multiplication
by Nt we may assume that nj{ = 1 and since X is closed under left multiplication by N~ we may
assume that n; = 1.

We then have

g= blnfbg_ln; = n§b3_1n§b4
and therefore
(n?{)_lblnfl)Q—l = b3_1n§b4(n5)_1.

Using the fact that M normalizes N and N°PP we get that
blbgfl[bgblil(n;)ilblbgil](bgn?—bgfl) = (637171??63)[bgflb4(n5)71b4flb3]b3ilb4

are two decompositions of the same element in X in the form N°PPM N. By the uniqueness of
Lemma 2 (i), we get that

[bel_l(n;)_lble_l](bgnii_bg_l) = bgbl_l(n;)_lblni_bg_l =1.

Therefore, g = n;b1b2*1n2_ cINTT =3,
From now on we will fix a compact open subgroup K, as in section 2 and a semigroup

¥, C G(Af) containing Ky, We will assume that K, = I and that ¥, = Eg} x X. Thus the
local component of the corresponding Hecke algebra at p is the algebra of double cosets I\3/I,
which is commutative. We assume that the whole global Hecke algebra is also commutative.
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2.6 Finite resolutions.

Recall that in chapter 2 we fixed representatives {z;} for the double cosets G(Q)\G(A)/K. We
also had S, (H), the complex of singular chains on H endowed with the natural left action of G(Q),
and a canonical exact sequence

—Sp+1(H)—S,(H)— -+ —Sy(H)—Z—0

in the category of Z|G(Q)]-modules. In particular, S,(H) is a free I'(x;)-resolution of Z for each i.
Let D be a module as in Section 2.2 and recall that C*(D) = Homgq)xx (S, D).
From (§2.3(4)) and Proposition 2.3.1 we have the canonical isomorphisms:

H(C*(D)) = H* (Mg, D @H (7))

Also we showed that

— @ Homp,,) (S« (H),D(z;)).

For each i, we choose a finite resolution Fl otz by finitely generated, free, left Z[I'(x;)]-modules,
so that

is exact. Such resolutions exist by a result of Borel and Serre, since we are assuming that I'(x;) is
torsion-free. ‘

We also choose homotopy equivalences between each F,EZ] and S, (H). That is, we choose chain
maps f : F,,[i] — S,(H) and ¢l : S,(H) — F*[i] such that fl1 o glll and ¢!l o fll are homotopy
equivalent to the identity, for all ¢. They are unique up to a unique homotopy.

Define the cochains C*(D) := P, Homp(mi)(Ek[z],D(xi)). They have the same cohomology as
C*(D). In fact we have inverse homotopy equivalences between them, f := ®(f [y . c*(D) —
C*(D) and g := (gl1)* : C*(D) — C*(D).

We use these homotopy equivalences to transfer the action of the Hecke algebra defined on the
cochains C*(D) in Section 2.4 to the cochains C* (D). Note that we do not necessarily get an action
of the whole Hecke algebra simultaneously on C~’*(}D>), but we do get for any single Hecke operator
a formula that induces that Hecke operator on the cohomology.

Fix 0 € ¥j,. Recall that for ® € C*(D), ®|o was defined by

(®|o)(x) = ®(zo )0

For any ¥ = 5" 0ll € C*(D), define \IJTO' by

Vo = f(g(W)lo) = > (¥ o gy o s}, (7)

or brieﬂyTa =foloog.
Now if h, € Hp is the element represented by the characteristic function of the double coset
Ky, 0Ky, then for any ¥ € C*(D) we define

U|H, = Z Vo, (8)
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where KAfO'KAf = ]_[j KAfaj is the right coset decomposition.

Then H, induces h, on the cohomology.

More generally, suppose D, E and F are merely K, modules, a : D — E is any linear map, and
bj : E — I are also linear maps, indexed by the same set that indexes the right cosets above. Write
the map a(z) as z|o and the maps b;(y) as y|x;. Then we can use the same formulas (7) and (8)
to define a map H, : C*(D) — C*(F). Thus we interpret z|o; as bj(a(z)) with o; = ok;. Of course
H, depends on a and the b;, which we suppress from the notation.

2.7 ON-able cochains and completely continuous maps.

For definitions and the basic properties of orthonormalizable (ON-able) Banach modules and char-
acteristic power series, see [B] or [Co].

Definition 2.7.1

(a) Let R be a flat Zy,-algebra, which we assume is separated and complete in the p-adic topology.
Let M, N be a R-modules and A : M—N be an R-module map. Then A is said to be
completely continuous over R if for every n > 0, the image of the composition

M 2 N—N/p"N
is finitely generated as an R/p"™R-module.

(b) Let K be a finite extension of Q, and now let R be a K-Banach algebra. We assume the
values of R are the same as the values of K, i.e. |R|| = || K||. Let M, N be R-Banach modules
and let R?, M°, N be the closed unit balls in R, M, N respectively. Note that M° and
N? are R%-modules. Let A : M—N be an R-Banach module map. Then X is said to be
completely continuous over R if A\|M° : M° — N is completely continuous over RY.

Definition 2.7.2 An element ¢t € AT is said to be strictly positive if a(t) < 0 for every positive
root o of G(Qp). (See Section 3.1 below for the definition of the “positive” roots.)

Definition 2.7.3 Let ¥ be a subsemigroup of X4, and M an R-Banach module endowed with a
continuous action of the semigroup . We say the action of X on M is completely continuous if

(a) forall o € %, |lo||y < 1, ie. o(M%) € M9 and

(b) for all strictly positive t € AT N3, the operator ¢t : M—M is a completely continuous
R-morphism.

Let QT denote the set of nonnegative rational numbers. Recall that a polynomial Q(T') is called
“Fredholm” if Q(0) = 1.

Definition 2.7.4 Let M be a K-Banach space with a continuous action of ¥. Let h € Q" and ¢
be a strictly positive element of AT N Y. Then we say M has slope > h with respect to ¢t if

[t]lar < p~".

If Q(T) is a polynomial of degree d, let Q*(T) := T?Q(1/T).
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Proposition 2.7.5 Let D be a K-Banach space with a completely continuous action of ¥ which
satisfies the properties of D in Section 2.6. Suppose that D has slope > h for some h € QF with
respect to t. Let U acting on the cochains C*(D) be a lift (as in §2.4(5)) of the Hecke operator hy
acting on the cohomology H*(C*(D)). Let Q € K|[T] be a Fredholm polynomial of slope < h. Then
the following act invertibly: Q*(t) on D, Q@*(U) on C*(D) and Q*(h) on H*(C*(D)).

Proof. Write Q(T) = ag + a1T + - - - + agT% where ag = 1 and ag # 0. Since it has slope < h, we
have that ord ag — orda; < (d — i)h for every i = 0,...,d — 1. Therefore for each i,

Since D has slope > h, we see that U is a continuous operator on C*(D) with norm satisfying

Ul <p™.
Therefore for each i,
|2t < 1.
aq
Write é@*(T) =1- P(T), so that P(T) = —de - Z—;Td_l — = (LZ—;T. It follows that
IP(U)] < 1.

From this we see at once that the action of @*(U) on C*(D) is invertible with inverse given explicitly
by the convergent series of operators

QU) = i(1 +PU)+PU?+---+PU)"+--).

aq
This result descends to h; acting on cohomology. The assertion for ¢t on DD itself is proved similarly.

Now let R in addition be a noetherian K-Banach algebra. Let M be an ON-able R-Banach
module and A a completely continuous R-endomorphism of M. Then A has a characteristic power
series Py (T") which is morally speaking the determinant of 1 — AT'. It is an entire power series with

coefficients in R.
Now let D, E and IF be ON-able R-algebras, and a : D — E and b; : E — [F R-linear maps as at

the end of Section 2.6. Since C*(X) is isomorphic to a finite direct sum of copies of X (whatever
X may be), it is an ON-able R-algebras if X is.

Proposition 2.7.6 Ifa:DD — E is completely continuous and each b; : E — I has norm <1 then
H, : C*(D) — C*(F) is a completely continuous map.

Proof. From formulas §2.6(7-8), we get that for any y € F*[i],

(V|Ho)(y) = {(Z o g (1 (y))o; ")} oy

Now for each j, o; = or; for some r; € Ky,. The expression in the curly braces is in D and for

any r, D|o modulo p” is finitely generated over R/p"R. Since there are only a finite number of F*m,
each finitely generated over Z, the result follows.

_ If D =T, we thus can obtain for each degree * the characteristic power series Py, (T") of H, on
C* (D).
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3 Analytic objects

In this chapter we will define the basic analytic structures we consider. Then we construct the
main analytic objects we use in our study of the arithmetic cohomology. These include the big cell,
s-structures on it, and highest weight modules of distributions. We construct a universal highest
weight module. At the end of the chapter we discuss locally algebraic highest weight modules and
prove a comparison result between them and their corresponding Verma-type modules.

In this chapter and subsequent ones, we assume that G is split at p. We will use the notation
of section 2.5, except that we write B for the minimal parabolic subgroup of G(Q,) rather than P.
Also, we find it convenient to write N in place of N and N°PP in place of N~.

Thus M = T(Q,) and T(Q,) is a maximal split torus of G(Q,). Also M? =T = T(Z,) is the
maximal compact subgroup of T(Q,). Then I = N°PPTN is the Iwahori subgroup. We have a
subgroup A and a subsemigroup A of T(Q,) such that (I, %, A) is a graded Hecke pair.

3.1 Groups and semigroups.

In section 2.5 we defined the semigroup A'. It is easy to see that for any ¢ € AT we have
tNOPPt—1 C N°PP and ¢ !Bt C B.

Let A denote the basis for the positive roots with respect to the pair (T(Qy), B). Our conven-
tions are such that if § € A then ord,(§(¢)) < 0 for any ¢t € AT. Then ¢t € T(Qy) is in TAT if
and only if a(t) < 0 for every positive root . Recall that an element ¢t € AT is said to be strictly
positive if a(t) < 0 for every positive root a.

We order AT by divisibility: s; < sg if and only if there exist t € A* such that sit = so. This is
the same as the ordering guaranteed by property (a) of a graded Hecke pair, Definition 2.5.2. We
say s; — oo if a(s;) — —oo for every positive root a.

We have that

Y =IATI = N°°PATB

is a subsemigroup of G(Q)). Every element o € ¥ can be expressed uniquely in the form o = vt
with v € N°PP, ¢ € AT, 3 € B, and the bijection ¥ — N°P x AT x B is a homeomorphism.
Moreover, the map

§:X——A" defined by o =uvtBr— (o) =t

is a homomorphism of semigroups.
For any element s € A* and any semigroup S C G(Q,) we let

S :=8nNs1Ss.
With this notation, we have
N* = s7INs,
B® = s 1Bs, 9
J5 = NOPPTNS — Nopsz, ( )

and ¥° = [SAT]® = NOPPATBS,

We shall refer to the set of these and the other objects in this section that depend on s as an
“s-structure” on G.

Proposition 3.1.1 For any open subgroup T' of T, NSN°PP C N°PPT'N*® for s >> 1.
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Proof. First we show that given n € N* w € N°PP there exist w; € N°PP ¢t € T ,n; € N?® such
that nw = witny. Since N°*N°PP C I, nw can certainly be written in that form, except that all we
know a priori is that n; € N. Now n = s~ 'ms for some m € N, so setting w; = sws~! € N°PP,

1 1

nw=s Msw=3S8 Mmwis = silwgtmls =g !

wgstsflmls
where mw; = wotmy for some wy € N°PP t € T,m; € N. Since nw and ts~!mys are in I, so is
s lwgs in I NBPP(Qp) = N°PP and so n = s~ 1mys is in N*.

As s — 00, the N? shrink down to the identity. The map sending nw = witn; to t is continuous.
The result now follows from the compactness of N°PP,

Definition 3.1.2 Fix once and for all a sequence Ty of open subgroups of T which tend to the
identity as s — oo and such that Ts C Ty if s’ < s. For an arbitrary s € AT we define T'(s)
to be the (open) subgroup of T' generated by Ts and all ¢ € T such that that nw = witn; for
n € N° w & NP w; € N°PP ny € N,

Note that N*NPP ¢ NPPT(s)N*®, and if s’ < s, then T(s) C T(s') and N* ¢ N¥'.

Remark. If G is semisimple, T'(s) can simply be defined as the smallest subgroup of T such that
N3N°PP C NOPPT(s)N*. For in this case, looking at individual root groups and their opposites,
one can show that the group generated by all ¢ € T' such that that nw = witn; is open and the T
can be dispensed with.

We set (for r < s)

I(r,s) := N°PP.T(r)- NS5,

Y(r,s) = I(r,s)ATI(r,s) = N°PP.ATT(r)- N*
I(s) = I(s,s),

X(s) = X(s,s).

As s — oo, the T'(s) form a fundamental neighborhood system of open subgroups of 1 of 7. A
straightforward calculation shows that also I(r,s) is an open subgroup of I and that X(r,s) is a
subsemigroup of X..

Whenever s, s’ € AT with s’ < s we have inclusions

IF CI°, I(s)CI(s), ©¥C%, %(s)Cx(s).

Moreover, the families {I°} e+, {1(s)}ser+, {2 ser+, and {3(s)}ser+ form fundamental neigh-
borhood systems about B°PP, N°PP BPPAT and N°PPAT respectively.

For future reference, we record the following simple proposition, whose proof we leave to the
reader.

Proposition 3.1.3 The canonical group homomorphism T—T/T(s) extends uniquely to a mul-
tiplicative map
¥ —T/T(s)

that is trivial on X(s).
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3.2 Locally analytic representations of p-adic Lie groups.

Recall (see 3.1 in [Se]) that a p-adic manifold is a topological space W endowed with a full p-adic
analytic atlas, i.e. a maximal compatible family of charts (f,Uy), where f : U f—>(@g is an open

function inducing a homeomorphism Uy = fU #). Morphisms between manifolds are “locally
analytic” functions (these are called “analytic functions” in [Se]).

More generally, if V' is a locally convex Q,-vector space and W is a p-adic manifold, then
a function ¢ : W——V is said to be locally analytic if for every Q,-Banach space V and every
continuous linear map 1 : V—V the composition

nop: W—V-—V

is locally analytic, i.e. is defined locally on W by convergent V-valued power series.

Let H be a p-adic Lie group, i.e. a p-adic manifold endowed with a locally analytic group
structure. Let V' be a complete locally convex Q,-vector space and endow Endg, (V') with the weak
topology. A continuous representation of H on V is a continuous homomorphism

Y H—Autg, (V).

Definition 3.2.1 We say ¢ is locally analytic if, for every v € V, the function p, : H—V defined
by pu(7v) = v|v is a locally analytic function on H.

Every open subset of the Q,-points of a linear algebraic group is endowed with a canonical
p-adic analytic structure. Thus T', N, N°PP and I are all p-adic Lie groups. Moreover, the map

NOPP x T'x N—1, (v,t,u) — vtu (10)
is an isomorphism of p-adic manifolds (but not of groups).

Theorem 3.2.2 Let H be one of the Lie groups T, N, N°PP or I. Then every continuous repre-
sentation of H on a complete locally convex vector space V is locally analytic.

The proof is based on the following well-known lemma.

Lemma 3.2.3 Let R be a complete locally convex Q- algebra and let ) : ZZ—>RX be a continuous
group homomorphism (i.e. Y(x +y) = ¥(x) - Y (y) for every x,y € Zg). Then 1 is locally analytic.

Proof: It suffices to prove this when R is a Q,-Banach algebra. In that case, we may choose
m € N sufficiently large so that w(meg) C 1+ pR° where RV is the closed unit ball in R. Then
for each a € Zg the function fo ., : a + meg—%g defined by x —— (z — a)/p™ is a local chart

at a. Moreover, letting \ := log(1(p™)) € pR®, the series exp(Az) converges for every x € Z, and
o fo 1 is given on the neighborhood a + meg by the convergent power series

d
(W0 fam)(a+p"z) = ¢(a) - [ exp(Aay).
i=1

This completes the proof of the lemma.

20



Proof of the Theorem: Let R := Endg, (V') endowed with the weak topology. We will show that
every continuous group homomorphism

P H—R* (11)

is locally analytic. The theorem is an immediate consequence of this assertion.

When H =T, (11) follows from the lemma together with the fact that 7" has an open subgroup
isomorphic to Zj.

Now suppose ¢ : N— R* is a continuous group homomorphism. We can write N as a product
of root subgroups:

N:NpXNp_1 xX---xN — N

(12)

(Uny Un—15 -0 5 UL) = UpUp—1- U

and 7 is an isomorphism of p-adic manifolds (but not of groups). Each N; = Zgj as p-adic Lie
groups, for some d; > 0.

For each j we let ¢; : N—R* be the composition of ¢ with projection to the factor N;

in the decomposition (12). Since 9|y, : Nj— R* is a continuous group homomorphism and

since IV; = Zgj , we know from the lemma that t;|y, is locally analytic and therefore also 1; is
locally analytic. But again from the decomposition (12) we see that for every u € N we have
Y(u) = Yp(u) - Yp—1(u) - ... 1(u). Thus 9 is the product of locally analytic functions on N and
is therefore locally analytic. This proves the theorem when H = N. The case H = N°PP is proved
similarly.

The case H = I is proved in exactly the same way but using the decomposition (10) and the
fact just proved that any continuous group homomorphism from either N°PP T or N to R* is
locally analytic. This completes the proof of the theorem.

3.3 Strict p-adic manifolds.

For a Qp-Banach space V, we let V(X1,...,Xy) := V@QPQP<X1, ..., Xg) where Qp(X7, ..., Xqg)
is the Q,-Tate algebra of dimension d. Thus we have

o0
V{X1,...,Xq) = > i X Xy | v €V, and vy — 0 as T — oo
i1y yig=0
The norm of an element of V(X7,... , Xy) is the sup of the norms of its coefficients.
Every power series F' € V(X1,..., X ) converges on Zg to a function Zg—»V. We say that a
function f : Zg—ﬁ/ is strictly analytic if there is a power series Fr € V(X;,..., Xy) representing

f. In particular, a function f : Zg—%@g is strictly analytic if and only if each coordinate function
of f is represented by an element of the Tate algebra Q,(X1,...,Xy). Such a function extends
uniquely to a rigid analytic function

F f- O%p—@g

where Oc, is the ring of integers in C,, := @p.

Definition 3.3.1 Let [ : ZI—Z% be a function.
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(a) We say f is a strict isomorphism (of manifolds) if f is a homeomorphism and both f and
f~! are strictly analytic as functions Zg—>(@g.

(b) We say f is a strict immersion if Fy : (’)(‘ép —>(CZ is injective.

It is not hard to see that if f : Zg—%g is a strict immersion then the coefficients of F; are in
Zy, and the derivative Dy : Zg—>Zg of f at the origin is injective. Moreover, if Ly : Zg—>Zg is
the first Taylor polynomial of f, i.e. Lys(x) := f(0) + Dy(z), then there is a strict isomorphism
g: Zg—%g such that f = Lyog. It follows from this that the image of a strict immersion f is the
same as the image of its first Taylor polynomial Ly. In particular, the image is a compact open
subset of Zg. Indeed, the image is an open affine sublattice of Zg.

Definition 3.3.2 A strict immersion f : Zg—%g is said to be a contraction if Dy = 0 (mod p).

Now let W be a p-adic manifold. We say that a chart f on W is strictif f(Uy) = Zg. We define
the notion of strict equivalence of strict charts by

Uy, =Uyp, and
Ji~ f2 =

fao fit: Z3—7Z% is a strict isomorphism.

An atlas F on W is said to be strict if (1) every chart in F is strict, and (2) the family {Uy}rer
is a covering of W by disjoint open subsets. We define strict equivalence of strict atlases by

F1~ Fo <= Vf, € F1, Afs € F5 such that f1 ~ fo.

Definition 3.3.3 A strict p-adic manifold is a manifold W together with a strict equivalence class
of strict atlases on W.

Given a p-adic manifold W and a strict atlas F on W, we will often write W[F] to denote W
endowed with the strict analytic structure represented by F. The collection of disjoint open sets

{Uys| f € F} depends only on the strict analytic structure. We will call these open sets the “cells”
of W[F].

Definition 3.3.4 Let Wi[F;] and W5[F3] be strict p-adic manifolds of dimensions d; and dy re-
spectively. A function ¢ : Wi[Fi]|—Ws[F2] is said to be strictly analytic (respectively, a strict
immersion; respectively, a contraction) if for every fi; € Fj there is an fo € Fo such that

(a) o(Up) € Uy,, and

(b) faopo fit: Zgl —>Zg2 is strictly analytic (respectively, a strict immersion; respectively, a
contraction)

If 7" and F are two strict atlases on the same p-adic manifold W, then we say F’ is a refinement
of F and we write
F'<F

if the identity map on W induces a strict immersion W[F'|—W/|[F]. If the identity map is a
contraction then we say F’ is a contracting refinement of F and write

F << F.

22



Definition 3.3.5 Let W = W/[F] be a strict p-adic manifold and let ¢ : W—V be a function
from W to a Q,-Banach space V. Then ¢ is said to be strictly analytic if for every f € F, the
composition ¢ o f~1: Zg—>V is strictly analytic.

If W = WI[F] is a strict p-adic manifold and V' is a Q,-Banach space, then we let
AW, V) i={p: W—V ‘ ¢ is strictly analytic } (13)

and we endow this space with a norm || - || defined as follows. For each f € F and ¢ € A(W,V)
the function ¢ o f~! is represented by a power series ®; € V(X1, -, X4). We define ||¢| s := || D]
and

lpllw := sup [l]| 5.
feF

One easily checks that || - || does not depend on the choice of F representing the strict analytic
structure and that A(W, V) is complete with respect to || - ||y. We also have the following simple
proposition.

Proposition 3.3.6 Let ¢ : W1—W5 be a strictly analytic map of strict p-adic manifolds. Let V
be a Qp-Banach space. Then pullback induces a continuous linear function

o A(Wo, V)— A(W1, V).

If, moreover, ¢ is a contraction, then ¢* is a completely continuous linear map of Qp,-Banach
spaces.

3.4 Locally analytic distributions on p-adic manifolds.

Let W = W[Fw] be a compact strict p-adic manifold of dimension d and let R be a Q,-Banach
algebra. (If R = Q) or a finite extension of Q) easily supplied from the context, we will suppress
the R’s from the notation.)

As in §3.3(13) we define the Banach algebra

AW, R) := {p: W—R| ¢ is strictly analytic }.
We also define
AW, R) :={¢: W—R | ¢ is locally analytic }

and note that we have a canonical isomorphism

AW, R) = lim A(W[F],R)
F
where F runs over the directed set of all strict atlases on W refining . We endow A(W, R) with
the locally convex final topology with respect to the inclusions A(W[F], R) — A(W, R). This is
the finest locally convex topology for which all these inclusions are continuous (see p. 22 [Sch]).
Dually, a continuous R-linear functional p : A(W, R)— R will be called an R-valued strictly
analytic distribution on W. We denote the space of all such distributions by

D(W,R) := { pn: A(W,R)—R | p is R-linear and strictly analytic }
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and endow D(W, R) with the norm |||y dual to the norm on A(W, R). Clearly, D(W, R) is complete
with respect to || - ||w. For any strictly analytic map ¢ : W7 ——Wj of strict manifolds, we have a
canonical R-linear continuous map

s D(W1[F1], R)—D(W3[Fa], R).

The map ¢, is completely continuous if and only if ¢ is a contraction.
Finally, we define the space of R-valued locally analytic distributions on W to be the space

D(W,R):={p: A(W,R)—R | p is R-linear and continuous}
and we endow D(W, R) with the coarsest topology for which the maps D(W, R)—D(W[F], R) are
continuous (on p. 20 of [Sch] this is called the initial topology). In particular, the canonical map

D(W, R)— lim D(W [F], R)

F

is an isomorphism of locally convex R-modules.
We summarize this discussion with the following theorem.

Theorem 3.4.1 The space A(W,R) is isomorphic to a compact inductive limit of Banach R-
modules and D(W, R) is a compact projective limit of Banach R-modules. In particular, both of
these spaces are complete locally conver R-modules. Moreover, D(W, R) is Frechet.

Proof: The proof is immediate from the above discussion together with the simple observation that
every strict atlas F admits a sequence of strict refinements {F (”)}n that is cofinal in the analytic
structure and satisfies F("t1) << F) for every n.

Let B¢ C Cg be the open unit polydisk centered at 1 in (CZ, endowed with the Q,-rigid analytic
structure associated to convergent power series at 1 with coefficients in Q,. To each cell U of W
we associate the Q,-rigid analytic space Xy := B¢ and define the Qp-rigid analytic space

Xy = HXU.
U

Here U runs over the cells of the strict manifold W. We let A(Xy) be the locally convex space of
Qp-rigid analytic functions on Ay .

Theorem 3.4.2 There is a (non-canonical) isomorphism
D(W) — A(Xw)
of locally convex vector spaces.
Proof: For t € BY and = = (z1,... ,24) € Zg we define
Yt x) =t ..t e B. (14)

For fixed x € Zg, we have (-, ) € A(B?). On the other hand, for fixed ¢t € B¢ we have 1(t,-) €
A(Zg,(Cp). Thus for p € D(Zg) we may define M,, : B2—C,, by

M0 = [ 0tt.2) duo)

Theorem 3.4.2 is now a consequence of the following well-known theorem of Amice and Velu.

Theorem 3.4.3 For all 1 € D(Zg) the function M, is rigid analytic, i.e. M,, € A(B%). Moreover,
the map
M : D(Z4)—A(B?)  defined by p+— M,

is an isomorphism of locally convex Q,-vector spaces.
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3.5 The weight space.

The Lie group T is canonically isomorphic to the product of a finite group A7 and an open subgroup
U that is (non-canonically) isomorphic to Zj:

T:ATXU.

This gives us a canonical strict analytic structure on 7" whose cells are in natural one-one corre-
spondence with the elements of Az. Let A7 := Hom(Ar,Z,) be the character group of Ay and
fix an isomorphism ¢ : AT,—Ar. Then we have a rigid isomorphism

XT = A; x B™.
Proposition 3.5.1 For complete subfields K C C,, there is a functorial (in K ) group isomorphism
Xr(K) =5 Homeon: (T, K™).

Proof: Fix a continuous (hence strictly analytic) group isomorphism ¢ : U—Z;. The map ¢ :
B" x Zy—C} defined in §3.4(14) induces a natural isomorphism of groups

B"(K) — Homeont(Zy, K*) defined by ¢ +— (¢, ).
Pulling back by ¢ we thus have natural isomorphisms
Xr(K) = A% x Homeont (U, K*) = Homeont (T, K™).
This completes the proof.
More generally, we make the following definitions.

Definition 3.5.2 A weight on T is a pair k := (k, R) consisting of a complete locally convex
Qp-algebra R and a continuous group isomorphism k : T— R*. An R-valued weight is called an
R-weight. If k; : T— R}, i = 1,2, are two weights then a morphism ¢ : k;—ks is a continuous

Qp-algebra homomorphism 1) : Ri— Ry for which ki = v o ks.
We define the group of R-weights to be the group
Xr(R) := Homeont (T, R).

We will write the group law of Xr(R) additively and for any k € Xp(R), t € T, we let t* € R*
denote the value of k on t. With these conventions, we have tF1152 = ¢h1 .tk for any ki, ke € Xr(R)
and any t € T

For an important example, we take R to be D(T) endowed with the Qp-algebra structure given
by convolution product. Explicitly, if p,v € D(T) then the convolution p * v is the distribution
whose value on a locally analytic function ¢ € A(T) is given by the “integration formula”

(1*v)(p) ::/T</T<P(st) du(@‘)) du(t).

Moreover, for each t € T, we let [t] be the Dirac distribution concentrated at ¢t. The map [-] :
T—D(T)* is a continuous group homomorphism. In theorem 3.5.4 we show that [-] is universal
in the category of weights on T
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From theorem 3.4.3 we see that if p € D(T'), then the map 7, : X7(C,)—C, defined by

m(h) = [ £ autt
T
is Qp-rigid analytic. Moreover, the canonical map
D(T) — A(Xr)

is an isomorphism of locally convex Q,-algebras.

Now let R be a complete locally convex Qp-algebra and for each continuous Q,-linear map
¢ : D(T)—R define F, : T—R by F(t) := ¢([t]). Since [| : T—D(T) is locally analytic and
¢ : D(T)—R is continuous, we conclude that F, : T— R is locally analytic, i.e. F,, € Ar(T).

Lemma 3.5.3 The map F : Homeont(D(T), R)— Ag(T') defined by ¢ — F,, is an isomorphism
of locally conver Qp,-vector spaces.

Proof: Since Ar(T) is a compact inductive limit of Q,-Banach spaces, we know from [Sch] that
AR(T) is reflexive. Thus the canonical map ® : Ar(T)—Homeon:(D(T), R) defined by f +— (P :
p = p(f)) is an isomorphism. But we clearly have Fgy, = f for every f € Ag(T), so F is the
inverse map to ® and is therefore an isomorphism. This proves the lemma.

Theorem 3.5.4 The character [] satisfies the following universal property: for every complete
locally convex Qp-algebra R and every R-weight k € Xp(R) there is a unique continuous Q,-algebra

morphism ¢ : D(T) == R such that o([t]) = t* for everyt € T.
Proof: Let R be a complete locally convex Q,-algebra. Then R is isomorphic to a projective limit

R =1limR,
where {R, }, is a projective system of p-adic Banach algebras. For each v, we let k, € Xr(R,) be
the character obtained by composing k with projection to R,. By the results of the last section we
know that each k, is locally analytic, i.e. that the function T— R}

T. We define ¢, : D(T)—R,, by

, t—t* is locally analytic on

o) = /T v dp(t)

for p € D(T). We see at once that ¢, is a continuous morphism of Q,-algebras. Moreover, the
system ¢(u) := {¢, (1)}, is coherent for the given inductive system and therefore defines an element
of R = lim R,. Thus we have defined a continuous Qp-algebra morphism D(17')—R. From the

deﬁnitiong we see that ¢ has the desired properties, proving the existence statement of the theorem.
Uniqueness follows from the lemma. Indeed, if ¢, : D(T)— R are two continuous Q,-algebra

morphisms for which ¢([t]) = ¢ ([t]) for every t € T, then, in the notation of the lemma, we have

F, = Fy. But from the lemma we know F is injective. Hence ¢ = ¢ and the theorem is proved.

We conclude this section with a classification of the K-weights for any finite extension K of
Qp. Let x4, i =1,... ,n, be the dominant weights of G/Q,. (See section 3.8 below for a review of
this concept.) In standard terminology, these are the characters that are dominant integral for the
pair (B°PP.T'). Every algebraic character ¢) of T' can be expressed in exactly one way in the form
=TI, X5 with ky, ... kn € Z.
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Definition 3.5.5 Let k € Xp(K) and s € T'.
(a) We say k has level s if k is strictly analytic on T'(s).

(b) We say k is locally algebraic of level s if there is an algebraic character ¢ of T for which
Y(t) = t* for every t € T(s). In this case we call ¢ the algebraic character associated to k.

(c) Wesay k is arithmetic of level s if k is locally algebraic and the associated algebraic character
is dominant.

3.6 Strict analytic structures on the big cell.

In this section we use a slightly different notation to conform with usual conventions. We let bold
capital letters denote varieties defined over Q,. If we use the letter without an argument, it stands
for the C,-points of the variety.

The algebraic “big cell” Y C G is the Zariski open subset

Y := N°°PTN C G.

Recall that A was defined in section 1.5. Then A is a discrete subgroup of G(Q,,) and therefore
A\G(Qy) is locally isomorphic to G(Qy). We define

Y = NOP(Q,)A\Y(Qy)
and for r < s € AT we define the nested sequence of open subsets of N°PP(Q,)A\G(Q,)

X(r,s) CX°CXCY (15)
to be the image of the sequence X(r,s) C ¥£* C ¥ C {/(Qp). See Section 3.1 for the notation.
Equivalently, this is the image of the sequence I(r,s) C I* C I C ?(Qp). We write X (s) = X(s, s)
and X(s) = X(s, s).

From the decomposition ¥* = N°PPAT . B® we see that the map B*——X? is a bijection. We
endow X*® with the structure of p-adic manifold induced from the natural structure on B*. Both
the right action of X* and the left action of T on X* preserve this analytic structure. The stabilizer
in I of X(r,s)is I(r,s) and X is the disjoint union of the “(r,s)-cells” X (r,s)y :

X = H X(r,s)y.

~yel(r,s)\I

We endow X with a strict analytic structure F, s as follows. First, choose a strict chart
Orst X(1, s)—>Zg,

(where d is the dimension of Y) by using the fact that the map T(r) x N*—X(r,s) defined by
(t,u) — tu (mod N°PP(Q,)A) is an isomorphism of p-adic manifolds. The definitions of T'(r) and
N*® make clear that there are strict charts T'(r) — ZI' and N* — Zg_”. The product of these
charts gives us the desired chart ¢, s on X (r,s). Now choose a set of representatives {v} of I(r, s)\I
and right-translate ¢, by each v to obtain a strict atlas

fr,s = {Qbr,s 0771 ‘ v E I(T,S)\I}
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on X. We let
X|r, s] == X[Frs] (16)

denote X endowed with the strict analytic structure represented by F,. ;. As usual, we set Fy = F 5,
X[s] = X[s, ] etc.

Definition 3.6.1 A strictly analytic function on X[s| (resp. X[r, s]) will be called a locally analytic
function of level s (resp. (r,s)) on X.

If an open set U C X is a union of (r,s)-cells then we say U is compatible with the analytic
structure X|[r, s]. In that case we use the corresponding charts in F, s to endow U with a strict

analytic structure which we denote
Ulr,s] € X[r, s].

We leave the proof of the following simple proposition to the reader.
Proposition 3.6.2 Let s € AT and let U be an open subset of X that is compatible with X|[r, s|.

(a) For each t € AT, the identity map induces a strictly analytic map
Ulrt, st|—U]r, s

and this map is a contraction if and only if t is strictly positive. Moreover, we have a canonical
isomorphism of locally convex vector spaces

D(U) = lim D(U[rt, st]),

teAt

the projective limit taken with respect to the maps D(U|[rt1, st1]) «— D(U|rta, sta]) fort; < to
in AT.

(b) Let 0 € ¥ with 6(c) =t € AT and let U' := Uo. Then U’ is compatible with X|[t, st] and
right translation by o induces a strictly analytic isomorphism

o: Uls] = U'[t, st].
In particular, o induces isomorphisms

D(U[s]) — D(U'[t, st]) and D(t,U) — D(t,U’)

where D(t,U) denotes the space of distributions on U which is strictly analytic of level t in the T
variable and locally analytic in the N variable.

Now let €2 be a connected admissible affinoid open subset of the weight space Xp. Let
A(Q2) = A(2,Qp) denote the Banach algebra of Qp,-valued strictly analytic functions on €2, and
D =D(X,Q,) the module of distribtuions (see Section 3.4).

Definition 3.6.3 We define the A(€2) — X-module Dg := D&p () A(2) where the tensor product is

taken according to the natural map D(T) =~ A(Xr) — A(Q) given by the Amice-Velu isomorphism
and restriction of functions.

28



We want to show that Dg is the inverse limit of Banach modules over A(2). First we need a
simple lemma.

Lemma 3.6.4 Let T'[s| be the structure of strict analytic manifold on T obtained by translating
the strict chart T'(s) — Zy; used in the discussion preceding (16).

Let Q be an affinoid open subset of the weight space Xr. Then there exists s(2) € AT such that
for all s > s(Q), the Amice-Velu isomorphism (Theorem 3.4.3) induces a map D(T[s]) — A(£2).

Proof: Use of the Maximum Modulus Principle shows that one m in the proof of Lemma 3.2.3 can
be chosen to work for all characters in €. That proof then shows that if s >> 1, t +— t¥ is strictly
analytic on any translate of T'(s) for all k£ € Q.

Note that D(T) is the projective limit of the D(7'[s]), with surjective transition maps.

The Amice-Velu isomorphism is given by evaluating a distribution on t*. Given p € D(T[s]),
lift it to ' € D(T). Since t + t* is in A(T[s]), for k € Q

[ taute

makes sense independently of the choice of 1/ and is the restriction to © of the function in A(Xr)
/ thdy/(t).

Definition 3.6.5 For each ) as above we fix once and for all s(2) € AT satisfying the conclu-
sion of Lemma 3.6.4. Then for any s > r > s(Q2), we define the A(Q) — I-module Dqlr, s] :=
D(X[r, s])@p (7)) A(€2) where the tensor product is taken according to the convolution action of
D(T[r]) on D(X|[r, s]) and the map D(T[r]) — A(€2) given by Lemma 3.6.4. Then also Dqlr, s] =
D(X[r, s])@p(1)A(Q), taking the tensor product with respect to the natural surjective map D(T') —
D(Tr)).

More generally, if U is an open subset of X compatible with X[r, s| and T-stable on the left,
we define Do(U[r, s]) := D(U[r, s])@prp) A(Q). As usual, we set Do(Uls]) = Do(U[s, s]) and in
particular, Dq([s]) = Dq([s, s]).

given by

This completes the proof of the lemma.

It follows from Proposition 3.6.2 that for such U, and s > s(2),

D(U)q :=D(U)Rpr A(Q) — lim Dq(U[st]).

teAT

Moreover, we have the following important fact:

Lemma 3.6.6 For s > r > s(Q), Dq(Ulr,s]) is independent of r. That is, for each r it can be
identified with Do (U]s]).

Proof: This follows from associativity of tensor products. Write U &~ M x T where M is an open
subset of N compatible with N[s]. Then

Do (U[r, s]) = D(Ulr, s]) O A(Q) & D(M[s) @k D(T[r])@nr) A(Q) = D(M[s))©k A(Q).
Note that in particular, for any r < s, Dq([r, s]) = Dq([s]).

Let Ind denote the usual induction functor for right modules over a group. Then we have the
following proposition.
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Proposition 3.6.7 (a) Dq(X?®) is an A(Q) — I* Banach module.
(b) IndLDq(X?) is naturally isomorphic to Dg[s] as A(Q) — I Banach module.
(¢) We have the natural isomorphism

Dq — 1&1 Dqls].
s>5(82)

(d) For each s > s(2), Dq(X?®) is ON-able as an A(2)-Banach module. The elements of I® act
on it as operators of norm 1 while any strictly positive t € AT induces a completely continuous
map D (X®) — Do(X5).

(e) For each s > s(Q2), Dq[s] is ON-able as an A(Q2)-Banach module. The elements of I act on
it as operators of norm 1 while any strictly positive t € AT induces a completely continuous
map Dqls] — Do (X[st]).

Proof: Points (a), (b) and (c) are obvious and (e) follows easily from the preceding points. For
(d), first, to see the ON-ability, note that N* is isomorphic as p-adic manifold to a direct product
of one-dimensional root groups. Choosing a coordinate on each root group, we obtain a strict chart
on N°¥ such that the monomials in those coordinates provide an ON basis for the K-Banach space
A(N?).

With respect to that strict analytic structure on N*® we have that D(N®) is a K-Banach space,
and hence ON-able by Serre’s theory. Now if V' is an ON-able Banach A-module and B is an
A-Banach algebra, then V& 4B is an ON-able Banach B-module. Apply this to

Do (X®) ~ D(N*)&x A(Q).

Since I° is a group, permuting the Cp-points of X*, and the norm on the strictly analytic
functions is the sup norm, its elements act with norm 1. Since t is strictly positive, it acts as
multiplication by a positive power of p on each root group in N® and the completely continuous
nature of its action is obvious.

Remark: The displayed isomorphisms in the proof are compatible with taking the projective limit
in s and induce the isomorphism Dg = D (X) ~ D(N)&x A(Q). This last is compatible with the
isomorphism of D(T)-modules D = D(X) ~ D(N)®D(T).

3.7 Universal highest weight modules.
Let s € AT and let (I°,%°) be the Hecke pair of level s defined in §3.1(9).

Definition 3.7.1 Let R be a complete locally convex Qp-algebra and fix an R-weight k € X7 (R).
Let V be a locally convex R-module endowed with a continuous right action of ¥°.

(a) An element v € V is called a weight vector of weight k (with respect to T') if v|t = tFv for all
t €T and v|s = for all s € A™.

(b) If, moreover, v|u = v for every u € N°PP  then we say v is a highest weight vector of weight
k.

(¢) The pair (V,v) is called a highest weight module of weight k and level s if v is a highest weight
vector of weight k and also v generates V' topologically as an R[I®]-module.
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Every highest weight module inherits a canonical structure of D(T')-module. Indeed, if (V,v) is a
highest weight module of weight k € Xp(R), then we may view V as a D(T')-module via the algebra
morphism ¢y, : D(T)— R associated to k by the universality of the character ] : T—D(T)*.

Both the right action of %* and the left action of 7" on X* preserve the analytic structure. Thus
on D(X*) we have a continuous left action of T' as well as a continuous right action of ¥*. The
left action of T" induces a left convolution action of D(T') on D(X?®) which is concretely given as
follows: for A € D(T) and p € D(X?®) we define the convolution A * p € D(X?) by the integration

o x ) (f /(/ () du( ) A(®)

for every f € A(X®). With these definitions D(X®) becomes a D(T")-module, endowed with a
continuous right action of ¥¥ (commuting with the D(T)-structure).

Theorem 3.7.2 Let 61 € D(X?) be the Dirac distribution at the origin of X°. Then (D(X?®),d1)
is a highest weight module whose highest weight is the universal weight [-] : T—D(T'). Moreover,
(D(X?),01) satisfies the following universal property: for every complete locally convex Q,-algebra
R and every highest weight module (V,v) of level s and weight k € Xp(R) over R, there is a unique
D(T)[X?]-equivariant map

Y D(X%)—V

sending 8, to v. If, moreover, R is a Banach algebra and k has level st for some t € AT, then 1
factors through D(X?®)—D(X*[st]).

Proof: Consider the map J : I*—V defined by J(v) := v|y, for v € I*. By Theorem 3.2.2, we
know that J is locally analytic. Moreover, since v is a highest weight vector, we have .J (uy) = J ()
whenever u € N°PPAT. Thus J descends to a locally analytic function

J: X*P—V.
We define ¢ : D(X*)—V by
vl = [ Ia)duta)

for every € D(X?®). A simple verification shows that ¢ has the desired properties. Uniqueness of
1y follows from the fact that D(X?®) is topologically generated by §; as a D(T)[I*]-module.

More generally, let k& € X7 (R) be a fixed R-weight for some complete locally convex Q,-algebra
R. We define the locally analytic induced modules

b= Ap(XP) = {f € A(X° R) ‘ f(tz) =t*f(z), VteT, SCEXS}. (17)

Note that A7 is naturally a left ¥*-module since X° acts on X?® on the right by right translation.
If t € AT and k has level st, then we also define

Af[st] :== Ap(X?[st], R) := {f €A

f is locally analytic of level st } : (18)

(See Definition 3.6.1 for “locally analytic of level st”.) These are closed spaces of A(X?®, R) and
A(X|[st], R), respectively. We endow each with the induced locally convex topology. Dually, we
also define

Dj := Homp(Aj, R) and  Dj[st] := Hompg(Aj[st], R)
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endowing each with the strong topology. Note that Dj is naturally a right >*-module.
As before (see Proposition 3.6.2) we have isomorphisms

Aj = lim Aj[st] and Dy = lim Dy [st]

t t

and the semigroup »* acts continuously on these inductive and projective systems, with each o € 3%
changing the level of analyticity as in 3.6.2(b).

Let 61 € Dj be the Dirac distribution supported at 1 € X®. The proof of Theorem 3.7.2 is
easily modified into a proof of the following theorem.

Theorem 3.7.3 Let R be a complete locally conver Qp-algebra and k be an R-weight. Then the
pair (Di(X?),61) is a highest weight module over R of weight k and level s. Moreover, (Dy(X?), 61)
satisfies the following universal property: for any complete locally conver algebra Ry and any highest
weight module (V,v) of level s and weight ko € Xr(Ryo), if ko is a specialization of k then there is
a unique continuous R[X°]-morphism 1 : Di(X*®)—V such that ¥(d1) = v.

Now let K be a finite extension of Q. If M is any Qp-module, let Mk denote M ®q, K. If
Y is a p-adic manifold, and D(Y") stands for D(Y,Q,), note that D(Y, K) is naturally isomorphic
to D(Y)k. Let k € Xp(K) be a K-weight. Then theorem 3.7.2 gives us a canonical continu-
ous D(T)[¥*]-morphism D(X®)x—Di(X?). This map has a canonical extension to a D(T)k-
morphism
Nk : D(X?®) gk —Dp(X?).

Let I, C D(T)k be the kernel of specialization to k. Then clearly I D(X*®)x C ker(ng). In fact,
we have the following result.

Theorem 3.7.4 The sequence
0—I,;D(X*, K)—D(X*, K) 2% Dyp(X*)—0
is an ezact sequence of D(T, K)[X*]-modules.

Proof: The natural map T x N°*—X?® is an isomorphism of p-adic manifolds. Let Xs be the
rigid analytic space associated to a strict chart on N®. Then D(X*, K) = A(Xp x Xys)g and the
D(T, K)-structure is induced by the isomorphism D(T, K) = A(X7)k. Thus the above sequence is
isomorphic to the sequence 0— I A(Xp X Xns)xk—A(Xr X XNns) i LR A(Xns)k—0, which is
clearly exact.

3.8 Characters of algebraic groups.

In this and the next two subsections we suspend our usual notation. In particular we use A to
denote the weight lattice of an algebraic group.

Let G be a connected reductive algebraic group defined over a field K of characteristic 0. We
assume G is split over K and fix T to be a K-split maximal torus in G. Let B be a Borel subgroup
of G containing T and N be the unipotent radical of B. Also let B°PP be the Borel subgroup
opposite to B with respect to T, and let N°PP be the unipotent radical of B°PP.

The Cartan decomposition of Lie algebras, g = n°P? @ t @ n, is preserved by the right adjoint
action of T, i.e. the action derived from right conjugation, (v,t) — t~!yt. Let ® be the set of
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roots of T, and choose the ordering of ® to be the one in which the roots occurring in n°PP are the
positive ones. Let A be the basis of ® determined by this ordering.

In what follows we will use some non-standard but useful terminology. We let A := Homg (T, G,,)
be the character group of T and A, C A be the “root lattice”, defined as the sublattice generated
by A. Note that in general A, does not have finite index in A. We have the Cartan “pairing”

(,): AXxAN—Z

which is linear in the first variable, but not the second. The ordering on ® extends to a partial
ordering on A defined by

P> = Pt = H o with all n,, integers and > 0.
aEA

We say a character ¢ € A is positive if »>1. (This is not the usual notion of “positive” for weights.)
Dually, we say A € A is dominant if (A, ) > 0 for all & € A and let

A+::{)\€A ‘ )\isdominant}.

Note that if A has more than one element and ® is irreducible, then the elements of A are positive
but not dominant. In the other direction, a dominant character is positive if and only if it lies in
the root lattice. B

We define the “big cell” Y C G by

Y := N°PPTN.
Key Fact 3.8.1 Y is an affine open subset of G isomorphic to N°PP x T x N in the obvious way.

Let K [\?] be the affine coordinate ring of Y. Any 1 € A extends uniquely to an algebraic character

¥ : BPP—G@G,,, that is trivial on N°PP. This then extends uniquely to a function ¢ € K[Y] that
is both left translation invariant under N°PP and right translation invariant under IN.
The following proposition is standard. It follows, for example, from [H2], exercise 4, p. 195.

Proposition 3.8.2 A character iy € A is dominant if and only ifzz extends to a reqular function
on G.

3.9 Algebraic induced modules.

For 1) € A we define the algebraic induced module
Ly(G) := {F € K(QG) ‘ F(Bx) =¢(B)F(x) for all € BPP, z € G}

endowed with the (left) action of G given by right translation: (vF')(z) = F(z7y). By differentiating
this action, we also obtain an action of the Lie algebra g.
For any Zariski open subset U C G we let

L,U] = {F € Ly(G) ‘ F is regular on U}
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and note that Ly[U] is a g-invariant subspace of L, (G). In particular we have the inclusion

Ly[G] C Ly[Y].

We emphasize that Ly[G]| is a G-module, but L,[Y] is only a B-module. But both are g-modules
and the above inclusion is g-equivariant.
The following theorem is standard.

Theorem 3.9.1 Let ¢ € A. Then Ly[G] is finite dimensional and
Ly[G] #£0 <= €A™,

Moreover, Ly|G] is the unique finite dimensional irreducible representation of G of highest weight

.

For each 1 € A we define
P* = H (e,

a€A

Then the map ¥ — ¥* gives us a homomorphism A—— A, which sends dominant weights to positive
roots. This map is surjective if and only if G is simply connected (see [H2] p. 189).

Theorem 3.9.2 Let ¢ € At and suppose F' € Ly[Y] is a weight vector of weight x € A where x
satisfies the inequality

XY=
Then F € Ly[G], i.e. F extends to a regqular function on G.

The proof is sketched in the next section.

3.10 Proof of Theorem 3.9.2.

The strategy is to reduce the theorem to standard results about Verma modules.

For each x € A we let Ly[Y](x) be the weight x subspace. Since any function f € Ly[Y] is
determined by f|N, we have the following simple proposition.

Proposition 3.10.1 L¢[3~{'] = @ Lw[?](x).
X<y

We say that a linear functional p : Ly[Y]|— K is admissible if p vanishes on Ly [Y](x) for all

but finitely many x € A. We then define the dual of L[Y] to be the space

Ly[Y] = {u € Homp (Lw Y], K) ‘ [ is admissible} .

Now let {4 be the universal enveloping algebra of g and extend the action of g on Ly,[Y] to a

left action of Y. By duality, we obtain a right action of & on Ly[Y]*. Define the pairing

[, ]: U x Ly[Y]—K
w, F s [u, F] := (uF)(1)
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and note that [uv, F| = [u,vF] for any u,v € 4. Thus the pairing [, ] induces a {U-equivariant map

U Ly[Y]".

One easily verifies that this map factors through the canonical map U—Z (1)) where Z(v)) is the
universal cyclic (right) $-module with highest weight .
Thus we obtain a i-equivariant map

1 Z()—Ly[Y]".

Theorem 3.10.2 7 is an isomorphism.

The existence of  and the fact that it is an isomorphism both follow from the way L, [Y]* is
generated by the maximal vector ¢; (evaluation at 1) under 4. Indeed, Ly[Y]* is a standard cyclic
module whose maximal vector is killed by n°PP. (Because we are working with the dual, the roles

of n and n°PP are switched.) See [H1] p. 110.

Corollary 3.10.3 Let i) € AT. Then the set of mazimal weights occurring in Ly, [?]/Lw[G] is the
set
{pa~ ¥ ae A}

Proof: Since K(¢) := 77 1(Ly[G]t) C Z(v) is isomorphic to the dual of Ly, [?]/Lw [G], the maximal
weights occurring in one are the same as the maximal weights occurring in the other. But the set
of maximal weights occurring in K(¢)) is well-known to be the set given in the statement of the
corollary (see [H1] p. 115).

Proof of Theorem 3.9.2: Suppose F' is not regular on GG. Then F maps to a non-zero weight
vector in Ly [Y]/Ly[G] and therefore x occurs as a weight in this space. But according to Corol-
lary 3.10.3 there must then be an o € A such that

X<tpa~ WA
But by hypothesis we have 1y~ < ¢* so we have

This is a contradiction and the theorem is proved.

3.11 Locally algebraic highest weight modules.

In this section we revert to the notation of Section 3.7 and previous sections.

Again let K be a finite extension of Q, and let k € Xp(K) be a K-weight that is arithmetic of
level s (definition 3.5.5)). We let ¢ := 1), be the dominant character of T associated to k and let
€ := € : T— K™ be the finite order character for which k = v + e. Since k has level s, we have
€ is trivial on T'(s). Using proposition 3.1.3 we extend € to a homomorphism € : ¥°*— K> that is
trivial on 3(s) and define

L) := Ly[G](e)

to be the ¥*-module obtained by twisting the action of ¥* on Ly[G] ®q, K by e (0F)(z) :=
¢(0)F(z0o). By definition, we have L% 2 L, [G] as ¥(s)-modules. We also define

Valgk = HomK(L“lgk, K)
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to be the space of K-linear functionals on L9, endowed with the “dual (right) action” of G
defined by: (¢|)(F) := £(yF), for £ € V49, F € L%, and v € G.

A function f : G(Q,)— K is said to be algebraic on an open subset U C G(Q,) if there is a
K-regular function F' € K[G] such that f(z) = F(z) for all z € U. We say f is locally algebraic if
every point of G(Qp) has a neighborhood on which f is algebraic.

Suppose k € X (K) is arithmetic of level s and consider the space A defined in §3.7(17). If
f € Aj we let f: 25— K be the composition of f with the projection ¥5—X*:

Foys—xs Lk

The function f € Aj is said to be locally algebraic if f is locally algebraic. We define

b )= { e

f is algebraic on I(s) } .

We note that L is preserved by the action of ¥* on A} and therefore inherits a natural structure
as 2°-module. We define
V¥ = Homg (L3, K)

to be the space of K-linear functionals on Lj, endowed with the dual right action of 3°. We have
a canonical map
et Ly— L™,

defined by sending a locally algebraic function f on X*® to the regular function representing f at
the origin. We also have the dual map

& VI —Vp.
Both £ and & are isomorphisms of K-vector spaces. If we define 7, : ¥—Q}’ to be the composition
Ty i=od: % -5 At L QX
then &, & satisfy the intertwining relations
&of) =7,1(0) - a&(f)  and  &(llo) = 1y(0) - &(D)o (19)

for any o € ¥%, f € Lj, and { € Vald,  In particular, &, and &, are isomorphisms of I°- modules
(but not of ¥%-modules, since AT acts trivially on the highest weight vectors in L{ and V}¥, but
non-trivially on those in L9, and V%9, if ) # 1).

Remark. The ¥%-modules V¥ (and Lj) have better analytic properties than Vg, (and Lalg k)
as k varies over the weight space. We will see that the standard action of the Hecke operators on
the cohomology of V}? varies continuously in p-adic families as k varies. However, the action of the
Hecke operators at p on the cohomology of V9, does not vary continuously. The relation between
these actions is encoded in (19). The factor 7,(o) is the “part of the Hecke operator” that does
not vary continuously as a function of k.

Clearly, Lj is a closed Y°-submodule of A7 := Aj[s] (see §3.7(18)). By duality, we have a
surjective continuous map D7 := Dj [s]|—V}® whose kernel we denote K;. Thus we have a canonical
exact sequence

0—Kj—D; —V;—0 (20)
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of K-Banach spaces.

Now let ¢ be a dominant weight and ¢t € A*. For each o € A define v, := —ord ,(a(t)) and
note that v, > 0. We then define
my(t) = Lnéig(va(l + (Y, ). (21)

Theorem 3.11.1 Let k € X;(K) be an arithmetic weight of level s and weight i, let 0 € ¥
and suppose t = 6(c). Then the action of o on Kj induces a continuous linear endomorphism of
Banach spaces K3, <, K}, and the norm of this operator satisfies the inequality

loll; < p~ ™.
Proof: It suffices to prove the theorem in the special case ¢ = t. We need to prove the inequality

(%) () ()] < 7™ O - |u(f)]

for every € Ki and f € Aj. Since Lj is a dense subspace of A7 it suffices to prove (x) for f € Lg.
Since Ly, [3?] is spanned by weight vectors, we may even assume F' := {x(f) is a weight vector for
some character y with x<t. This means tf = 1~ 1(¢) - f. Writing ¢x ! =[], o with integers
ne > 0 we have x1v~1(t) = [[ p*«" and therefore

(3+) )Nl = (TTe~") - ().

If xy*>1 then F is regular on G and therefore f € Lzlg. Since p € K7 we then have u(f) = 0.
Thus (%) is a trivial consequence of (xx) in this case. If the inequality x1*>v does not hold then
we can choose o € A such that n, > 1+ (¢, a). Hence for this choice of a we have vang > my(t)
and once again (*) is an immediate consequence of (x*). So we have proved (x) in all cases and the
theorem is proved.

Remarks:

(1) The bound given in the last theorem is almost best possible. More precisely, let € be dominant
and 3 € A be chosen arbitrarily such that (e, 3) > 0. Then we have the inequality

lellgg > pme(®+va=rs(es),

Indeed, choose a € A such that v, (14 (1), o)) = my(t) and let 04, 0g be the simple reflections
in the Weyl group associated to o and 3. Then the rational function

F= (O'a@;) +(oge)/€

is a Weight Vector in Ly [Y] that is not an element of Ly[G]. Moreover the weight of F' is
x = o~ ¥ 3=(eB) Now let f € A7 for which & (f) = F, and choose 0 # p € K} such that
el - 1A= TS )! Then we have

() ()] = D™ (O] - |u(f)] = p~me@Feemusled | £].
Thus ||(ut)|| > p~me@*ee=s(0  ||u]| and consequently [[¢]| > p=rmv(OFva—vales),

(2) In particular, if G is simply connected, then the inequality stated in the theorem is, in fact,
an equality. Indeed, when G is simply connected, we may choose « as above, then set § = «
and choose € such that (¢, 5) = 1.
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4 Slope < h decompositions

In this chapter, we define slope < h decompositions for Netwon polygons and Banach modules, and
we define slope < h factorizations for Fredholm power series. We apply these notions to obtain
slope < h decompositions of Banach modules of cochains and of cohomology.

We begin with a more general algebraic notion of S-decompositions, which enable us to descend
from cochains to cohomology.

4.1 S-decompositions

In this section, we assume R is a commutative noetherian ring, R is a commutative R-algebra, and
S C R is a multiplicative subset. For any R-module H we put

HS::{hEHlﬂozeS Suchthatozh:O} (22)

and note that Hg is an R-submodule of H.
Definition 4.1.1 An S-decomposition of H is an R-module decomposition
H=Hs® H',
with Hg given by (22), satisfying the following two properties:
(a) Hg is finitely generated as R-module; and

(b) H’is an R-submodule of H on which every element of S acts invertibly (i.e. has a two-sided
inverse in Endg (H')).

The facts we need about S-decompositions are summarized in the following proposition.

Proposition 4.1.2 Let R be a commutative R-algebra where R is a noetherian ring, and let S be
a multiplicative subset of R.

(a) Let A = As ® A’ and B = Bs & B’ be S-decompositions of the R-modules A and B and
let ¢ : A—B be an R-morphism. Then ¢¥(As) C Bs and ¢(A’) C B'. In particular, an
R-module can have at most one S-decomposition. Moreover, the kernel and image of ¥ both
have S-decompositions.

(b) Let A\ : R—R[S™!] be the localization morphism with respect to S. An R-module A has
an S-decomposition if and only if (i) As is finitely generated over R and (i) the canonical

sequence

0—As 2 A3 Aor RIS —0

s exact. Here j is the canonical inclusion.
(c) Let
A—B —(C — D—F

be an exact sequence of R-modules. If A, B, D, E have S-decompositions, then so does C.

Moreover, the sequences
A'—B —C'—D'—F

As—Bs—Cs—Ds—FEs

are both exact.
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(d) Let 0— A B C—0 be an exact sequence of R-modules. If two of the three modules
A, B,C have S-decompositions, then so does the third.

(e) Let C* be a cochain complex of R-modules and suppose each C* has an S-decomposition.
Then the cohomology of C* has an S-decomposition as well.

Proof. Suppose A and B are as in (a). Then clearly )(As) € Bs, so we need only prove
the second inclusion. Since Ags and Bg are finitely generated R-modules, we may choose a € S
such that o annihilates both As and Bs. Let a’ € A’ be arbitrary. Choose a; € A’ such that
a-ay = d. Then 9(a;) € B decomposes as 1(a;) = b+ bV with b € Bs and VY € B’. Thus
P(d)=v(a-a1) =a-b+a-b =ab € B'. This proves (a).

We now turn to the proof of (b). If A = As @ A’ is an S-decomposition, then clearly A" =
A ®@r R[S7!] and the sequence (b) is exact. Conversely, suppose Ag is finitely generated and
the sequence (b) is exact. Choose o € S such that aAs = 0 and set A’ := «A. Then from the
surjectivity of the arrow on the right, we see that A’ = A ® R[S~!]. Thus every element of S is
invertible on A’. Letting 8 be the inverse of a on A’ we see that the morphism A—— A’ defined by
a' — (- ad’ is an idempotent eg € Endg (A) mapping A— A’ surjectively and having Ag as its
kernel. This proves (b).

To prove (c) we first note that since localization is an exact functor, the sequence

AlST'|—B[S7'|—C[S7']—D[S7|—E[S™]

is exact, where we write M[S™!] for M @ R[S™!] for any R-module M. By (b) and our hypotheses
we have M = Mg @ M, with M’ = M[S™!], for M = A, B, D, or E. Thus we have a commutative
diagram

A — B — C — D — FE

! ! ! ! 1

A4 — B — (S8 — D — FE

in which the vertical maps are the localization maps, the horizontal sequences are exact, and all but
the middle vertical arrows are surjective. We also note that the vertical surjective arrow D— D’
has a canonical section D' < D, coming from the S-decomposition of D. An easy diagram chase
now shows that the middle vertical arrow must also be surjective. Another diagram chase shows
that the sequence As—Bs—Cs—Dgs——Eg is exact. Since Bs and Dg are finitely generated
over the noetherian ring R, it follows that Cs is finitely generated over R as well. Thus by (b) C
has an S-decomposition, and (c) is proved.

Assertion (d) is a special case of (c).

Finally, to prove (e), we note that according to (a), the S-decomposition of C* is respected by
the coboundary morphisms. Hence we obtain an S-decomposition of complexes

C* = Ch @ (C').

The cohomology of C* is the direct sum of the cohomology of C% and C'* giving us the desired
S-decomposition of the cohomology. This completes the proof of the proposition.

4.2 Slope < h decompositions of Newton polygons.

For our study of power series over an affinoid algebra it will be convenient to use the language of
Newton polygons and sup-convexity. We say that a subset A/ of R? is “sup-convex” if (1) N is
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convex, and (2) (0,t) + N C N for every ¢ > 0. The sup-convex hull of a subset S of R? is the set
H(S) defined as the intersection of all sup-convex sets containing S.

A Newton polygon is any subset N' C R? of the form

N =N, = ’H+<{(i,w(z’)) \ ieI})

where w : [—R is a function on some non-empty set I of non-negative integers. If I is finite we
will say N is a finite Newton polygon. In this case, we define the degree of N to be the maximal
element of I.
The vertices of a Newton polygon N' = N, are the points P = (n,w(n)) for which we have a
strict inequality
win) —w(r) _ w(s) —w(n)

n—r s—n

whenever r,s € I satisfy r < n < s. Every Newton polygon has at least one vertex, namely,
(ig,w(ip)) where iy is the smallest element of I. It is possible for a Newton polygon to have
precisely one vertex. For example, this is true of each of the Newton polygons N,,, i = 0,1, where
the w; : ZZ9—R are defined by wp(0) = w1(0) = 0 and w;(n) =i for n > 0. We have A\, is the
closed first quadrant and N, is N, with the positive real axis removed. Both of these Newton
polygons have precisely one vertex, namely, the origin.

The edges of a Newton polygon A are the line segments contained in the boundary of A of the
form PP’ where P and P’ are distinct vertices of N. If e is an edge of N/, then clearly H(e) C N.
However, it need not be true that N is the union of the sets H. (e) where e ranges over the edges
of NV, as the two examples of the last paragraph illustrate.

The slope of any edge of N will be called a slope of N.

Remark: The collection of all Newton polygons is a monoid under addition. Indeed, one checks
easily that if A7 and N3 are Newton polygons, then

M +Noi={z1 +x2|2; €N}
is also a Newton polygon. Moreover the non-negative y-axis plays the role of additive identity.

Definition 4.2.1 If A/ is a Newton polygon and (0,0) is a vertex of A/ then we will say N is of
Fredholm type. If N is a Newton polygon of Fredholm type and h € R, then we say N has slope
> h if, for every non-zero P € N the line through P and the origin has slope > h.

Definition 4.2.2 Let N be a Newton polygon and h € R. Then a decomposition
N =Ny + N
is called a slope < h decomposition of N if
(1) N}, is a finite Newton polygon whose largest slope is < h; and
(2) N is a Newton polygon of Fredholm type having slope > h.
Remarks:
(1) A Newton polygon admits at most one slope < h decomposition for any given h € R.
(2) If a Newton polygon admits a slope < h decomposition then it admits a slope < h’ decom-

position for any h' < h.
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4.3 Slope < h factorizations of power series.

Let (A,|-|a) be a non-archimedean K-Banach algebra. For simplicity, we suppose A is an integral
domain. An element a € A* such that |az|4 = |a|a|z|a for every x € A will be called a multiplica-
tive unit. It is easy to see that if A is an affinoid algebra, and a € A is a multiplicative unit, then
the norm of a equals the norm of any of its specializations.

We also define vq : A\ {0}—Q by

a4 = p ¥4,
We always normalize so that v4(p) = 1. For a non-zero power series
F =Y a,T" € A[[T]]
n>0
we let Irp:={n>0]|a, # 0} and put
S(F) == { (n,va(ay)) € R? | nelp}.
We then define the Newton polygon of F' to be the Newton polygon
N(F) :=H, (S(F))

The wvertices, edges, and slopes of a power series F' are, by definition, the vertices, edges, and
slopes of NV (F), respectively.

Definition 4.3.1 A power series F' is called a Fredholm series if F/(0) = 1. Note that in this case,
the Newton polygon N (F) is of Fredholm type. For h € R, we say that a Fredholm series F' has
slope > h if N(F) has slope > h.

For a power series F' = - a,T" € A[[T]] recall that the interval of convergence of F' is the
set of all non-negative real numbers r for which lim, .. |a,|r™ = 0. Thus, for h € R, the real
number p” is in the interval of convergence of F' if and only if v(a,) — nh — oo as n — oo.

Definition 4.3.2 Let F' € A[[T]] be a power series and h € R. A slope < h factorization of F' is
a factorization

F=Q-S
in A[[T]] where Q is a polynomial whose leading coefficient is a multiplicative unit, S is a Fredholm
series, and such that
(a) every slope of Q is < h (in which case we say “Q has slope < h”);
(b) S has slope > h; and

(c) p" is in the interval of convergence of S.

Remark: In case A = K and h € Q, the closed disk in C, centered at the origin and having
radius p” is a K-affinoid variety, whose K-affinoid algebra is the ring of all power series in K[[T]]
satisfying condition (c) above. A Fredholm series satisfies both conditions (b) and (c) if and only
if it is a unit in this affinoid algebra.

Remark: In case A is an affinoid algebra, it is easy to see that if @@ has leading coefficient a
multiplicative unit and slope < h, then the same is true of any specialization of Q).
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Proposition 4.3.3 Let h € R and F = Q- S be a slope < h factorization of the power series
F € A[[T]]. Then
N(F) = N(@Q) + N(5).

Moreover, N(Q) + N(S) is the slope < h decomposition of N'(F).
Proof. We first prove the inclusion N (F) C N(Q) + N (S). In fact, this inclusion is valid for any
pair of power series @, S € A[[T]]. Indeed, let Q = ano g, IT", S = ano spT™ and FF:=Q-S =
ano c,I™. Then for any m € Ig, we have ¢, = Z;‘Zo qiSm—; and we can therefore choose an
with 0 < ¢ < m such that va(cy) —va(GiSm—i) > 0. Since vVA(GiSm—i) > va(q) +vA(Sm—i), we have
t:=va(cm) — (va(q) +va(sm—i)) > 0. Thus

(m,UA(Cm)) = (O’t) + (Zva(Ql)) + (m - ia UA(Sm—i)) € N(Q) +N(S)

This proves S(F) C N(Q) + N(S) and since N(Q) + N(S) is a sup-convex set, it follows that
N(F) S N(Q) +N(S9).

For the converse inclusion, we suppose Q and .S satisfy the hypotheses of the proposition. Let
d = deg(Q). Let x4 := (d,v4(aq)) be the last vertex of N(Q). Our conditions on @ and S are
easily seen to imply

N(Q) + N (S) = N(Q) U (xd + N(S)) .

So we need to show NV (Q) C N (F) and also x4 + N (S) C N (F).

Let P := (n,va(gn)) be an arbitrary vertex of N(Q) and suppose i is an integer satisfying
0 < i <n. Then from (a) we have va(gn) —vA(gn—i) < hi and from (b) we have hi < v4(s;). Thus
vA(gn) < vA(gn—is;) for all ¢ with 0 < ¢ < n. From the equality ¢, = g + Y ;- gn—ssi it then
follows that va(c,) = va(g,). Hence

P = (n,va(cp)) € S(F).
It follows that every vertex of N (Q) is in N (F) and therefore
N(Q) S N(F).

Let I}, = {n >0 ‘ VA(Sm) —mh > va(sy) —nh,Ym > n} and consider the set

nGIh}.

From conditions (b) and (c) of definition 4.3.2 one easily checks that

Sp = { (n,va(sp))

Indeed, the inclusion H(Sy) € N(S) is trivial. For the opposite inclusion, let P = (n,v4(sy)) €
S(S). We will show P € Hy(Sh). By (c), we have va(s,) —rh — 0o as r — oo and there is therefore
a largest integer m > n for which va(sp) — mh < va(s,) — nh. The point P := (m,va(sy)) is
clearly in Sy,. Now consider the triangle AOPP’. By definition of P’, the line segment PP’ has
slope < h. But by condition (b) we know that the slope of OP’ is > h. Since n < m it follows that
P lies over OP’, hence P € H, (OP’) C H.(Sh).

Now let P := (n,v4(s,)) be an arbitrary element of Sy, and let m = d + n. Then we have

Cm = qdSn + Z qd—iSn+i-
i=1
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From assumption (a) we see that for every ¢ with 0 < i < d we have v4(qq) — va(qq—i) < hi. Since
n € I, we also have v4(sp+i) — (n+i)h > va(sy) — nh. Thus

v4(qa) — va(qa—i) < hi <va(spti) —va(sn).

Hence v4(qasn) = vA(qq) +va(sn) < va(qa—i) +vA(Snti) < va(qa—isSnyi) for every i =1,... ,d and
we conclude v4(¢p) = va(qasn) = va(qq) + va(sn). Thus we have

g+ P = (m,valcy)) € N(F).

Since P is an arbitrary element of Sy, it follows that x4 + S, C N(F) and therefore that also
g+ H4(Sp) € N(F). But we have already noted that H(Sy) = N(S). Hence we have proved

xq+N(S) CN(F),

as desired. This completes the proof of proposition 4.3.3.

4.4 A Weierstrass preparation theorem.

This section is devoted to stating and proving a converse (Theorem 4.4.2 below) to Proposition
4.3.3. First note that if F € A[[T]], h € Q and p” is in the interval of convergence for F, then
N (F) has a (unique) slope < h decomposition.

Definition 4.4.1 Let F € A[[T]]. A vertex P = (d,va(aq)) of N(F) is said to be a distinguished
vertex of F if aq is a multiplicative unit in A.

Theorem 4.4.2 Let F = Y a,T" € A[[T]] and h € Q be such that p* is in the interval of
convergence for F. Write the slope < h decomposition of N(F) as

N(F) = Na(F) + Ny (F).

Suppose the leading vertex (d,va(aq)) of Np(F) is a distinguished vertex of F. Then there is a
unique slope < h factorization

F=Q-5§

in A[[T]]. Moreover, the leading coefficient of Q is a multiplicative unit and
N(Q) = Ny(F), and  N(S) = Ny (F).

The theorem is an easy consequence of the above discussion and the following version of the
Weierstrass Preparation Theorem. Recall that if R is a topological ring, then the ring of restricted
power series over R is the ring R(T') consisting of all power series ) - r,T™ € R[[T]] for which
r, — 0 as n — oo. a

Lemma 4.4.3 Let R be a ring and suppose R is separated and complete in the w-adic topology for
a fized element m € R. Let F' € R(T) and suppose that F' mod 7 is a unitary polynomial (i.e. the
leading coefficient is a unit) of degree d in (R/m)[T]. Then there is a unique factorization

F=Q-58

in R(T') with the following properties:
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(1) @ € R[T] is a unitary polynomial of degree d;
(2) S € R(T) is a Fredholm series.

Proof. Since R(T) = lim(R/=")[T], it suffices to prove the lemma under the additional assumption

that 7 is nilpotent. We proceed by induction on the smallest positive integer n for which #” = 0.
The lemma is trivially true in the special case 7 = 0. So by way of induction we suppose 7”1 =0
in R for some n > 1, and that the lemma is true over any ring where 7" = 0.

We first prove the existence assertion. By the induction hypothesis there are polynomials
Q1,51 € R[T] such that F' = @1 - S1 modulo 7", Q1(T) is a unitary polynomial of degree d, and
S1(T) € 1 +7TR[T]. Now write F = Q1 - S1 + 7"G for some G € R[T]. Since Q) is unitary of
degree d, we can find polynomials v, € R[T] such that Sl_lG = @Q1v + r and deg(r) < d. Hence,
letting v = Sjv we have

G = S1r+ Qiu, with deg(r) <d.

Now set Q = Q1 + n"r and S = S; + 7"u. We see at once that ), .S satisfy the conclusions of the
lemma. This proves the existence assertion.

To prove uniquess, we simply note that if F = @Q-S = Q' -5 are two such factorizations, then
Q = Q'u where u = S’S™!. But since Q and @’ are unitary, it follows that u is a constant, hence
that w € R*. Hence S’(T) = u - S(T), and since S(0) = S’(0) = 1, we have u = 1. Thus S = 5’
and consequently @ = @’. This completes the proof of Lemma 4.4.3.

Proof of Theorem 4.4.2: We first consider the special case where h = 0 and a4y = 1. In this case,
our conditions imply F' € R[[T]] where R = A°, the closed unit ball in A. Let 7 be a uniformizer
in K. Then R is separated and complete in the m-adic topology, and our hypotheses imply F' is
congruent to a unitary polynomial of degree d modulo . From Lemma 6.3.3 we then obtain a
unique factorization
F=@Q-S

satisfying the conclusions of the theorem. This proves the theorem in the special case h = 0 and
aqg = 1.

In the general case, we choose a finite galois extension L of K and an element b € L* with
|b| = p~". Let

FY(T) =bla ' F(b™'T) = i aiT™ € AL[[T]).
n=0

Then a); = 1 and (d, 0) is a distinguished vertex of slope < 0 of F™*. It follows from our hypotheses
that 1 = p° is in the interval of convergence for F* and that the slope < 0 decomposition of
N (F*) has degree d. Hence by the special case considered above we deduce that there is a unique
factorization

in A9 [[T]] such that Q* is a unitary polynomial of degree d and S* € A9 (T') is a restricted Fredholm
series. Thus p° is in the interval of convergence of S*. Moreover we have N(Q*) = Np(F*) and

N(S5*) = N§(F*). Now put
Q(T) := b~ %yQ*(bT) and S(T) := S*(bT).

Then we have Q(T') - S(T) = F(T') in AL[[T]]. Moreover, the slopes of @ are all < h, the slopes
of S are all > h, and p” is in the interval of convergence for S. Thus

N(F) =N(Q) +N(9)
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and this is the slope < h decomposition of N'(F'). This proves existence of the desired factorization
in Ar[[T]]. Uniqueness follows from the uniqueness of the slope < 0 factorization of F*. To see
that Q*, S* € A[[T]], we note that for any o € Gal(L/K) we have the factorization

o(Q)-o(S) =F

in Az[[T]] and that this is again a slope < h factorization. From the uniqueness, it follows that
0(Q) = Q and o(S) = S for every o0 € Gal(L/K). Hence @, S € A[[T]]. This completes the proof
of the theorem.

4.5 Slope < h factorizations of power series over affinoids.

Let Q be a K-affinoid variety and A := Ag(£2) be the associated K-affinoid algebra, endowed with
the spectral norm |- |4. A power series F' € A[[T]] will sometimes be called a K-power series over
Q. For any K-power series F over  and any K-point 29 € Q(K), we define the specialization of
F at xo to be the power series Fy, € K[[T]] obtained from F by evaluating each coefficient of I at
xg. More generally, if ¢ C 2 is a K-subaffinoid then we define the restriction of F' to {2y to be the
power series Fq, € A(€)[[T]] obtained by restricting the coefficients of F' to €.

Theorem 4.5.1 Let A = Ag(QY) be the affinoid algebra of a K-affinoid variety Q and let xo €
Q(K). Let F € A{{T'}} be an entire power series over ) and fix h € R. We suppose also that
F., # 0 and let

Fry = Qo+ So

be the slope < h factorization of Fy, in K{{T'}}. Then there is a K-affinoid subdomain s C Q
containing the point xg such that

(1) Fo, has a slope < h factorization Fo, = @Q - S with S entire over Qq; and

(2) Qmo = Qo and S:rg = S().

Moreover, Q and S are relatively prime over Q. (By this we mean the ideal generated by Q and S
in A (Q0){{T}} is the unit ideal.)

Proof. Let d be the degree of Qo and write F' = Y _,a,7" € A{{T}}. Then aq4(xo) € K*.
Choose A € Q such that p~ = |ag(x0)|. Since F is entire, there is an integer N > d such that
va(am) —mh > va(aq) — dh for all m > N. Now fix a positive € € Q and let 2y be the K-affinoid
subdomain of € defined by the conditions

lag(z)] = p~, and

SBEQ()“:)’ w<h for n =0.1 d—1, and

p < B PR ,
WZ}L—FG ford <n < N.
\ n—d

Then a4 is a multiplicative unit over Qg and the Newton polygon of Fq, € A(Q){{T'}} has a slope
< h decomposition of degree d. By Theorem 4.4.2 it follows that Fg, has a slope < h factorization
Fq, = Q- S over Q. Moreover, since |a,(zo)| < |an|q, for every n and since also |aq(zo)| = |ad|q,,
the specialization to z of this factorization Fy, = Qg - Sz, is a slope < h factorization in K{{T'}}.
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By the uniqueness of slope < h factorizations, we then conclude that Q,, = Qo and S, = Sp.
Thus we have proved (1) and (2).

To complete the proof, we have only to show that @, S are relatively prime. For this we use
Coleman’s resolvent p := Res(Q,S) € A(Qp). For any z € Qg we have p(z) = Res(Q, S:) € K.
But Q. and S, clearly have no common zeroes in K. Hence p(x) € K*. Thus p has no zeroes on
o and we conclude that p € A(Qp)*. But p is in the ideal generated by @, S in A(Q0){{T"}} (see
[Co]). This proves @, S are relatively prime and the theorem is proved.

4.6 Slope < h decompositions of cochains and cohomology.
If @ € R[T] is a polynomial of degree d over a ring R, recall that Q* € R[T] is defined by

Q*(T) =T"-Q(1/T).
Note that @Q* is monic if and only if @) is Fredholm.

Definition 4.6.1 Let (A, |-|4) be a K-Banach algebra and let H be an A-module with an A-linear
endomorphism u : H—H. We do not assume that H has a topological structure. An element
x € H is said to have slope < h with respect to u (for some h € Q) if there is a polynomial @ € A[T]
with the following properties:

(1) @ (u)-z=0;
(2) the leading coefficient of @) is multiplicative with respect to | - | 4; and

(3) the slope of @ is < h.

We let H™ be the set of all elements of H having slope < h. A submodule M C H is said to have
slope < h if M C H®.

Proposition 4.6.2 H" is an A-submodule of H.

Proof. It suffices to prove H®™ is closed under addition. Let r1,To € H®™ and let = := z1 + 2.
Choose polynomials Q; € A[T] satisfying (2) and (3) of Definition 4.6.1 such that Q}(u)-z; = 0 for
i=1,2. Let @ = Q1 - Q2. Clearly, Q*(u) - x = 0 and the leading coefficient of @) is multiplicative.
So it suffices to prove that every slope of @Q is < h.

Write Q1(T) = X%, an T, Qo(T) = 327 b, T, and Q(T) = 320 _, e, T™ where d = dy + da.
Choose r,s > 0 with r + s = m such that v4(cy,) > va(arbs). Since va(arbs) > va(ar) + va(bs)
and va(cq) = va(ag,ba,) = va(aq,) +va(bg,), we have

va(ca)—va(em) _ (va(agq,)—va(ar))+(va(bay)—va(bs))
d—m -

d—m
= g Lalegoe)) 1, (a2l

where A\ = % and Ay = fl{_ﬁs. Since all slopes of ()1 and Q)2 are < h, it follows that

va(cq) —valem)
d—m

This proves every slope of ) is < h and the proposition is proved.
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Definition 4.6.3 A slope < h decomposition of H is an Alu]-module decomposition
H = H, @ Hj,
such that
(1) Hy, is a finitely generated A-module with slope < h; and

(2) for every polynomial Q € A[T]| with leading coefficient a multiplicative unit and of slope < h,
the map Q*(u) : Hf—H} is an isomorphism of A-modules.

Lemma 4.6.4 Assume that A is commutative and noetherian. Let R = Alu]. Let S be the
multiplicative subset of R consisting of Q*(u) where Q runs over all polynomials in A[T] satisfying:
(a) the leading coefficient of Q is a multiplicative unit, and
(b) Q has slope < h.
Then a slope < h decomposition of H is the same thing as an S-decomposition of H. Therefore H
has at most one slope < h decomposition. If, moreover,

H =H, & H;,
is a slope < h decomposition, then H, = H®.

Proof. It is easy to see that the set of ) defined above is multiplicatively closed. Setting Hy, = Hg
and H; = H' in Definition 4.1.1 (with R = A), we see that a slope < h decomposition of H is the
same thing as an S-decomposition of H.

Thus by Proposition 4.1.2(a), H has at most one slope < h decomposition. To see the last
assertion, suppose H = Hj; © Hj is a slope < h decomposition. Since Hj; C H®  to prove
Hy, = H™ it suffices to prove H" N H} =0. Solet z € H® N Hp. Then there is a polynomial
Q@ with leading coefficient a multiplicative unit and of slope < h such that @*(u) -« = 0. But
Q*(u) : Hf— H;} is an isomorphism, hence x = 0. This proves Hj = H®),

We now return to the set-up of Chapter 2.

First we work over A = A(Q, K) where Q is an open K-affinoid in the weight space Xp. So A
is a commutative, noetherian K-Banach algebra whose norm group is the same as that of K.

Next choose a coefficient module D as in section 1.4 (with R = A). We assume that D is an
ON-able Banach module over A and that X5, acts completely continuously on it (definition 2.7.3).
We fix a 0 € ¥, and assume that o acts completely continuously on I (definition 2.7.1).

We defined in chapter 2.6 the cochain complexes

¢*(D) = @Homr(xi)(s*(ﬂ),ﬂ)(%))

and A
C* (D) = B Homp () (P (H), D(x:).

Also, having chosen homotopy equivalences between each F and S, (H), we defined in §2.6(8)
a lift of the Hecke operator h, on cohomology to the cochain level, called H,. It is an A-module
endomorphism.

For any K-affinoid subdomain © C Q we define the A(Q)-module Dg, := D& 4 A() where the
tensor product is taken with respect to the natural map (restriction of functions) A — A(Q2). Then
o also acts completely continuously on Dg.
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Now D = Dg is an ON-able A-algebra and hence D is an ON-able A({2)-algebra. So is
6’*(}1))9) By Proposition 2.7.6, H, acts completely continuously on 5*([@9) We thus obtain the
characteristic power series Po(T) of H, on C(Dg) := @&;C(Dg).

Take ug to be the operator h, acting on the cohomology H(Dq) := ®; H(Dgq). Thus H(Dg) is
an A(Q)[ug]-module and we may therefore apply the concepts of this section to these cohomology
groups.

Theorem 4.6.5 Let xy € Xp(K) be arbitrary. Then there is an admissible K-affinoid subdomain
Q C Xr containing xo such that both the cochains C*(Dgq) and the cohomology H(Dq) admit a
slope < h decomposition over ) with respect to uq.

Proof. In theorem 4.5.1 we proved there is a K-affinoid subdomain Q C Q containing z¢ and a
slope < h factorization
Pho=@Q-S

over {) with respect to H, and @ and S are relatively prime over Q. Set U = H, acting on
C := C(Dgq). By construction,

Po(T) :=det (1 — T-U) € AQ){{T}}

(where the curly braces denote entire power series).
Since @ and S are relatively prime over 2, we may apply Theorem 4.2 of [Co| to obtain a unique
A(Q)[U]-module decomposition

C = Nqo(Q) © Fo(Q) (23)

into a direct sum of closed submodules, where Q*(U)- Nq(Q) = 0 and Q*(U) is invertible on Fo(Q).

We claim that (23) is a slope < h decomposition of C.

Indeed, since Q*(U) annihilates No(Q), No(Q) € C). Now let Z € A(Q)[T] be an arbitrary
polynomial with leading coefficient a multiplicative unit and of slope < h. As in the proof of
theorem 4.5.1, we conclude that Z is relatively prime to S. By Lemma 4.0 in [Col, it follows
that Z*(U) acts invertibly on Fp(Q). Finally, No(Q) is finitely generated as an A(§2)-module, by
Theorem 4.3 in [Co].

Since a slope < h decomposition is also an S-decomposition, it follows from Proposition 4.1.2(e)
that we obtain a slope < h decomposition on the cohomology with respect to uq.

Remark: We don’t know that the coboundaries are closed in the cocycles in our complex C.
However, a posteriori, since H (Dgq)y, is finitely generated as A(€2)-module, we know it has a Banach
module structure.

Since the characteristic power series of U is obtained via a limiting process from the reduction

modulo higher and higher powers of p of det (1 — UT), the following proposition is clear.

Proposition 4.6.6

(a) Suppose Q' C Q is another admissible K -affinoid subdomain neighborhood of xo satisfying
the conclusion of Theorem 4.6.5. Let Pqo(T') and Pq/(T) be the characteristic power series
constructed in the proof of that Theorem. Then Po/(T) is obtained from Pq(T) by restricting
all the coefficients from  to Q.

(b) Suppose for the Qp-affinoid Q we know that the matriz of U with respect to some ON basis
has entries in Z,. Then Po(T) € Z,[[T1].
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4.7 Control series.

We recall some of the notations connected to the big cell. In §3.1(9) we defined the Hecke pairs
(I*,%%), s € AT. In the notation of Section 2.1, fix compact open subgroups K, for v # £, v < oo
and set K, = I°, so that K, := [] K is an open compact subgroup of G(Ay), depending on s.
Let Ms = Mk as in §2.1(1) for this choice of Kp,.

Similarly, we define the semigroup Z‘Xf to be a product with factors fixed for all v # p and
equal to X% at p. Then the local Hecke algebra H(I°,3®) will act on the cohomology of M; with
coefficients in an appropriate sheaf ID.

Definition 4.7.1 We denote the cohomology H(Ms, D) together with its structure as H(I*, $¥)-
module by H'(I°,D). Also, let H(I*,D) = @;H(I°, D).

Note: H'(I%,D) is not the group cohomology of I, but just a convenient mnenomic notation.

There is a canonical isomorphism H := H(I,X) — H(I*,%°) for all s € AT which we use
to identify all these Hecke algebras to H. We defined X* in §3.6(15). Recall that K denotes a
fixed finite extension of Q,. Let D* := D(X?® K) be the space of all locally analytic K-valued
distributions on X*. If s = 1, we omit it from the notation, so that for example D = D(X, K).

We note that T acts on the left on D and therefore that D inherits a natural structure of
Ap-module, where A7 is the completed group ring Z,[[T1].

For each admissible open K-affinoid 2 C A7 recall that A(f2) is its K-affinoid algebra. We then
define D§, := D*Qp(1)A(Q), the A(€2)-module of all locally analytic distributions on X* over Q.

Let X = X7 denote weight space, and let A := A(X) be the ring of rigid analytic functions
on X7 over Q,. Then for any () as in the preceding paragraph, we have the restriction map
A® K — A(Q). If we are given {fq € A(Q)} with {2} an admissible open cover of X7 by Q-
affinoids, and if fq,|Q = fq, whenever Q1 C Qg, then the fq glue together to an f € A. If
moreoever the coefficients of each power series fq lie in Q, and if each fo has norm < 1 in A(),
then f € Ar.

Let Oy denote the structure sheaf on X so that Oy (X') = A.
Definition 4.7.2 Let H be a presheaf of Ox-modules with an Ox-endomorphism uw. A Fredholm

series P € Ap[[T]] will called a controlling Fredholm series of u acting on H if the following
properties are satisfied:

(a) P is entire, i.e. the restriction of P to any admissible open K-affinoid Q is in A(Q){{T}}.

(b) For every k € Xr(K) and h € Q=Y there exists an admissible open K -affinoid 2 C X and a
slope < h factorization
Po = Qq - Rg

over .

(c) Q*(u) annihilates H ().

Remark: Clearly, a controlling Fredholm series is not unique. It may be hoped that in favorable
situations, the ideal of all controlling Fredholm series for a given u acting on a given H may be
used to cut out a “spectral variety” for u. However, we do not pursue this in this paper.
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Proto-theorem 4.7.3 Fiz t € AT and homotopy equivalences between each F*M and S.(H). Let

U; denote the corresponding lift of the Hecke operator hy on cohomology to the cochain level as in
§2.6(8).

Let (H,u) denote either (C(D'),U;) or (H(I',D'), hy). Then there is a controlling Fredholm
series for u on H.

We will state this theorem more carefully and prove it in section 6.3. Here we make a few
further comments to motivate the contents of chapter 5.

The assertion for the cohomology follows immediately from the assertion for the cochains. In
order to prove the latter (say for ¢ = 1), we would like to write D as a projective limit of ON-able
Banach spaces, parametrized by s € AT and use the characteristic Fredholm power series of u on
the cochains for each Banach space. Unfortunately, we cannot get Banach spaces unless we restrict
to open affinoids in weight space, in which case we have the isomorphisms

Do — lim Dgqls].
s>5(Q)
One problem is that neither 3 nor even X% acts on Dg[s] in an obvious way. Rather 7 € AT sends
Dq[s] to Dg[sr]. We will have to compensate for this by using a Hecke operator to average back
from Dq[sr] to Dq[s], thereby defining something we call the x action. We carefully track the action
of the Hecke operators on everything.

Using the % action, we then have the characteristic Fredholm power series of u, call it P35, on
the cochains with values in Dg[s]. However, as {2 varies, we have to be prepared to see s(2) get
arbitrarily large. So we will have to prove some kind of independence of P from s. Then by the
paragraphs preceding Definition 4.7.2, we will be able to glue these together as () varies to obtain
the desired controlling power series.

To perform both these tasks we need a rather complicated algebraic study of induced modules
and Hecke operators. The key ingredient is Shapiro’s lemma. This is the topic of the next chapter.

5 Induced modules and cohomology

Because the framework we develop in this chapter should be useful for a number of different
problems, we keep our formulation as general as possible. The reader should keep in mind two cases.
In the first case I' will be an arithmetic group and H* will be the ordinary group cohomology. In
the second case, I will be a subgroup of the Iwahori group I and H* will denote the cohomology of
the Shimura manifold as in Definition 4.7.1. In either case, most of the verifications are routine and
will be omitted. When we do prove some of the details, we will do it only for the group cohomology
case: the Shimura manifold cohomology case is similar. The main point in the latter case is that if
one formally writes down Shapiro’s lemma for H*, and interprets the resulting formula in terms of
the notation of Definition 4.7.1, one has a true statement.

The goal of this chapter is to understand how the cochains, the cohomology, the Hecke operators
and their lifts to cochains all behave as we change the level at p.

5.1 Hecke algebras and cohomology.

Throughout this chapter G is a group and R a commutative ring with identity.

A Hecke pair in G is, by definition, a pair (I", S) consisting of a submonoid S C G and a subgroup
I" C S such that every double I'-coset I'ol" in S is the union of finitely many right I'-cosets and
also the union of finitely many left I'-cosets.
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By an S-module we mean an R-module M endowed with an action of S on the left. We
shall, however, also need to consider right actions of S. We will use the following conventions.
By a contravariant S-module, we mean a left S~!-module, where S=! := {s7!|s € S}. If M
is a contravariant S-module, then for m € M and ¢ € S we will use the notational convention
mlo = o~ tm. We let

Modg, Modg

denote the category of S-modules, respectively the category of contravariant S-modules, with S-
morphisms. With our conventions, we have Modg = Modg-1.
The covariant and contravariant R-Hecke algebras

H :=Hr(5), respectively H* == Hr(S™) (24)

are the rings of R-valued bi-I'-invariant functions on G that are supported on a compact subset of
S, respectively S~!, with the usual convolution product defined by

(fra)y) = D fla) gy

zeG/T

for f,g € H (respectively H*). We note that the map H——H*, defined by f —— f* with f*(c~1!) :=
f(o), defines an isomorphism of the opposite algebra of H with H*.

Let M € Modg and M € ModQ. We let ‘H act on the R-module H°(I', M) and contravariantly
on HO(T', M) by

fra=Y f()-yz and |f:=fal= Y f(r)-2ly (25)

~yeS/T ~yel'\S

for x € HO(I',M) and o' € HO(F,M). We let H act on the higher cohomology by devissage
as follows. Let R be the trivial S-module and fix a resolution R, respectively L., of R by free
contravariant S-modules, respectively covariant S-modules. Define complexes K*(M), K*(M) by

K*(M) := Homp(R,, M) and K*(M) := Hompg(L,, M).

For X = M or X = M, K*(X) is a complex of S-modules, with S-action defined by (cf)(z) =
o - f(z|o) in the covariant case (respectively by (f|o)(z) = f(0z)|o in the contravariant case) for
f € K*(X) and z € R, (respectively z € Ly).

Applying the functor H(T', %) to K*(X) we obtain a complex of H-modules C*(T, X). Since R,
is a free S-resolution, it is also a free I'-resolution. Hence, the homology of C*(I", X) is canonically
isomorphic to the group cohomology H*(I', X'). Moreover, the H-structure of C*(T", X) induces an
H-structure on H*(I', X'). One easily checks that these H-modules are independent of all choices
and are natural as functors of X in both the covariant or contravariant categories. Thus, letting
Mod denote the category of R-modules we see that formation of cohomology gives us functors

H*(T,*): Mods—Mod and H*(T',%)°: Modg— Mod

together with homomorphisms

opp
T :H—End <H*(F, *)) and 7%*:H—End (H*(F, *)°> , (26)
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where, for any Mod-valued functor F, End(F') denotes the R-algebra of natural transformations
from F' to F and End(F)°PP is the opposite R-algebra.
For f € H, we let

Ty H* (I, %)—H"(I',x) and 77 : H* (T, %) «— H*(I', %)°

be the natural transformations associated to f € H and f* € H* by the above discussion. In
particular, for s € .S, we define

T, :=Tprsry and T =Ty
where [['sI'] € H denotes the characteristic function of I'sT".
5.2 Generalities on Hecke operators and induced modules.
For a I'-module X we consider the induced S-modules
md2(X) =1{¢:5—X ' d(yx) =vp(x) forally e T, x € S } ,

c-Ind? (X)

XS Indii (X) ‘ ¢ has compact support }

where each is endowed with the usual covariant and contravariant S-actions defined by
(0¢)(x) = ¢(zo) and  (glo)(z) = ¢(zo ™) (27)

for ¢ € Ind2(X) and o,z € S, where in the latter case we define ¢(y) := 0 for any y € G with
y € S. Thus we obtain functors

Ind? : Modr—Mods and  Indg : Mod$— Mod%
and similarly for c—Indlg . Composing with passage to I'-cohomology we obtain functors

H*(T',Ind2 (%)) : Modpr— Mod
and  H*(T,Indg(%))° : Mod%— Mod®

and pulling back 7 and 7* (see §5.1(26)) by Ind? we obtain R-algebra morphisms
opp
7: H—End (H*(F,hd%))) and 7% :H—End (H*(F,Ind?(*))°> .

Definition 5.2.1 For each s € S, we let 75 and 77 be the Hecke operators defined by 75 := 7p,
and 1) := T[’%SF]. These define natural transformations

7o H*(T,Ind3(M)) —H*(T,Ind{(M))
and 7F: H*(I,Ind2(M)) «— H*(I',Ind2(M))

s

where M and M run over Modg and Mod% respectively.
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The definition of 7, and 7 make use of the actions of S on Indf () associated to right translation
of functions. But the elements of Ind? also enjoy a certain I'-invariance under left translation. This
fact allows us to define another action of H on the I'-cohomology of Indf(X) for an S-module X
in either Modgs or Modg.

More precisely, for M € Modg and M e Mod% we have bilinear maps
H x Ind¥(M)—Ind2(M) and H* x Ind¥(M)—IndZ (M)
defined as in §5.1(25) by

fro= > @) [0 'y)] and  fdi= > f(2)- |dlay)le]

zeS/T zel\S

for f € H and ¢ € Ind2(M) (respectively ¢ € Ind{ (M ). This defines an H-structure on Indg (M)
and an H*-structure on Ind(M). These structures are functorial in M and M. In other words,
they induce R-algebra morphisms

opp
H—>End(1nd§(*)> and H—>End<1nd~§(*)°> . (28)

For any f € H we let h(f), h*(f) denote respectively the images of f under these morphisms.
We see at once from the definitions that h(f), h*(f) commute with the T-action on Indg(x) and
therefore respect passage to the I'-cohomology. We therefore also obtain R-algebra morphisms

opp
h : H—End (H*(F,Ind?(*))) and h":H—End (H*(F,Indl‘g(*))o) .
Definition 5.2.2 For each s € S, we let hy and h% be the Hecke operators defined by hs := h([I'sT'])

and h’ := h*([I'sI']). These define natural transformations

hs : H*(T, IndS (M) —H*(T, Indg (M)
and  B%: H*(T,Indf(M)) «— H*(T,Ind$(M))

where M and M run over Modg and Modg respectively.

To compare the Hecke operators 7; on H*(T', x) with the operators 75, hs acting on H*(T, Ind%' (%))
we define I'-morphisms

i:X —Indf(X) and ¢ :Indg(X)—X

for X € Modg, respectively X € Modg, by i(z)(s) = sz (respectively i(xz) = z|s) if s € I' and
i(z)(s) =0if s ¢ T', and i*(¢) = ¢(1). Note that while ¢ and ¢* are both I'-morphisms, neither
commutes with the action of S.

Proposition 5.2.3 For any covariant S-module M € Modg and any s € S, the operator T is
given by the commutativity of the diagram

HYT,M) - H*T,Ind3(M))
TJ H* (T, Ind§i (M)

H*T,M) <— H*T,Ind3(M))
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Dually, for any contravariant S-module M € Mod$, the operator 1 is given by the commutativity
of the diagram
H*(T,M) <— H*T,IndE(M))
h*

T*T H*(T,Ind2(M))

Nk

H*T,M) - H*T,Ind?(M))

More is true than is expressed in the last proposition. Namely, we can compare the operators
hs, Ts with the restriction and corestriction that are customarily used to define the Hecke operators.
To formulate this precisely, we use the following definition.

Definition 5.2.4 Let X be a T-module. For s € S, we define the “induced chunk” X[s] C Ind(X)
by

X[s] := { ¢ € Indg(X)

supp (¢) C I's" } .

The chunks are T-submodules of Ind?(X). Indeed, we have a natural I-module decomposition

mdi(X)= [ X, (29)
sel’'\s/T

which induces a corresponding R-decomposition of the cohomology:
H* (D, IndR(X)) = [Teery sy H* (T, X[s]). (30)

In general, the action of S does not respect the decomposition (29), nor do the morphisms hs, h%, 75, 72
respect the decomposition (30). However, as the reader can easily check, the operators hg, 72 do
induce operators

hs : H* (T, M[1]))—H*(I, M[s]) and 7 : H*(T, M[1])—H*(T, M|s]),

a fact we will need for the formulation of proposition 5.2.5 below.
For any s € G, we define the Hecke pair (I'*, S%) by

I'*:=TNs s, respectively S°:=S5Ns 'Ss.

For M € Modg, respectively M e Mod?, we let M® € Modgs, respectively M € Modg,, denote
the S°-module whose underlying R-module is M, respectively M, with S®-action defined by

a-sm:= (sas ') -m, respectively | = m|(sas™),

for o € 5% and m € M?, respectively m € M.
If s € S, then s acts on M and on M, and this operator induces an S*-morphism

Vs : M -5 M*,  respectively {/;S : M* -2 M.
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Corresponding to these, we have restriction and corestriction maps
ress : H*(IT,M) — H*(* M)
cors H*(stﬁs) — H*(F,M)

defined by the commutativity of the diagrams

H*(T'S, M*) H*(T', M*)
Vs s
reséw N and J corsl
H*(T,M) == H*(T* M); H*(5, M) <% H*T,M).

Proposition 5.2.5 Let s € S.
(1) We have canonical I'-isomorphisms

M|s] = Indk, (M®) and  M[s] & Indk, (Ms> :
(2) In the covariant case we have the commutative diagram

H*(D,M[s]) = H*(*, M%) = H*I%

.| R E

Ts
—

M) — H*(T', M[s])

H*T,M[1]) «— H*T,M) H*T,M) <— H*T,Ind3(M)).

Dually, in the contravariant case we have the commutative diagram

1~

H*(I,M[s]) <~ H*I% M%) = H*T' M) < H*T,Ms])

hﬁl Jcors res[ TT;

H*(T,IndS(M)) =  HYT,M) <& H*T,M) - HYT,M[)).

Proof: This is a straightforward verification. We give the details only for the first claim and
only in the covariant case. Define M[s]—Indp. (M?) by ¢ —— f, where f4(z) = ¢(sz) for any
z €T, If a € T then fy(ax) = ¢(sax) = sas™' - ¢(sz) = a -5 fs(z), so fs € Ind}... Moreover, for
v € I" we have y¢ — fy4 where f,4(z) = (7¢)(sx) = ¢(szy) = fg(xy) = (7fs)(x). Hence the map
commutes with the action of I'. To show our map is a bijection we define a map Indks (M*) — M|s]
by f +—— ¢; where ¢¢ is defined on a typical element visy2 € Isl by ¢r(v1572) = nf(r2). A
straightforward verification shows that ¢ is well-defined and that the maps f —— ¢, and ¢ — f4
are inverses of one another.

Note that the isomorphisms in the top lines of the two diagrams are given by (1) plus Shapiro’s
lemma.
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5.3 Graded Hecke algebras, and the x-action.

In the last section we defined, for M € Modg and M € Mod%, the induced modules Indis (M) and
Inds (M)° as well as their chunk decompoositions

Idp(M) =[] Ml[s] and mWdi(M)°= [ Mlsl. (31)
sel\S/TI" sel\S/T

Each of these induced modules is endowed with both an S-structure §5.2(27) and an H-structure
§5.2(28). There are three related technical difficulties with our picture.

(i) The action of S does not, in general, respect the decompositions (31), nor do the Hecke
operators h(s), h*(s), s € S, respect these decompositions.

(ii) The S-structure §5.2(27) need not commute with the H-structure §5.2(28).

(iii) The S-structure on the one hand, and the H-structure on the other, give rise to two natural
actions of H on the cohomology of the induced modules (31). But in view of (ii), these two
actions need not commute with one another. This may happen even in cases where H is
commutative.

To deal with these difficulties, we have introduced the notion of a graded Hecke pair in chapter
2. We will now switch over our notation, replacing I" with I and S with X.

For the rest of this chapter, (I,%,A) will denote a fixed graded Hecke pair and H := H; (%),
H* == H;(X71) will be the associated Hecke algebras as defined in §5.1(24). Let R[A*] be the
semigroup algebra of A* and for any subset X of G let [X] be the characteristic function of X.
Then for each ¢ € ¥ we have [[oI] € H and [Ioc~'I] € H*. With these conventions, there is a
unique ring homomorphism

R[AT]—H

sending s to [IsI]. One easily checks that this is an isomorphism of rings. In particular, we see
that H is a polynomial ring over R.

Proposition 5.3.1 Let r,s,t € AT and 0 € 3 with s := §(c). Then for any X-module M and
contravariant Y-module M we have the following commutative diagrams:

Mrs] ™ Mt Mirt] % Mirst]
al al h(t)l h(t)l
Ml M ey M[r] - Mlrs).

Proof: The proof is a straightforward application of property §2.5(6). We give the details for the
first diagram. Let ¢ € M|rs| and let y € ¥. Then

(h(t) * (@) () = Ppenryr e [(09)(x™1y)]
= ZwEItI/I X - [(ﬁ(x*l .

x_lyeZ
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However, since ¢ € M|rs] we see that ¢(z " 1yo) # 0 = 2~ 'yo € IrsI and this implies 6(y) = 5(x)r
and 27!y € 271X N YY1 Thus, by (§2.5(6)), we have ¢(x~tyo) # 0 = 'y € ¥ and it follows
that the above sum simplifies to the following:

(h(t) % (09)) (y) =X weray - [$(a"yo)]

x_lyeZ

=Y verryr @ [0 lyo)]
= (0 - (h(t) * ¢)) (y).

This proves the commutativity of the first diagram. The commutativity of the second diagram is
proved similarly.

Using proposition 5.3.1 we can now define a third natural action of H on the cohomology of
Ind¥ (M), respectively Ind?(M ). We do this by first defining a new action of ¥ on Ind¥ (M),
respectively Ind?(ﬁ), called the *-action, as follows. For o € ¥ with s := §(0) € AT and
¢ € Ind¥ (M), respectively ¢~5 € Ind?(]\? ), we define

ox¢:=0-h(s)p, respectively ¢+ = (P|o)|h(s).

Proposition 5.3.2 The pairing x defines a monoid action of ¥ on Ind?(M), respectively on
Ind?(M). Moreover, in both cases, the x-action is a graded action of trivial degree.

According to (5.3.2), the * action endows each chunk M][t], respectively M[t], (t € A™) with
the structure of a ¥-module, respectively contravariant >-module. Thus we may regard these as
objects in the corresponding categories:

M[t] € Mods, and M][t] € Mod3.

Thus, as before, we obtain R-algebra homomorphisms
- opp
7 : H—End <H*(I, M[t])) and 7%:H—End <H*(I, M[t])°> .

Following our previous conventions, we let 7, Tf* be the natural transformations associated to an
element f € H and make the following definition.

Definition 5.3.3 For each s € X, we let 75 and 7" be the Hecke operators defined by 7 := 7
and 7 := Ty (using the * action). These define natural graded transformations of trivial degree

T, : H*(I,Ind7 (M)) — H*(I,Ind¥(M))
and 7 : H*(I,Ind¥(M)) «— H*(I,Ind¥(M))

where M and M run over Mods, and Mody, respectively.
We summarize the main results of this section in the following theorem.

Theorem 5.3.4 Let (I,%,A) be a graded Hecke pair and for each s € AV let Ty, 75, hs be the
covariant Hecke operators on H*(I,Ind¥ (M)), and T}, 7}, h’ be the contravariant Hecke operators

on H*(I,IndIE(M)) defined above. These operators have the following properties:

27



(a) Each of the operators T, Ts, hs, T, 72, b is graded. Indeed, we have

y lgylts

deg(Ty) = deg(T;) = 1
deg(hs) = deg(1¥) =s and deg(h?) = deg(rs)=s"1.

(b) Ty =7150hs and T, = h}oT}.
(¢) 75 commutes with 75 and hs, and dually T* commutes with 75 and h.

(d) Forte AT the diagrams

H*(I, M[st]) 2 H*(I, M[st]) H*(I,Mst]) <= H*(I, M]st])
hsT N hsT and h;‘l S h:l
H*(I,M[t]) 5 H*(I, M[t)) BN S HA(L M)

are commutative.

5.4 Locally constant functions and distributions.

Now we adapt this framework to give a construction of universal distribution modules that makes
clear how the Hecke algebra acts on their cohomology. At the same time, we similarly describe
modules of locally finite functions.

As in the last section, we let (I,%,A) be a graded Hecke pair. In §5.2(28) we defined natural
actions of h, h* of H on the induced modules of ¥-modules and in proposition (5.3.4), we showed
that H commutes with the x-action of ¥ on these induced modules. This gives us R-algebra
homomorphisms

H[X]—End <Ind%(*)> and  H[Z]—End <Ind?(*)o> opp

thus endowing the induced modules with natural H[%]-structures.

Recall that we have a canonical isomorphism R[AT] = H. Let € : H— R be the augmentation
morphism associated to the trivial homomorphism AT——R* and let J := ker(e) C H be the
augmentation ideal.

Definition 5.4.1 We define two functors
A : Mody—Mods, and D : Mody,— Mody,

as follows:

(a) For M € Mods, we define
A(M) := c-Ind¥ (M) @n R

and call this the X-module of locally constant M -valued functions.
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(b) For M € Mod§, we define

D(M) := Ind} (M)°[J] := { ¢ € Ind}(M)°

qﬁ\a:Oforallaej}.

and call this the X-module of locally constant M -valued distributions.

Equivalently, we may define these modules as inductive and projective limits respectively. In
the covariant case, the maps h(st™1) : M[t]—M][s] for t < s give us an inductive system of ¥-
modules. Dually, in the contravariant case the maps h*(st™!) : M[s]—M[t] give us a projective
system of ¥-morphisms in the contravariant category. We have the following proposition.

Proposition 5.4.2 We have canonical isomorphisms

lim M[s] > 2A(M)  and  D(M) > lim M[s].

s s

Moreover, the functor A : Mods— Mods; is exact.

Proof: The first two assertions are immediate from the definitions, while the latter follows from
the fact that inductive limit functors are exact in any abelian category.

Now let R be a flat Z,-algebra, which we assume is separated and complete in the p-adic
cC

topology. Define the full subcategory of Modss of Mods, to consist of those modules on which
every strictly positive element of AT acts completely continuously (cf. definition 2.7.1). Then we
have the following Proposition, which we state without proof, since we will not need it in this paper.

Proposition 5.4.3 The restriction of ® to ModsS is an exact functor.
Of great importance to us is the following simple proposition.

Proposition 5.4.4 For any contravariant X-module M we have a canonical morphism

H*(I,D(M)) — lim H*(I°, M*)

s

where the transition maps in the projective limit are the appropriate corestriction maps.

The module on the right is sometimes called the “universal norm” module associated to M.

Note: On the finite slope part of the cohomology, this map will be an isomorphism for the simple
reason that on that part, the transition maps on the right are all isomorphisms. See Theorem 5.5.3
below.

Proof: Since formation of cohomology commutes with the transition maps in the projective limit,
we have an morphism s s
H(I,D(M)) > lim H* (I, M]s))

S

where the transition maps on the right are the maps

hy-1 : M[s|—M[t], (s >1).
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Apply Proposition 5.2.5 to the I*-module M and note that the map labeled ¢* on the bottom line of
that proposition is an isomorphism by Shapiro’s lemma. We obtain, for each s > ¢, a commutative
diagram of H-modules:

*

B M) S me (L M)

S

H*(I5, M%) 250 {1, MY).

This completes the proof.

5.5 Finite slope spaces.

As in the last chapter, we let (1,3, AT) be a graded Hecke pair. If we are in the covariant case, we
impose the additional condition that

1 is a topologically finitely generated topological group. (32)

Fix a strictly positive element m of A*. The Hecke operators (from Definition 5.3.3)
U:=17, € End <H*(I, *)) and U*:=7) € End (H*(I, *)°> (33)

and the related operators (from Definition 5.2.1) u := 7 and u* := 7},

u € End (H (I,Ind§(*))> and u* € End (H (I,Ind?(*))o), (34)

play a special role in our theory. In particular, when M is a contravariant completely continuous
Y-module, we will use the operator U to cut out certain finitely generated submodules, namely the
slope < h parts, of its I-cohomology. Note that U acts via the x action.

The key commutative diagrams (from Theorem 5.3.4(d)) are the following (in the covariant and
contravariant cases, respectively).

H (I, M[rt]) L H*(I,M[xt]) H*(I,Mxt]) <= H*(I,M[rt])

W U ] O AN (35)

H(I,M[t]) -5 HYI,M[Y]) HYIM[E) < HA(1, M)

Let K be a finite extension of Q, as usual, and R a K-Banach algebra. Recall that a polynomial
@ € R[T] is said to be Fredholm if Q(0) = 1.

Definition 5.5.1 Let H be an R-module and U be an R-endomorphism of H.

(a) For an arbitrary Q € R[T], we define

HQ:{geH‘waf:O}
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(b) We say that an element & € H has finite slope (with respect to U) if & € Hg for some
Fredholm polynomial Q € R[T]. We define

H? .= {éeH ’ ¢ has finite slope}.

__ The main theorem of this section is the following. As always, M is a covariant ¥-module and
M is a contravariant >-module.

Theorem 5.5.2 Let s,t € AT. Then hg induces canonical isomorphisms:
HO(I, M[)# =5 HO(I, M[st])# and  HO(I, M[st])# —=> HO(I, M[t]))*.
Moreover, the canonical maps M [s|—2A(M), @(]/\Zf/)—d\?[s] induce isomorphisms
HO(I, M[s])# =5 HO(I,A(M))# and  H°(I,®(M))# = HO(I, M[s))¥.

Proof: We first consider the covariant case. We simplify the notation and, for any » € AT, let
Hi[r] := H°(I, M|r]). Note that in the group cohomology case, H[r] = M[r]!, the R-submodule
of I-invariant elements of M[r]. In the adelic cohomology case, in the notation of chapter 2,
H[r] = @;M[r](x;)F @),

First, we show that the transition map

hy : H[t] — H|[rt]" (36)

is an isomorphism. (Recall that 7 is a fixed strictly positive element of A™.)
Let @ € R[T] be any Fredholm polynomial. Then we may write Q@ = 1—T"-P(T) with P € R[T].
Then U and P(U) are inverses of each other on X¢ for any R[U]-module X. It follows at once

from this and (35) that the composition H|t]g PO g [7t]q and H(rtlg — H]t]qg are inverse

morphisms commuting with the action of H. Since H# is, by definition, the union of the Hg as Q
ranges over all Fredholm polynomials, this proves that (36) is an isomorphism.

Now let s € AT be arbitrary and choose a positive integer n sufficiently large so that 7™ > s.
Writing 7" = rs with r € AT we have, by (36), that the compositions

H[# Lo H[st]# Lo Hzme)# (37)
is an isomorphism. And also
H[st]#* o Hlzm)# 25 qH[g# Lo H]st]# (38)

is an isomorphism. To see this, use Theorem 5.3.4 and the fact that
hsTrnhy = hTsTrhy = T, T, = Trn = U",

and we saw above that U is an isomorphism on X# for any R[U]-module X.
So hs on HI[t]# is both injective and surjective and we have proved the first assertion of the
theorem in the covariant case. The contravariant case is proved dually.
We now turn to the covariant case of the last assertion of the theorem. Under hypothesis (32)
the canonical map
lim H[s]— H°(I,2A(M))

s
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is an isomorphism and therefore the same is true for the finite slope subspaces

lim H [s)# — H°(1,A(M))#

The second assertion of the theorem is therefore a consequence of the first. The contravariant case
is proved similarly, except that we don’t need (32). This completes our proof of Theorem 5.5.2.

We will apply the previous theorem in an adelic context where the cochains used to compute the
cohomology may be chosen to have slope < h decompositions. So we prove the following corollary.

Theorem 5.5.3 Let 7 be a fived strictly positive element of AT, Let M be a contravariant -
module M. Suppose that for each s € A*, the cochain complez C*(M [ ) from section 2.6 (which
computes H*(I, M[ |) possesses a slope < h decomposition with respect to Hy for each degree x and
for every h € Q=2°, for some Hy which lifts the Hecke operator Ty on cohomology to the cochain
level. Also, assume that H; satisfies the conclusion of Lemma 5.5.4 below.

Then the canonical morphism of Proposition 5.4.4 induces an isomorphism of H-modules on
the slope < h parts:

H*(1,D(M))n, > lim H*(I%, M*)y. (39)

The transition maps on the right hand side are all isomorphisms of H-modules and for each s, the
projection

H*(I,D(M))y, => H*(I°, M®),. (40)

s an isomorphism.
Moreover, these statements are also true on the cochain level where “H-modules” is replaced by
“R[H]-modules”.

Proof: First note that by Shapiro’s lemma, H*(IS,MS) = H*(I, M[s]) and this is even true on
the cochain level (cf. Proposition 5.2.5): C*(I®, M*®) = C*(I, M[s]).

Since Hom commutes with projective limits, and since M = lim M{[s] we have that C*(I, M) =
lim C*(I, M|s]). By hypothesis we have slope < h decompositions C*(I, M[s]) = C*[s], ® C*[s]'.
From Proposition 4.1.2(a) on S-decompositions, we know that the transition maps send C* [s]n —
C*[st], and C*[s] — C*[st)’. Also, by Proposition 4.1.2(e), we have for each s the corresponding
slope < h decomposition on cohomology: H*(I, M[s]) = H*(I, M[s)), & H*(C*[s]').

We now use the following lemma, to be proved later.

Lemma 5.5.4 There exists a lift Hr such that on the finite slope parts with respect to Hr, the
transition maps C*(I, M[s])* — C*(I, M|[st])* are isomorphisms.

Since the slope < h part is contained in the finite slope part, we get that C*[s], — C*[st], are
isomorphisms. -

Now C*(I,M) = limC*(I,M[s]) = limC*[s], & th’*[ . We claim this is a slope < h
decomposition. In definition 4.6.3, (1) is clear since C*(I, M [s]) is a finitely generated R-module
for any s and they are all isomorphic, so lim C*(I, M [s]) is a finitely generated R-module. As
for (2), let Q(T") be a polynomial as in definition 4.6.3. We must show that Q*(H,) induces an
isomorphism lim C*[s]’ — lim C*[s]’. This is clear because Q*(H,) induces an isomorphism on each
term of the limit.
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From Proposition 4.1.2(e) we obtain the corresponding slope < h decomposition of the coho-
mology: H*(I, M) = lim H*(I, M[s]) = lim H*(I, M[s]), & H*(lim C*[s]’). Note that in the slope
< h part of the right hand side, taking cohomology commuted with projective limits because all
the transition maps were isomorphisms.

It is now clear that (39) and (40) hold for cohomology and that the analogous statements hold
on the level of cochains.

Remark: We do not assert any isomorphism for the transition maps on the non-finite slope part
of the cochains or cohomology, nor is one likely to hold.

Proof of Lemma 5.5.4: First we have to prove a sublemma.

Sublemma 5.5.5 Let R be a Banach algebra over a finite extension K of Q, and let A and B
be R[U)-modules. Let A% and B¥ be the finite slope subspaces (with respect to U) of A and B
respectively.

Suppose h : A — B is an R[U|-morphism and that v : B—A is an R-morphism such that the

diagram
U

A — A
| hl
B Y B

is commutative. Then the map h : A% — B# is an isomorphism.

Proof: It is enough to show that for any Fredholm polynomial @ € R[T] that h : Ag — Bg is an
isomorphism. Write Q(T') =1 —TP(T) so that UP(U) =1 on Cg for any R[U]-module C.

To see that h is injective, let a € Ag such that ha = 0. Then a = UP(U)a = uhP(U)a =
uP(U)ha = 0.

To see that h is surjective, let b € Bg. Then b = UP(U)b = huP(U)b so all we need to show is
that o := uP(U)b is in Ag. But hQ(U)a = Q(U)ha = Q(U)b = 0 and since h is injective, we get
that Q(U)a = 0. This completes the proof of the sublemma.

Now recall from section 2.6 the cochain maps

f:CH(M)—C*(M) and  g:C*(M)—C*(M).

For any s € AT, let ]\7(3) =P, ]\7[7&] Then we have from (35) applied to H” the commutative
diagram N

C*(M(st)) - C*(M(sm))

u

h| J Lh (41)

Cr(M(s)) -5 Cr(M(s))

where U and u are given at (33) and (34) (applied to the cochains which can be interpreted as an
HY: C*(M) = H°(I,Homg(S,, M)) — see Section 2.3) and the vertical maps h are induced by the
maps h, on the coefficient modules (see Definition 5.2.2 and Proposition 5.3.1). In particular, U is

a lift of the Hecke operator T} to the cochain level as given for example by (§2.4(5)).
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Now consider the diagram

C*(M(sm)) % C*(M(sm))

h| g Ik
Cr(M(s) L Cr(M(s))

where the vertical maps h are induced by h, on the coefficient modules and

i =fouog

U =hou.

Note that U also is a lift of the Hecke operator 715 to the cochain level because h commutes with
f and hu = U: thus U= hfug = fhug = fUg.
So to complete the proof of the lemma, we need to check that the above diagram is commutative,
i.e. that N
ioh=U on 5*(M(87T))
This is achieved by a straightforward computation. Explicitly, let ¢ € 6*(1\7 (sm)) be arbitrary and
set & := g(p) € C*(M(sm)). We have

(woh)(w) =(h-)lu

((h-&) | w)
( (€ } u)) (by the commutativity of (41))

h
f(¢]w)
f

Thus we can take H; = U. This completes the proof.

5.6 Seeding the machine.
To apply the ideas in this section to derive our main theorems, we need the following proposition.

Proposition 5.6.1 Let t,s € AT and Q be an affinoid open subset of Xr such that s > s(Q)
(Definition 3.6.5). If we set M = Dqls] then M' ~ Dq(X[st]), M[t] ~ Dq|st] and D(M) ~ Dq,.

Proof: Recall that by definition, Dg[s] = Dq(X[s]) = Dq(X][s,s]). By Proposition 3.6.2, right
translation by ¢ induces an isomorphism of strict p-adic manifolds X [s] — X'[s, st]. If f is a strict
analytic function on X'[s, st], then t - f is a strict analytic function on X[s], where (t - f)(x) :=
f(xt). We get an isomorphism M! — Dq(X'[s, st]) by sending m — u according to the formula
wu(f) =m(t- f). It is easy to see this is a map of X!-modules. Then use Lemma 3.6.6 to see that
Do (X![s, st]) = Do (X*[st]).

If we induce both sides of the last equality from I° to I we get that M[t] = Dg[st]. If we now

take the projective limit in ¢ of both sides, we get ©(M) = Dq.
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6 Theorems of control and comparison

In this chapter, we state and prove our three main theorems: the existence of a controlling charac-
teristic power series for the U-operator; the control theorem which aligns the slope < h part of the
cohomology of D with the same part for Dy for each & € Xr; and the comparison theorem which
for arithmetic k compares the slope < h part of the cohomology of Dy, with that of the same part
for the finite dimensional V.

6.1 A Ring theoretic lemma.

In this section we prove a purely algebraic lemma that enables us to compare systems of Hecke
eigenvalues on various cohomology groups in an efficient way. It and its proof are very similar to
Theorem 5.1 and its proof in [APS].

For any ring A, define A,¢q to be the reduction of A, i.e. A modulo its nilradical. The following
theorem holds true whether we interpret H* as group cohomology or cohomology of the appropriate
Shimura manifold.

Theorem 6.1.1 Let R be a noetherian ring, (I,X) a Hecke pair, and denote the Hecke algebra
over R as Hr := H(I,X) ® R. We assume Hp is commutative. Let S be a multiplicative subset of
Hp. Let M be an R[X]-module, so that the cohomology H(M) := H(I,M) := @ H*(I, M) is an
‘Hpr-module.

Let T be an ideal in R that is generated by a finite M -reqular sequence.

(i) If H(M) has an S-decomposition, then so has H(M/IM).
(i) Let R(M) = Im (Hp — Endg(H(M)s) and R(M) = R(M),eq. Then there is a natural

isomorphism

(R(M)/ITR(M))req = R(M/T).

Proof: Our proof is by induction on the length of an M-regular sequence of generators for Z. We
begin with the case where 7 is principal, generated by an M-regular element o € R, i.e. an element
« such that M has no a-torsion. In this case, we have an exact sequence

0—M % M—M/aM—0.

(i) Pass to the long exact cohomology sequence and use Proposition (4.1.2)(c) to see that H(M /aM)
has an S-decomposition.

(ii) Looking again at the long exact cohomology sequence and using again Proposition (4.1.2)(c),
we obtain an exact sequence

0—H/aH—H(M/aM)s— H[a]—0

where H := H(M)s and H|«] is the a-torsion in H.

We first construct a homomorphism R(M)—R(M/aM). For this, we let = € Hp be such
that = annihilates H. Then the last exact sequence implies 2% annihilates H(M/aM)s. Hence
maps to an element of the nilradical of R(M/aM) and it follows that z maps to 0 in R(M/aM).
Thus the canonical map Hr—R(M/aM) factors through the canonical map H—R(M). Hence
we have a canonical surjective map

& R(M)—R(M/aM).
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Since
(R(M)/IR(M))rea = (R(M)/IR(M))rea;

it suffices to show that ker(3) = the radical of ZR(M) in R(M). The inclusion D is obvious.

So let = € ker(@). From the above exact sequence, we conclude that some power of x annihilates
H/aH. Since we are only trying to prove that some power of z is in ZR (M), we may assume that
x annihilates H/aH. Thus, tH C aH.

Since, by definition of an S-decomposition, H is finitely generated over R, there is a positive
integer m such that H[a™*!] = H[a™]. In particular, we see that o™ H has no a-torsion and from
this it follows that a : ™ H—a™ ' H is an isomorphism of R-modules. Let 3 : o™t H—a™H
be the inverse map. Let y € Endgr(H) be the composition

m+1
y:Hx—+> amHHiamHgH.

Then ay = ™11, Note that o™y = ama™ L.
Now define

B:={weEndg(H)|3 k> 0,z R(M) such that oFw = o™z }.

The endomorphism y constructed in the last paragraph is an element of B. Clearly, B is a finite
R-algebra containing ﬁ(M ). Moreover, for every element of § € B we have o3 € ﬁ(M ) for
some k > 0. Since B is finitely generated as a module over R, there is an exponent N such that
oV B C R(M).

Now consider zMm+tDIN+1 — (qq) = a(aNyN*t1). Since y¥*! € B we have oNyNt! ¢

R(M). Hence z(mtDWN+D) ¢ oR(M). This proves z € Radﬁ(M) (o). Hence ker(¢) C the radical

of Iﬁ(M ) in ﬁ(M ). This completes the proof in the special case where 7 is generated by a single
M-regular element of R.

Now we suppose r > 1 and that the theorem is true whenever 7 is generated by an M-regular
sequence of length r. Let ay,...,a,,a be an M-regular sequence of length » + 1. Let Z be the
ideal generated by a1, ... ,a, in A and let J be the ideal generated by Z and «.

(i) We have an exact sequence

N+1

0—M/IM % M/IM—M/JM—0.

Pass to the long exact cohomology sequence and use Proposition (4.1.2)(c) and the inductive
hypothesis to see that H(M/J M) has an S-decomposition.
(ii) We define ¥ to be the composition of the natural surjective homomorphisms

¢ R(M) =2 R(M/IM)—R(M/JM).

(They are surjective because everything in an ﬁ—ring is induced by a Hecke operator in Hpg.)
Let x € ker(¢)). Then by the principal case proved in the last paragraph, we have y :=
p(z) € Radﬁ(M/IM)(a). Thus there is an m > 0 such that y™ € aR(M/IM). This means

o(z™) € aR(M/IM). So there is an element z € R(M) such that o(z™) = ap(z). It then follows
from the induction hypothesis that 2™ — az € Radﬁ( M) (). There is therefore a positive integer
N such that _

(z™ — az)N € TR(M).
From this we see at once that 2™ € JR(M). Hence z € Radﬁ(M)(j). This proves ker(¢)) C

Radﬁ( ) (J). But the opposite inclusion is immediate. Hence ker(¢)) = Radz ,(J). This com-

R(M)
pletes the proof of Theorem 6.1.1.
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6.2 The control theorem.

In this section we prove a result comparing the adelic cohomology with coefficients in the distri-
butions Dq over an admissible K-affinoid open €2 C Xr of weight space with the cohomology with
coefficients in the specialization Dy at any point k € Q(K).

Fix a strictly positive elements 7 € AT. We get a theorem only on the finite slope part
(with respect to the Hecke operator T} ) of the cohomology. More accurately, we don’t compare the
cohomologies but rather the image of the Hecke algebra H in the ring of A(€2)-linear endomorphisms
of the slope < h part of the cohomology.

Theorem 6.2.1 Let K be a finite extension of Qp, and let k € Xp(K).

For any admissible K -affinoid open Q C Xp let R = A(Q) and Jy, be the ideal in R consisting
of all functions in R that vanish at k. Let (I,%,A) be the graded Hecke pair from Theorem 2.5.3.
Let Hp be the Hecke algebra H(I,X) ® R.

Let D¢ be the R[¥]-module defined in Definition 3.6.3, so that the cohomology H(I,Dg) :=
@ H*(I,Dg) is an Hr-module.

Fiz h € Q20 and a strictly positive 1 € AT. Let “h-decomposition” mean with respect to the
Hecke operator T;. N

For any R[X]-module M such that the cohomology H (I, M) has an h-decomposition, let R(M, h) =
Im (Hgr — Endg(H(I,M)p) and R(M,h) = R(M,h)eq-

Then there exists an admissible K -affinoid open 2 C Xp containing k such that:

(i) H(Dq) has an h-decomposition, and so has H(Dy,).

(i) There is a natural isomorphism

(R(Dq, h)/JkR(Da, h))req = R(Dy, h).

Proof: (i) First choose an Q and an s > s(Q). We will apply the machinery in section 5.5 to the
case where M = Dg[s] — see Proposition 5.6.1.

Let U be the lift of the Hecke operator T to the cochains 6*([@@ [s]) as defined in the proof of
Lemma 5.5.4. Referring to the notation in that proof, we have that U=ho u, where u = fouog
is the Hecke operator 7 induced on the cochains by 7 : Dg[s] — Dg[s7] and formula §5.1(25).

By Proposition 3.6.7, Dg[s7] and Dg[s] are ON-able A(Q)-modules, 7 : Dg[s] — Dg(X™[s7]) is
completely continuous and each element of I induces a map of norm < 1: Dg[s7] — Dg[s7].

By the dicussion in the paragraph preceding Proposition 2.7.6, C* (Dg[s]) is an ON-able A(Q)-
module. From Proposition 2.7.6 itself it follows that u is a completely continuous map. Since
U=hotw,Uisa completely continuous endomorpism of 5*(]])(2 [s]). We can now apply Theorem
4.6.5 to deduce the existence of {2 as in the statement of our theorem such that the cochains
C*(Dg[s]) have an h-decomposition.

Then combining Proposition 5.6.1 and Theorem 5.5.3 we obtain a natural isomorphism on the
slope < h parts (with respect to U ) of the cochains:

C*(I,Dg)n = C*(I,Dg[s])n-

Note that R = A(Q2) is a noetherian ring. Recall that an h-decomposition is a type of S-
decomposition where S is the multiplicative subset of H g defined in Lemma 4.6.4. So by Proposition
4.1.2(e) we can pass to cohomology and obtain isomorphisms:

H(I,Dg)n ~ H(I,Dg]s])n-
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Since X7 is a disjoint union of open balls, it is easy to that Ji is generated by a finite regular
sequence in A(Q). Since Do ~ D(N)@x A(2) (see the proof of Lemma 3.6.6) it follows that this is
also a Dq-regular sequence.

From the exact sequence of Theorem 3.7.4, we deduce that Dy ~ Dq/J;Dgq. It then follow from
(i) of Theorem 6.1.1 that H (D) also has an h-decomposition.

(ii) This follows immediately from (ii) of Theorem 6.1.1.

6.3 The existence of a controlling Fredholm power series.

In this section we prove a global result. This is the result promised as Proto-theorem 4.7.3. We
state and prove the result only for ¢t = 1, leaving the generalization to the reader.

Theorem 6.3.1 Fiz a strictly positive element m € AT. Then there exists a Fredholm power series
entire on weight space Xp and with coefficients in the Iwasawa algebra Ap which controls (Definition
4.7.2) the finite slope part (with respect to the Hecke operator Ty ) of the cohomology of the Shimura
manifold Mg (§2.1(2)) with coefficients in the sheaf of distributions D.

Proof: Let U be the lift of T to the cochain level given in Lemma 5.5.4. For each 2 as in the
conclusion of Theorem 6.2.1, and for any s > s(f2), let Pg[;} (T') be the characteristic Fredholm
series of U acting on the cochains C*(I,Dg[s]). From the construction of Pf[f } (T') in terms of the
determinants of matrices with respect to an ON basis coming from monomials in the coordinate
functions on N?, it is clear that each coeflicient of PS[; ] (T) is itself a power series over 2 with
coefficients in Q,, and that it has norm < 1 in A(2) and it is entire. By Theorem 5.5.3, we see
that this power series in independent of s, so we call it simply Po(T).

If Q9 C 1, by construction it is obvious that Pg, |Q2 = Pq,. By the discussion in the paragraph
preceding Definition 4.7.2, it follows that the Pq(7) glue together into an entire power series
P(T) € Ap. We claim this is a controlling Fredholm series for U acting on the cochains: C*(I, D).

We have already checked (a) of Definition 4.7.2. From the proof of Theorem 4.6.5, we see that
(b) and (c) of that definition also hold on the cochain level, given the fact that C*(I,Dg), —
C*(I,Dg[s]), is an isomorphism for each h, Q and s > s(€) (by Shapiro’s lemma for cochains,
Theorem 5.5.3 and Proposition 5.6.1). Then (c) on the cohomology level follow immediately.

6.4 The comparison theorem.

In this section we connect our main theorems with automorphic cohomology, that is, the cohomology
of the Shimura manifold with coefficients in a finite dimensional module.

Theorem 6.4.1 Fiz a strictly positive elements m € A*. Fiz an arithmetic weight k € Xr(K) lo-
cally algebraic of level s and with algebraic character ¢ (definition 3.5.5). Let h < my,(m) §3.11(21).
Then the map D; — V,° in §3.11(20) induces an isomorphism on the slope < h part (with respect
to Ty ) of the adelic cohomology:

H*(I*, DY), — H*(I*, Vi )i
Under these conditions, R(Dj, h) = R(V}$, h) in the notation of Theorem 6.2.1.

Proof: We have the exact sequence of §3.11(20):

0—K; —Dj [s]—Vi—0
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of K-Banach modules of level s. From Theorem 3.11.1, we have that the norm of 7 on Kj is
< p~™(™) . We pass to the long exact sequence of cohomology:

c— HY (1% KR) — HY (1%, DR [s]) — HY (I°, Vio) — HPTH (I, K) — -

Just as in the proof of Theorem 6.2.1, we see that H*(I®,Dj) ~ H*(I*,D{[s]) has a slope < h
decomposition (with respect to Tr) and by elementary linear algebra, so does H*(I%,V}?), which is
a finite dimensional vector space over K.

It follows from Proposition 4.1.2(c) that H’(I*,K;) also has a slope < h decomposition and we
have the exact sequence

c = HY (I K} ) —H? (1%, D} [s]))p—H (I°, Vi3 ) — HP T (P K — -

Let Py(T) be the specialization at k of the controlling Fredholm power series from Theorem 6.3.1.
Then it has a slope < h factorization P, = QR and @ is a polynomial of slope < h such that
Q*(T) annihilates H*(1°,D}[s])s. There is another polynomial @i of slope < h such that Q7(T%)
annihilates H*(I%, V).

By Proposition 2.7.5 both Q*(Tx) and QF(7x) act invertibly on H*(I®,Kj) and hence on
H*(I*,K3)p. Now let x € HI(I%,K§)p,. Then z|Q*(Ty) goes to 0 in H(I*,Df[s]),. Therefore it is
the image of some y € H/~1(I%, V;¥);,. It follows that z|Q* (T )Q%(Tx) is the image of y|Q7}(Tx) = 0.
Hence z|Q*(T%)Q5(Tx) = 0 and so = = 0.

We have shown that H*(I%,Kj);, = 0 and the theorem follows.

Let K and k be as in Theorem 6.4.1 and €2, h as in Theorem 6.2.1. If we have a K-point of
the reduced Hecke algebra & : R(Dgq,h) — K, we say that & has weight k if ¢ factors through
R(Dq, h)/JxR(Dq, h).

We say that £ is arithmetic of weight & if the system of Hecke eigenvalues {£(T) | T € H} occurs
in the finite-dimensional arithmetic cohomology H*(1°,V}’). That is, there exists an eigenclass
¢ € H*(I°,V}?) such that for any T € H, ¢|T = £(T)¢.

Putting together Theorem 6.2.1 and Theorem 6.4.1 we obtain:

Corollary 6.4.2 Let £ : R(Dq,h) — K be a ring homomorphism of weight k, and suppose h <
my (7). Then  is arithmetic of weight k.

Proof: Note that by Proposition 3.6.2, Do ~ D¢, and Dy ~ Dj. From the definition we have
£ : R(Dq,h)/JkR(Dgq,h) — K. By Theorem 6.2.1, we have R(Dq, h)/JiR(Dq, h) ~ R(D;,h). By
Theorem 6.4.1, R(D;,h) ~ R(Vy, h).

Therefore, { factors through R(V}’,h) — K, which by linear algebra gives the corollary.

As we let k vary so that the highest weight 1 gets large in an archimedean sense, a fixed
h becomes less then my(m). Specialization at such k gives us a map R(Dq,h) — R(V}$, h). If
Z : R(Dq,h) — A(Q) is any family of Hecke generalized eigenvalues, its specialization at k will
either be the 0 map, or it will yield a ring homomorphism & : R(Dj, h) — K of weight k. (A ring
homomorphism has to take 1 to 1.) The corollary then implies that if specialized to a sufficiently
large k (in the archimedean sense), = will become either 0 or arithmetic.

Conversely, any system of Hecke eigenvalues occurring in R(V}?, h) for k sufficiently large will
lift to a ring homomorphism £ : R(Dgq,h) — K. Therefore, the spectrum of R(Dq, h) will be our
candidate for an eigenvariety of slope < h in the neighborhood of an arithemtic k, as long as h is
sufficiently large.
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