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1 Background on Distributions

1.1 Basic Definitions

Throughout these notes, V will be a finite dimensional Q-vector space. By a lattice in V we
mean a finitely generated sybmodule that generates V as a Q-vector space. A subset X ⊆ V
is said to be bounded if X is contained in a lattice. For a given function f on V and a vector
` ∈ V we say ` is a period of f if f(x + `) = f(x) for all x ∈ V . The set of all periods of f
will be denoted Lf . If Lf is a lattice, we say f is uniformly locally constant.

We define the group of test functions on V to be the group

S(V ) := { f : V −→ Z | f is uniformly locally constant and of bounded support }

For A an arbitrary abelian group, we define the group of A-valued distributions on V to be
the group

Dist(V,A) := Hom(S(V ), A).

To keep track of support and period lattices we introduce the partially ordered set

LV :=

{
(M,L)

∣∣∣∣ L ⊆M is an inclusion of lattices in V

}
,

where for two elements Λi = (Mi, Li) ∈ LV (i = 1, 2), we say

Λ1 ≤ Λ2 ⇐⇒ L2 ⊆ L1 ⊆M1 ⊆M2.

We also define
deg(Λ) := [M : L]

which is, of course, a positive integer. We sometimes speak of LV as the category whose
objects are the elements of LV and whose morphisms Λ1 −→ Λ2 are inequalities Λ1 ≤ Λ2.

For f ∈ S(V ) we let Mf be the lattice generated by the support of f and set

Λf := (Mf , Lf ) ∈ LV .

For each Λ in LV we then define

SV (Λ) =

{
f ∈ S(V )

∣∣∣∣ Λ ≥ Λf

}
,

1



which is a free finitely generated abelian group of rank deg(Λ). Indeed, for Λ = (M,L) we
have a natural identification

S(Λ) ∼= { f : M/L −→ Z }.

If Λi = (Mi, Li) (i = 1, 2) and Λ2 ≥ Λ1 then we have an inclusion

SV (Λ1 → Λ2) : SV (Λ1) ↪→ SV (Λ2).

Thus
SV : LV −→ Ab

defines a covariant functor. Moreover, we have a canonical isomorphism

S(V ) ∼= lim
−→
LV

SV .

Now let AV : LV −→ Ab be an arbitrary covariant functor from LV to Ab . Then we
define

Dist(V,AV ) := Hom(SV ,AV )

to be the additive group of natural transformations µ : SV −→ AV . More precisely, for each
Λ ∈ LV ,

µΛ : SV (Λ) −→ AV (Λ)

is an additive homomorphism and for any morphism Λ1 −→ Λ2 the diagram

SV (Λ2)
µΛ2−→ AV (Λ2)x x

SV (Λ1)
µΛ1−→ AV (Λ1).

Finally, let Vect0 be the category whose objects are finite dimensional vector spaces
and whose morphisms from W −→ V are pairs (ι∗, ι) of linear maps ι∗ : W ∗ −→ V ∗ and
ι : W −→ V such that 〈

w∗, w

〉
W

=

〈
ι∗(w), ι(w∗)

〉
V

for all (w∗, w) ∈ W ∗ ×W .
If M ⊆ V is a full lattice in V . We define

S(M) :=
{
f ∈ S(V )

∣∣ supp (f) ⊆M
}

and let χM ∈ S(M) be the characteristic function of M . For each f ∈ S(V ) we let fM :=
f · χM ∈ S(M). Clearly, the map f 7→ fM is an idempotent on S(V ) with image S(M).
Dually, we also have an idempotent µ 7→ µM on Dist(V,A) given by

µM(f) := µ(fM)
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for f ∈ S(V ). We define

Dist(M,A) :=
{
µ ∈ Dist(V,A)

∣∣ µM = µ
}

and note that we have a canonical isomorphism

Dist(M,A) ∼= HomZ(S(M), A).

The following simple proposition will be useful in the next section.

Proposition. The canonical map

Dist(V,A) −→ lim
←−
M

Dist(M,A)

µ 7−→ {µM}M

is an isomorphism.
It will sometimes be handy to think functorially. For this it is convenient to introduce

the category Vect0 of finite dimensional vector spaces V over Q together with injective linear
maps as morphisms. Then the test functor S : V 7−→ S(V ) is a contravariant functor from
Vect0 to the category Ab of abelian groups. Namely, if W

ι−→ V is a morphism in Vect0

then pullback

S(V )
ι∗−→ S(W )

is a morphism of abelian groups. If moreover, A : Vect0 −→ Ab is a covariant functor, then
by

(V, V ′) 7−→ Dist(V,A(V ′))

is a covariant functor Vect0 × Vect0 −→ Ab .

1.2 Fourier Transforms

a natural surjective homomorphism

SV (Λ1/Λ2) : SV (Λ1) −→ SV (Λ2)

given by

SV (Λ1/Λ2)(f)(x+ L2) :=
∑

y∈M1/L1
y+L1⊆x+L2

f(y + L1)

for every f ∈ SV (Λ1) and x ∈M2. Then

SV : LV −→ Ab

is a covariant functor. Let A be an additive group and µ ∈ Dist(V ∗, A) be a disrtibution on
the dual space V ∗ of V . Let L ⊆ V be a lattice and L∗ ⊆ V ∗ the dual lattice. We fix an
additive character ψ : Q −→ µ∞ for which ker(ψ) = Z and identify V ∗/L∗ = L∨ via ψ. The
fourier transform of µ on L is the function

µ̂L : L∨ −→ A
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defined by
µ̂L(ψx∗) = µ(x∗ + L∗).

Clearly, a distribution µ is completely determined by the collection of all its Fourier trans-
forms on all lattices L.

For any inclusion L ⊆ M of lattices in V , we define the norm NM/L : F(M∨, A) −→
F(L∨, A) by

TrM/L(F )(χ) =
∑
χ̃∈M∨
χ′|L=χ

F (χ′).

for any F ∈ F(M∨, A)

Proposition. For any µ ∈ Dist(V ∗, A) and any inclusion L ⊆ M of lattices in V we have
TrM/L(µ̂M) = µ̂L. Moreover, the map

Dist(V ∗, A) −→ lim
←−
L

F(L∨, A)

µ 7−→ { µ̂L}L

is an isomorphism.

1.3 Convolution of distributions.

Now suppose A is a ring (not necessarily commutative). For any full lattice M ⊆ V we
define the convolution product

Dist(M,A)×Dist(M,A) −→ Dist(M,A)
µ, ν 7−→ µ ∗ ν

as follows. Fix µ, ν ∈ Dist(M,A) and let f ∈ S(M). Fix a period lattice L of f and note
that L ⊆M . We may therefore define

(µ ∗ ν)(f) :=
∑

x,y∈M/L

f(x+ y) ·
(
µ(x+ L) · ν(y + L)

)
,

which one easily checks easily is independent of the choice of period lattice L. Rewriting the
sum as a double sum we obtain

(µ ∗ ν)(f) :=
∑

y∈M/L

 ∑
x∈M/L

f(x+ y) · µ(x+ L)

 · ν(y + L),

which “explains” the usual “double integral notation” for the convolution product∫
M

fd(µ ∗ ν) :=

∫
M

(∫
M

f(x+ y)dµ(x)

)
dν(y).

Convolution on Dist(M,A) is an associative and distributive operation on Dist(M,A).
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In the above definition of convolution on Dist(M,A), all the sums are finite. If we try to
replace M with the full vector space V , then in general these sums are no longer finite and
the above definition of convolution is meaningless.

Let µ, ν ∈ Dist(V,A). Then for each lattice M we have µM , νM ∈ Dist(M,A) and we
may convolve these distributions to obtain a distribution µM ∗ νM ∈ Dist(M,A).

Definition. We say µ, ν ∈ Dist(V,A) are convolvable if, for every f ∈ S(V ), the net{
(µM ∗ νM)(f)

}
M

is eventually constant, i.e. if there is a lattice M for which

(µM ′ ∗ νM ′) (f) = (µM ∗ νM) (f)

for every lattice M ′ containing M . If µ, ν are convolvable, then we define µ ∗ ν ∈ Dist(V,A)
by

(µ ∗ ν) (f) := lim
M

(µM ∗ νM) (f).

for f ∈ S(V ).

1.4 Convolvability of distributions with linearly disjoint supports

Let X ⊆ V be a subspace and µ ∈ Dist(V,A). We define

Dist(X,A) :=
{
µ ∈ Dist(V,A)

∣∣ µ(f) = 0 whenever f is supported outside X
}
.

Theorem. Let X, Y ⊆ V be two subspaces and let µ ∈ Dist(X,A) and ν ∈ Dist(Y,A). If
X ∩ Y = { 0 } then µ and ν are convolvable.

Proof: Indeed, if f ∈ S(V ) has period lattice L, then we define

(µ ∗ ν)(f) :=
∑

x,y∈V/L

f(x+ y)µ(x+ L) · ν(y + L).

This is a finite sum, which we see as follows. Let Mf be a support lattice for f and let

M := (X +Mf ) ∩ (Y +Mf ).

One easily checks that M is a lattice containing Mf . Moreover, for all x ∈ X, y ∈ Y if
x+ y ∈Mf then x, y ∈M . Thus for every lattice M ′ containing M we have

(µM ′ ∗ νM ′)(f) =
∑

x,y∈M ′/L

f(x+ y)µ(x+ L) · ν(y + L)

=
∑

x,y∈M/L

f(x+ y)µ(x+ L) · ν(y + L)

= (µM ∗ νM)(f).

This proves µ and ν are convolvable, as claimed.
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2 Trigonometric Functions

2.1 Circular algebras.

For each t ∈ Q, we let qt : C −→ C× be defined by qt(z) := e2πitz for z ∈ C and let F be
the field of meropmorphic functions generated over Q by the group µ∞ of roots of unity in
C and by the functions qt, t ∈ Q:

F := Q
(
µ∞, q

t
∣∣ t ∈ Q

)
.

We call F the field of trigonometric functions on C. We let E , C ⊆ F× be the subgroups
defined by

E :=
{
ζqt

∣∣ ζ ∈ µ∞, t ∈ Q
}
, C+ :=

〈
1− ζqt

∣∣ ζ ∈ µ∞, t ∈ Q+
〉

and C := EC+

and define the ring of trigonometric functions on Q to be the subring R of F generated by
C:

R := Z[u|u ∈ C].

Note that every F ∈ R defines a holomorphic function on C \Q.
More generally, let V be a finite dimensional Q-vector space and V ∗ be the space of

Q-linear functionals on V . Let H(V ) be the complement of the union of all rational affine
hyperplanes in VC:

H(V ) :=

{
z ∈ VC

∣∣∣∣ ∀x∗ ∈ V ∗, x∗ 6= 0 =⇒ 〈z, x∗〉 6∈ Q
}
.

For any 0 6= x∗ ∈ V and θ ∈ R we define θx∗ : H(V ) −→ C by θx∗(z) := θ
(
〈z, x∗〉

)
and define

RV := Z
[
θx∗

∣∣ θ ∈ R, 0 6= x∗ ∈ V ∗
]
.

We will call RV the ring of trigonometric functions on H(V ). We also define

EV :=
〈
εx∗

∣∣ ε ∈ E , x∗ ∈ V ∗〉 and CV :=
〈
u, 1− u

∣∣ u ∈ EV \ µ∞ 〉
and we call these the groups of divisible and circular units on H(V ) respectively. The
terminology “divisible” is justified by the following proposition.

Proposition. EV is the maximal divisible subgroup of R×V .

For Λ ∈ LV and x ∈MΛ we define χx : MΛ∗ −→ EV by

χx(x
∗)(z) := exp(〈z − x, x∗〉)

for x∗ ∈MΛ∗ and z ∈ H(V ). We define

EV (Λ) :=

〈
χx(x

∗)

∣∣∣∣ (x, x∗) ∈MΛ ×MΛ∗

〉
and CV (Λ) :=

〈
u, 1− u

∣∣∣∣ u ∈ EV (Λ) \ µ∞
〉
.
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We then define the subring RV (Λ) ⊆ RV by

RV (Λ) := Z
[
u

∣∣∣∣ u ∈ CV (Λ)

]
.

Obviously, whenever Λ1 ≤ Λ2 we have inclusions EV (Λ1) ⊆ EV (Λ2), CV (Λ1) ⊆ CV (Λ2) and
RV (Λ1) ⊆ RV (Λ2). So we may regard RV as a covariant functor from LV to the category of
rings:

RV : LV −→ Rings

and EV and CV as covariant functors to Ab .
Now let K∗(RV (Λ)) be the Milnor ring of RV (Λ) and let JV (Λ) ⊆ K∗(RV (Λ)) be the

(homogeneous) ideal generated by the image of EV (Λ) in K1(RV (Λ)). Finally, we let

KV (Λ) =
⊕
n

KV (Λ)n

be the graded subring of K∗(RV (Λ))/JV (Λ) generated by the image of CV (Λ). It follows
at once from the above remarks that KV is a covariant functor from LV to the category of
graded rings. We define

K∗(V ) := lim
−→
LV

KV

and call this the circular algebra of V .

2.2 The Canonical Circular Distribution

When V = Q we have H(V ) = C \ Q, RV = R, E = EV , and CV = C. The multiplication
pairing on Q identifies V ∗ with Q. For any u ∈ C we define δu : Q −→ Z by δu : x 7−→
ord z=xu(z). One sees at once that δu ∈ S(Q) and that the map

δ : C(Q) −→ S(Q)
u 7−→ δu

is a surjective homomorphism containing E(Q) in its kernel. Indeed, we have

Proposition. The kernel of δ is precisely E(Q), i.e. we have a canonical isomorphism

δ : C(Q)/E(Q)
∼−→ S(Q).

We compose the inverse of δ with the isomorphism C(Q)/E(Q) ∼= K1(Q) to obtain a
canonical isomorphism ξ : S(Q) −→ K1(Q) which we regard as a K1(Q)-valued distribution

ξ ∈ Dist(Q,K1(Q)).

We call ξ the canonical circular distribution.
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2.3 Circular Distributions on Vector Spaces.

Let V be a finite dimensional vector space. For any ordered basis v = (v1, v2, . . . , vn) of V
and any character χ : Lv −→ R× define

ξv(χ) := {1− χ(v1), . . . , 1− χ(vn)}.

be an ordered basis for V and let v∗ = (v∗1, v
∗
2, . . . , v

∗
n) be the dual basis of V ∗. For N ∈ N

we let we let ΛN,v := ( 1
N
Lv, Lv).

Theorem. There is a unique distribution ξv ∈ Dist(V,Kn,V ) such that for all N ∈ N,
t = (t1, . . . , tn) ∈ (Q+)n, and x ∈ 1

N
Ltv we have

ξv(ΛN,tv)(x+ Ltv) = {1− χx(v∗1), . . . , 1− χx(v∗n)}

We note that the family tΛN contains a final subset of LV .
Let π : V −→ W be a surjective Q-linear map. Then π induces a holomorphic surjection

H(π) : H(V ) −→ H(W ).

Moreover, π induces a morphism LV −→ LW by π(Λ) :=
(
π(MΛ), π(LΛ)

)
and pull-back by

H(π) induces a ring homomorphism

π∗ : RW (π(Λ)) −→ RV (Λ).

Furthermore, we have π∗ sends EW (π(Λ)) to EV (Λ) and CW (π(Λ)) to CV (Λ).
To any a ∈ Q× we associate the morphism (a, a−1) : Q×Q −→ Q×Q in Vect0 ×Vect0,

which by functoriality induces a homomorphism [a] : Dist(Q,K1(Q)) −→ Dist(Q,K1(Q)).

Proposition. For all a ∈ Q× we have [a] · ξ = ξ.

Proof: Let f ∈ S(Q). Then ξ(f) = {u} ∈ K1(Q) for some u ∈ C(Q). Thus δu = f . Then
([a] ·ξ)(f) = a−1 · (ξ(f |a)) ([a] ·u)(z) = u([a]T z) = u(az). So ord z=x([a] ·u) = ord z=xu(az) =
ord z=axu(z) = f(ax) = (δu|a)(x) = (f |a)(z). Thus ξ([a] · f) = [a] · u Then for all z ∈ C we
have ([a] · ξ)(f)(z) = ξ(f ◦ [a]))([a]T (z)) = ξ(f ◦ a)(az)

It follows immediately from the definitions that ξ|a = ξ for any a ∈ Q×.
For arbitrary V , and any non-zero element v ∈ V we let iv : Q −→ V be the unique

linear map sending 1 to v. Orthogonal projection from V to the image of iv then induces a
map prv : V −→ Q with the property prv ◦ iv = 1. We define Φ(v) ∈ Dist(V,K1(V )) to be
the composition

Φ(v) : S(V )
i∗v−→ S(Q)

ξ−→ K1(Q)
pr∗v−→ K1(V ).

A simple induction shows that if v1, . . . , vm are linearly independent vectors in V , then
the distributions Φ(vi) are convolvable and Φ(v1) ∗ . . . ∗ Φ(vm) is supported on the space
spanned by v1, v2, . . . , vm. For each m, we let Dm(V ) ⊆ Dist(V,Km(V )) be the additive
group generated by distributions of the form Φ(v1) ∗ . . . ∗ Φ(vm) with v1, . . . , vm linearly
independent and let

D∗(V ) :=
⊕
m

Dm(V ) ⊆
⊕
m

Dist(V,Km(V )) = Dist(V,K∗(V )).
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For convenience of calculation we record the following proposition.

Proposition. Let e1, . . . , en be a basis of V and let L := Ze1 + · · · + Zen be the lattice
spanned by this basis. Let x = x1e1 + · · ·xnen be an arbitrary element of V and let fx be the
characteristic function of x+ L. Then for any m ≤ n we have

[Φ(e1) ∗ · · · ∗ Φ(em)] (fx) ∼
{

1− ε(−x1)qe1 , . . . , 1− ε(−xm)qem

}
.

where ∼ denotes congruence modulo JV in K∗(RV ).

Proof. We simply compute. We have

[Φ(e1) ∗ · · · ∗ Φ(em)] (fx)

∼
∑

v1,... ,vm∈V/L

fx(v1 + · · ·+ vm){Φ(e1)(v1 + L), Φ(e2)(v2 + L), . . . , Φ(em)(vm + L)}

=
∑

v1,... ,vm∈V/L
v1+···vm+L=x+L

{Φ(e1)(v1 + L), Φ(e2)(v2 + L), . . . , Φ(em)(vm + L)}.

On the other hand, we have for each i,

Φ(ei)(vi + L)(z) = ξ(fvi+L,ei)(〈z, ei〉)

where, for v =
∑
aiei, we have fv+L,ei ∈ S(Q) is given by

fv+L,ei(t) = fv+L(tei) =


1 if t ∈ ai + Z and aj ∈ Z for all j 6= i;

0 otherwise.

In particular, we have

fv+L,e =


fa+Z if v + L = ae+ L for some a ∈ Q;

0 if v + L 6⊆ Qe+ L.

Thus, we have

Φ(ei)(vi + L)(z) =


ξ(fa+Z)(〈z, ei〉) if vi + L = aei + L for some a ∈ Q;

0 if vi + L 6⊆ Qei + L.
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Moreover ξ(fa+Z)(〈z, ei〉) = 1− ε(−a)qei(z). So we conclude:

[Φ(e1) ∗ · · · ∗ Φ(em)] (fx)

∼
∑

v1,... ,vm∈V/L
v1+···vm+L=x+L

{Φ(e1)(v1 + L), Φ(e2)(v2 + L), . . . , Φ(em)(vm + L)}.

=
∑

vi∈(Qei+L)/L
v1+···vm+L=x+L

{Φ(e1)(v1 + L), Φ(e2)(v2 + L), . . . , Φ(em)(vm + L)}.

= {Φ(e1)(x1e1 + L), Φ(e2)(x2e2 + L), . . . , Φ(em)(xmem + L)}.

= {1− ε(−x1)qe1 , 1− ε(−x2)qe2 , . . . , 1− ε(−xm)qem}.

This proves the proposition.

Proposition. For all non-zero v ∈ V and a ∈ Q× we have

Φ(av) = Φ(v).

Proof. Let f ∈ S(V ) and z ∈ VC. Then a := aI ∈ G and by the last proposition Φ|a = Φ.
Hence Φ(av)|a = Φ(v).

Φ(av)(f)(z) = (Φ(v)|a−1)(f)(z)
= (Φ(v)(a−1f)(za)
= ξ(ιv(a

−1f))(za)
= ξ(a−1ιv(f))(a〈z, v〉)
= (ξ|a−1)(ιv(f))(〈z, v〉)
= ξ(ιv(f))(〈z, v〉)
= Φ(v)(f)(z).

This proves Φ(av) = Φ(v) as claimed.

2.4 Dedekind Reciprocty

For any basis v1, v2, . . . , vn of V , we define

Ψ(v1, . . . , vn) := Φ(v∗1) ∗ · · · ∗ Φ(v∗n).

where v∗1, . . . , v
∗
n is the dual basis of V .

Theorem (Dedekind Reciprocity) Any two elements of D∗(V ) are convolvable, hence
D∗(V ) is an algebra under convolution, generated by the elements Φ(v) ∈ D1(V ) where v
runs over non-zero elements of V . Moreover, if v0, v1, . . . , vm ∈ V are non-zero and linearly
dependent, we have

m∑
i=0

(−1)iΨ(v0, . . . , v̂i, . . . , vm) = 0.
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The proof is based on the following proposition.

Proposition. Let v1, v2, . . . , vn ∈ V be a basis for V and let v0 = v1 + v2 + · · ·+ vn. Then

m∑
i=0

(−1)iΨ(v0, . . . , v̂i, . . . , vm) = 0.

Proof. Let L = Zv∗1 + · · ·Zv∗n ⊆ V be the lattice spanned by v∗1, . . . , v
∗
n. Let x ∈ V be given

by x = x1v
∗
1 + · · ·xnv∗n. Let γ ∈ Aut(V ) be given by

γv1

γv2

. . .
γvm

 =


v0

−v1

. . .
−vm−1

 .

Note that then γv0 = vm. Then we have

Φ(v0, v1, . . . , vm−1)(x+ L)(z) = (Φ(v1, . . . , vm)|γ−1)(x+ L)(z)
= (Φ(v1, . . . , vm)(γx+ L)(zγ)

and more generally

Φ(v0, v1, . . . , vm−1)(x+ L)(z) = (Φ(v1, . . . , vm)|γ−1)(x+ L)(z)
= (Φ(v1, . . . , vm)(γx+ L)(zγ)
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3 A Computation in K-theory

Theorem. Let R be an arbitrary commutative ring. Let n ≥ 1 and u1, . . . , un ∈ R×.
Suppose for all k = 1, . . . , n that u1 + · · ·uk ∈ R×. Then we have the identity

n∑
i=0

(−1)i{u0, . . . , ûi, . . . , un}

lies in the ideal J generated by {−1}.

Proof: We prove this by induction on n. The assertion is obvious if n = 1. When n = 2 we
have

u1

u0

+
u2

u0

= 1.

Hence

0 =

{
u1

u0

,
u2

u0

}
= {u1, u2} − {u1, u0} − {u0, u2}+ {u0, u0}
= {u0, u1}+ {u1, u2}+ {u0, u2}+ {u0, u0}

Now add {u0,−1} to both sides of this equation and use the fact that {u0,−u0} = 0 to
conclude that the assertion is true for n = 2.

Now suppose m ≥ 2 and the result is true for n = m. We will prove the result for
n = m+ 1. Let v1, v2, . . . , vm+1 ∈ R× and set

v0 = v1 + · · ·+ vm+1.

Also, let
u0 = u1 + · · ·+ um with u1 = v1, . . . , um = vm.

Then we have

(∗)
m∑
i=0

(−1)i{u0, . . . , ûi, . . . , um} ∈ J

Multiplying on the left by {vm+1} we get

m∑
i=0

(−1)i{vm+1, u0, . . . , ûi, . . . , um} ∈ J

and multiplying (*) on the left by {v0} we get

m∑
i=0

(−1)i{v0, u0, . . . , ûi, . . . , um} ∈ J

Now use the fact that v0 = u0 + vm+1 to deduce that

{vm+1, u0} − {v0, u0} ≡ {vm+1, v0} (mod J).
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Thus subtracting the above two elements of J tells us that

{vm+1, u1, . . . , um}+
m∑
i=1

(−1)i{vm+1, v0, . . . , ûi, . . . , um} − {v0, u1, . . . , um}

is in J , or equivalently, after multiplying both sides by (−1)m and recalling that vi = ui for
i = 1, . . . ,m, we have

{v1, . . . , vm, vm+1}+
m∑
i=1

(−1)i{v0, . . . , v̂i, . . . , vm, vm+1}+ (−1)m+1{v0, v1, . . . , vm}

is in J . This just says
m+1∑
i=0

(−1)i{v0, . . . , v̂i, . . . , vm+1} ∈ J.

Which is the desired assertion for n = m+ 1. The theorem follows by induction.

3.1 Explicit Formulas

Let β = (v1, . . . , vn) ∈ BV (a row of vectors), let Lβ ⊆ V be the Z-module spanned by β in
V and let L∗β ⊆ V ∗ be the dual lattice of Lβ. For each x∗ ∈ V ∗ let

εx∗ : V −→ µ∞

be the character defined by
εx∗(v) = ε(〈x∗, v〉).

We also define χx∗ : V −→ EV ⊆ R×V ∗ by

χx∗(v) = εx∗(v)qv.

Proposition. Let β = (v1, . . . , vn) be a basis of V . Then for every x∗ ∈ V ∗ we have

Ψ(β)(x∗ + L∗β) =

{
1− χx∗(v1), 1− χx∗(v2), . . . , 1− χx∗(vn)

}
∈ Kn(V ).

The proof of this is a straightforward computation.

Theorem. Let β = (v1, v2, . . . , vn) be a basis of V , let 1 ≤ m ≤ n, and set v0 = v1+· · ·+vm.
Then

m∑
i=0

(−1)iΨ(v0, . . . , v̂i, . . . , vn) = 0.

Proof. For each i = 0, . . . ,m let βi := (v0, . . . , v̂i, . . . , vn). Note that β0 = β and also that
Lβi = Lβ for all i = 0, . . . ,m. It suffices to show

m∑
i=0

(−1)iΨ(βi)(x
∗ +NL∗β) = 0

13



for every β ∈ BV , x ∈ V ∗ and N ∈ N. But L∗1
N
β

= NL∗β, so it suffices to prove the above

identity when N = 1. We have

m∑
i=0

(−1)iΨ(βi)(x
∗ + L∗β) =

m∑
i=0

(−1)iΨ(v0, . . . , v̂i, . . . , vn)(x∗ + L∗β)

≡
m∑
i=0

(−1)i
{

1− χx∗(v0), . . . , ̂1− χx∗(vi), . . . , 1− χx∗(vn)

}
≡

m∑
i=0

(−1)i
{
u0, . . . , ûi, . . . , un

}
(mod JV )

where u0 = 1−χx∗(v0) and ui = χx∗(wi−1)−χx∗(wi) for i = 1, . . . , n, where wj =
∑

0<i≤j vi
for j = 0, . . . , n. By our computation in K-theory, we see that the last expression vanishes.
This completes the proof.

3.2 The Action of GL(V ).

Let G = GL(V ) act on the left on RV by

(γF )(z) = F (zγ)

This action induces a left action on K∗(V ). We let G act on the left on S(V ∗) by

(γf)(z) = f(zγ).

We then let G act on the right on Dist(V ∗,K∗(V )) by

(µ|γ)(f) = γ−1 · µ(γf).

We let G act on the left on W = V ∗ × V by γ(v∗, v) = (v∗γ−1, γv). We let G act on the
right on

F
(
V ∗ × V,Dist

(
V ∗,K∗(V )

))
:=

{
functions Φ : V ∗ × V −→ Dist(V ∗,K∗(V ))

}
by

(Φ|γ)(w) = Φ(γw)|γ.
for w ∈ V ∗ × V .

Finally, we let BV denote the set of ordered bases of V and let G act on the right on

F
(
BV ,Dist

(
V ∗,K∗(V )

))
:=

{
functions Ψ : BV −→ Dist(V ∗,K(V ))

}
by

(Ψ|γ)(β) = Ψ(γβ)|γ.

Proposition. Define Φ : V ∗ × V −→ Dist(V ∗,K1(V )) by

Φ(v∗, v)(f) ∼ ξ(fv∗)v

for f ∈ S(V ∗). Here fv∗ ∈ S(Q) is given by fv∗(t) = f(tv∗). Then the following are true.

14



(1) For all γ ∈ G(Q), Φ|γ = Φ.

(2) For all a ∈ Q×, Φ(a−1v∗, av) = Φ(v∗, v).

Proof. This is just a computation. Let γ ∈ G and f ∈ S(V ∗). Then for any (v∗, v) ∈ V ∗×V ,
we have

(Φ|γ)(v∗, v)(f) =

(
Φ(v∗γ−1, γv)|γ

)
(f)

= γ−1 ·
[(

Φ(v∗γ−1, γv)

)
(γf)

]
= γ−1 · ξ

(
(γf)v∗γ−1

)
γv

= ξ
(
fv∗
)
v

= Φ(v∗, v)(f).

So Φ|γ = Φ and (1) is proved.
We also have

Φ(a−1v∗, av)(f) = ξ
(
fa−1v∗

)
av

=

(
(ξ|a)

(
fv∗
))

v

= ξ
(
fv∗
)
v

= Φ(v∗, v)(f)

proving (2).

Proposition. Define Ψ : BV −→ Dist(V ∗,Kn(V )) by

Ψ(β) = Φ(v∗1, v1) ∗ Φ(v∗2, v2) ∗ · · · ∗ Φ(v∗n, vn)

where β = (v1, . . . , vn) and β∗ = (v∗1, . . . , v
∗
n) is the dual basis. Then we have the following.

(1) For all γ ∈ G(Q) we have Ψ|γ = Ψ.

(2) For all a1, . . . , an ∈ Q× we have Ψ(a1v1, a2v2, . . . , anvn) = Ψ(v1, . . . , vn).

(3) For all σ ∈ Sn we have Ψ(vσ(1), vσ(2), . . . , vσ(n)) = sgn(σ) ·Ψ(v1, . . . , vn)

Proof. This is just a computation. Let γ ∈ G. For any β = (v1, . . . , vn) ∈ BV let
β∗ = (v∗1, . . . , v

∗
n) ∈ BV ∗ be the dual basis of V ∗. Then we have (γβ)∗ = β∗γ−1 and therefore

(Ψ|γ)(β) = Ψ(γβ)|γ

=

(
Φ(v∗1γ

−1, γv1) ∗ Φ(v∗2γ
−1, γv2) ∗ · · · ∗ Φ(v∗nγ

−1, γvn)

) ∣∣∣∣ γ
=

(
Φ(v∗1γ

−1, γv1)|γ
)
∗
(

Φ(v∗2γ
−1, γv2)|γ

)
∗ · · · ∗

(
Φ(v∗nγ

−1, γvn)|γ
)

=

(
(Φ|γ)(v∗1, v1)

)
∗
(

(Φ|γ)(v∗2, v2)

)
∗ · · · ∗

(
(Φ|γ)(v∗n, vn)

)
= Φ(v∗1, v1) ∗ Φ(v∗2, v2) ∗ · · · ∗ Φ(v∗n, vn)
= Ψ(β).

So Ψ|γ = Ψ, proving (1). Assertion (2) follows from (2) of the previous proposition and (3)
follows from the skew symmetry of multiplication in K∗(V ).
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3.3 The group of F×-valued characters on Q
We consider the group

Ξ := Hom(Q,F×)

of all characters ψ : Q −→ F×. Thus each ψ ∈ Ξ is a function ψ : Q −→ F× satisfying

ψ(r + s) = ψ(r) · ψ(s)

for all r, s ∈ Q. Note that Ξ is a group under pointwise multiplication and that the map

Ξ −→ E

defined by ψ 7−→ ψ(1) is a surjective homomorphism. As examples, we let Q, ε ∈ Ξ be the
characters defined by

Q(t) = qt and ε(t) := exp(2πit) ∈ µ∞.

The kernel of the homomorphism

ord∞ : Ξ −→ Q
ψ 7−→ ord∞(ψ(1))

is the group
Ξ0 :=

{
ψ ∈ Ξ

∣∣ ψ(1) ∈ µ∞
}
.

From the natural identifications

Ξ0 = Hom(Q, µ∞) = Homcont(Af , µ∞)

we see that Ξ0 has a natural structure as Af -module. Namely, for α ∈ Af and ψ ∈ Ξ0 we let
ψα ∈ Ξ0 be defined by

ψα(t) = ψ(αt).

We also let
Ξ1 :=

{
ψ ∈ Ξ

∣∣ ψ(1) = 1
}
.

Then Ξ1 is a Ẑ-submodule of Ξ0.

Proposition.

(1) Ξ0 is a free rank one Af -module generated by ε.

(2) Ξ1 is a free rank one Ẑ-module generated by ε.

Moreover, the map
Af ×Q −→ Ξ

(β, t) 7−→ εβ ·Qt

is an isomorphism.
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3.4 The group Aut(F)

The group G := Aut(F) acts naturally on Ξ := Hom(Q,F×) through its action on F×. For

each σ ∈ G we define t ∈ Q×, β ∈ Af , and u ∈ Ẑ×, by

σ(ε) = εu.
σ(Q) = εβ ·Qt

We then define

ρ(σ) :=

(
u β
0 t

)
∈ B(A) ⊆ PGL2(A)

where B is the group of upper triangular matrices in PGL2. Note that B(A) is given as the
restricted product:

B(A) = B(R)×
∏
p

′
B(Qp)

and that the groups B(Qp) are totally disconnected. Thus the connected component B(A)0

of B(A) is given by
B(A)0 = B(R)0 × {1}

where B(R)0 the connected component of B(R), which is the subgroup consisting of matrices
with positive determinant.

Theorem. The map ρ induces an isomorphism

G ∼= B(A)/B(A)0.

3.5 Remarks on Fourier Expansions

Every f ∈ F is periodic mod m for some m ∈ N and has two ”q-expansions”

f̃+ :=
∑
n∈Z

n>>−∞

anq
n/m ∈ Qab((q

1/m)) and f̃− :=
∑
n∈Z

n<<∞

bnq
n/m ∈ Qab((q

−1/m))

with coefficients in Qab, where the first of these expansions converges to f on some upper
half-plane and the second converges to f on some lower half-plane. It follows from this that
Qab is the algebraic closure of Q in F.

We write

Qab((q
t))+ := lim−→

m

Qab((q
1/m)) and Qab((q

t))− := lim−→
m

Qab((q
−1/m))

and let Gab := Gal(Qab/Q) act on both through the action on the coefficients.
The maps

F −→ Qab((q
t))±

f 7−→ f̃±

are in injective homomorphisms. Moreover the image of each of these inclusions is easily
seen to be invariant under the action of Gab. We therefore obtain a natural inclusion

Gab ↪→ G = Aut(F).
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4 The Algebra of Simplicial Cones

Let V be a finite dimensional vector space over Q and let V ∗ = Hom(V,Q). For each
0 6= λ ∈ V ∗ we let [λ] denote the positive ray spanned by λ in V ∗. We define C1(V ) to be
the free Z-module generated formally by the set of all such rays [λ]. Thus, a typical element
of C1(V ) is a finite formal sum

∑
n[λ] · [λ]. We define the graded algebra C∗(V ) of simplicial

cones on V to be the Grassman algebra on C1(V ). More precisely, for each m ≥ 0 we let

Cm(V ) :=
m∧(

C1(V )

)
and let

C∗(V ) =
⊕
m≥0

Cm(V )

with the usual ∧-product as multiplication.
We let the group GL(V ) act on V on the right, so that GL(V ) acts naturally on C∗(V )

on the left.
We also have a natural differential ∂ : C∗(V ) −→ C∗(V ) of degree −1 defined in the usual

way by

∂

(
[λ0] ∧ · · · ∧ [λm]

)
=

m∑
i=0

(−1)i
(

[λ0] ∧ · · · ∧ [̂λi] ∧ · · · ∧ [λm]

)
.
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5 The Circular Distribution

5.1 The group of circular units

Let V be a finite dimensional vector space over Q and let V ∗ = HomQ(V,Q). We let GL(V )
be the group automorphisms of V and view the elements of GL(V ) as acting on the right.
Let A(V ) denote the ring of all holomorphic functions ξ : VC −→ C that are translation
invariant under some lattice L ⊆ V . Let M(V ) be the fraction field of A(V ).

We let GL(V ) act on the right on A(V ) (and thus also on M(V )) by

(F |σ)(z) = F (zσ−1)

for F ∈ A(V ), σ ∈ GL(V ), and z ∈ VC.
Let W denote the set of all pairs w = (r, λ) ∈ Q × V ∗ with λ 6= 0. For each w ∈ W ,

define εw ∈ A(V )× by εw(z) = exp(2πi(λz − r)) and let

R(V ) := Z
[
εw
∣∣ w ∈ W ] ;

K(V ) := the fraction field of R(V ).

We define the group of circular units on V to be the subgroup C(V ) of K(V )× generated by
the elements εw and 1− εw as w runs over W :

C(V ) := 〈εw, 1− εw |w ∈ W 〉.

Finally, we define the ring
R(V ) := R(V )[C(V )].

5.2 Test functions

We define

S(V ) := { f : V −→ Z | f is uniformly locally constant and of bounded support }

These are what we call the test functions on V . We let the group GL(V ) act naturally on
S(V ) on the left by

(σf)(v) = f(vσ).

5.3 The circular distribution on Q
In this section we take V = Q. Thus W = Q×Q×. The divisor of a circular unit u ∈ C(Q)
is defined to be the function δu : Q −→ Z given by

δu(v) := ord v(u)

where ord v(u) is the order of vanishing of u at v. We note that δu ∈ S(Q) for every u ∈ C(Q).
Moreover, the function u 7−→ δu defines a homomorphism

δ : C(Q) −→ S(Q).
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The kernel of δ is the group E(Q) generated by the elements εw with w ∈ W .
Complex conjugation induces an involution ι on R(Q) (and on K(Q)) by the formula

ξι(z) = ξ(z).

We say that an element of ξ ∈ K(Q)× is positive if (1) ξι = ξ, and (2) the leading coefficient
in the Taylor expansion of ξ at the origin is positive. Note that the set of positive elements
is a subgroup of K(V )×. We let C+ := C+(Q) denote the group of positive circular units on
Q:

C+ :=

{
u ∈ C(Q)

∣∣∣∣ u is positive

}
.

One easily verifies that for every u ∈ C(Q) there exists one and only one ε ∈ E(Q) such that
ε · u is positive. The following theorem is an immediate consequence.

Theorem: The map δ : C+(Q) −→ S(Q) is an isomorphism of abelian groups.

Proof: A straightforward calculation.

The composition

η : S(Q)
δ−1

−→ C+(Q) ↪→ C(Q)

defines a Q+-invariant distribution η ∈ Dist(Q, C(Q)) such that for all w = (r, λ) ∈ Q×Q×

η(r + λ−1Z)(z) = 2 sin

(
|λ|z

2

)
= −i · sgn(λ) · ε−w/2 · (1− εw).

We call η the circular distribution on Q.
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6 The Manin Relations over GL+
2 (Q)

Let ∆0 = Div0(P1(Q)) with the standard fractional linear action of GL2(Q) (on the left). Let
D∞ = {0} − {i∞} ∈ ∆0. Then ∆0 is generated by D∞ as a Z[GL+

2 (Q)]-module. Moreover,
the annihilator of D∞ in Z[GL+

2 (Q)] is the left ideal generated by the set{
γ − 1

∣∣∣∣ γ a diagonal matrix

}
∪
{

1 + σ, 1 + ρ+ ρ2

}
where

σ :=

(
0 −1
1 0

)
and ρ :=

(
0 −1
1 −1

)
¿From this we deduce the following proposition.

Proposition: Let M be a right GL+
2 (Q)-module and let µ ∈M be an element for which the

following properties hold.

1. µ|γ = µ for every diagonal matrix γ ∈ GL+
2 (Q);

2. µ|(1 + σ) = 0;

3. µ|(1 + ρ+ ρ2) = 0.

Then there is a unique GL+
2 (Q)-invariant homomorphism

Φ : ∆0 −→M

for which Φ(D∞) = µ.
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7 Compactly Supported Cohomology.

Let V be a finite dimensional vector space over Q. For k ≥ 0, we let (V ∗)k+1 be the (k+ 1)-
fold product of V ∗ and let (Q+)k+1 act componentwise on (V ∗)k+1. The orbits of this action
will be called k-simplices on V . For λ ∈ (V ∗)k+1 we let [λ] denote the k-simplex represented
by λ. A simplex [λ0, . . . , λk] will be called non-degenerate if every m-element subset of
{λ0, . . . , λk} with m ≤ n is linearly independent.

For each k ≥ 0, we let Ck(V ) denote the free abelian group on the set of non-degenerate
k-simplices on V . We let

C∗(V ) :=
⊕
k≥0

Ck(V )

and define a boundary map ∂ on C∗(V ) by

∂
(
[λ0, λ1, . . . , λk]

)
:=


k∑
i=0

(−1)i[λ0, . . . , λ̂i, . . . , λk] if k > 0;

0 if k = 0.

A standard computation shows that the sequence

· · · ∂−→ Ck(V )
∂−→ · · · ∂−→ C0(V )

deg−→ Z −→ 0

is exact.
The group GL(V ) acts naturally (on the left) on the complex (C∗(V ), ∂). For an arbitrary

arithmetic subgroup Γ of GL(V ) and an arbitrary Γ-module M , we define the complex

C∗c (Γ,M) := HomΓ(C∗,M).

We have the following theorem (of Borel-Serre (??)).

Theorem Suppose the order of every torsion element of Γ acts invertibly on M . Then there
is a canonical isomorphism

H∗c (Γ,M) ∼= H(C∗c (Γ,M)).
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8 K-groups and higher dimensional circular distribu-

tions

Let V := Qn. For each i = 1, 2, . . . , n let ei : Qn −→ Q be projection to the ith coordinate.
Define ηi : S(Q) −→ R×n to be the composition of

ηi : S(Q)
η−→ R(Q)×

e∗i−→ R×n .

Now take the tensor product of the first k of these to get

η := η1 ⊗ · · · ⊗ ηk : S(Qk) −→ R×n ⊗ · · · ⊗ R×n

Now for any sequence λ1, . . . , λk of linearly independent linear functionals on Qn, we
may choose σ ∈ GLn(Q) such that λi = σei and define

Φ̃(λ1, . . . , λk) := η|σ−1 : S(Qk) −→ R⊗kn

Note: This definition doesn’t make sense since σ doesn’t act on S(Qk).
Claim: This is independent of the choice of σ.

To see that this is true, we will check that if σei = tiei for all i where ti ∈ Q×, then
η|σ−1 = η. (Note: it appears that we actually need to know ti ∈ Q+.) It suffices to check
that if f1 ⊗ · · · ⊗ fk ∈ S(Qk) then (η|σ−1)(f) = η(f). So we compute:

(η|σ−1)(f) = η(σ−1f)|σ−1 ∈ (R×n )⊗k

So we first compute σ−1f . For any x ∈ Qk we have

(σ−1f)(x) = f(xσ−1) =
∏k

i=1 fi(xσ
−1 · ei)

=
∏k

i=1 fi(t
−1
i xi)

=
∏k

i=1(t−1
i fi)(xi)

=

(
k⊗
i=1

(t−1
i fi)

)
(x).

Hence

η(σ−1f) =
k⊗
i=1

ηi(t
−1
i fi)

=
k⊗
i=1

(
η(t−1

i fi) ◦ ei
)

=
k⊗
i=1

((
η|t−1

i

)
(fi)

) ∣∣∣∣ ti ◦ ei
=

k⊗
i=1

η(fi)
∣∣ ti ◦ ei
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Thus,

(η(σ−1f)|σ−1 =

( k⊗
i=1

η(fi)
∣∣ ti ◦ ei) ∣∣∣∣ σ−1 =

( k⊗
i=1

η(fi)
∣∣ ti ◦ σei).

Finally, we compute each factor at a point z ∈ Cn:(
η(fi)

∣∣ ti ◦ σei)(z) = (η(fi)|ti)(zσei) = (η(fi)|ti)(tizi) = η(fi)(zi) = (ηi(fi))(z).

Hence (
η(fi)

∣∣ ti ◦ σei) = ηi(fi)

and therefore

(η|σ−1)(f) =
k⊗
i=1

ηi(fi) = η(f)

and we have proved η|σ−1 = η, as claimed.
Note that we have actually proved more. Namely, we have proved: For all t1, . . . , tk ∈ Q×

(I think Q+) we have

Φ̃(t1λ1, . . . , tkλk) = Φ̃(λ1, . . . , λk).

Now compose Φ̃ with projection to Kk(Rn) and define

Φ(λ1, · · · , λk) : S(Qk) −→ Kk(Rn)

as above. If λ1, . . . , λk are linearly dependent, we define

Φ(λ1, · · · , λk) = 0.

Theorem. Φ has good properties.
For each λ ∈ V ∗ we view λ : V −→ Q and use λ to pull-back functions on C to functions

on VC. In particular λ induces a function

R(Q)
λ∗−→ R(V ).

In particular, λ induces a homomorphism

λ∗ : Dist(Q,R(Q)×) −→ Dist(Q,R(V )×).

We will make use of the distributions

λ∗(η) ∈ Dist(Q,R(V )×)

where η ∈ Dist(Q,R(Q)×) is the circular distribution on Q defined in a previous section. It
follows from the Q+-invariance of η that λ∗(η) depends only on λ up to multiplication by
a positive rational number. Letting [λ] ∈ C0(V ) be the 0-simplex associated to λ we may
therefore define

ξ([λ]) := λ∗(η).
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More generally, if m ≥ 0 and [λ] = [λ0, . . . , λm] is an m-simplex on V , we define

ξ([λ]) := ξ([λ0]) ∪ ξ([λ1]) ∪ · · · ∪ ξ([λm]) ∈ Dist(Qm+1, Km+1(R(V ))),

where the cup product is defined as the composition

S(Qm+1)
∼−→ S(Q)⊗ · · · ⊗ S(Q)

⊗
i ξ([λi])−→ R(V )× ⊗ · · · ⊗ R(V )×

{ }m+1−→ Km+1(R(V ))

where Kn is Milnor’s nth K-group and { }n is Milnor’s n-fold symbol.

Now consider the subgroup In ofKn(R(V )) generated by elements of the form {η1, . . . , ηn}
with ηi ∈ C(V ) and at least one ηi ∈ E(V ). We define

K̃n := Kn(R(V ))/En(V ).

Note that In is the nth graded part of the ideal of the K-ring generated by the elements
εw ∈ K1(R(V )).

Finally, we define the graded ring D(V ) by

D(V ) :=
⊕
m≥0

Dist(Qm+1, K̃m+1(V ))

with multiplication given by cup product. Then ξ may be viewed as a homomorphism

ξ : C∗(V ) −→ D(V ).

The group GL(V ) acts on both C∗(V ) (on the left) and on D(V ) (on the right) and we have
the following theorem.

“Theorem”: The map ξ is a GL(V )-invariant cocycle. More precisely, for any σ ∈ C∗(V )
we have

ξ(∂σ) = 0.

and for any γ ∈ GL(V ) we have
ξ(γσ)|γ = ξ(σ).

Remarks: In fact, I have not yet written down a proof of this “theorem”. What I have done
is examine the special case n = m = 2 in some detail. I am reasonably certain that those
computations will generalize as suggested by the theorem. However, there are a few provisos.
Possibly, the correct statement for GL(V )-invariance is that each element of GL(V ) acts by
multiplication by the sign of the determinant. It also seems to me that the statement has
not yet been properly formulated. What we would really like to do is define a Z-algebra
structure on C∗(V ) (or something closely related). Then ∂ would be a derivation on this
algebra (over Z). We still need to define precisely the algebra structure of D(V ). Then
ξ : C∗(V ) −→ D(V ) will be a GL(V )-invariant algebra homomorphism whose “derivative”
is zero (whatever that means).

The significance of the above theorem lies in the fact that D(V ) is a very rich algebra,
admitting lots of interesting homomorphisms to interesting arithmetically defined modules.
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For example, if V = Qn and we fix a uniform bounded subset U ⊆ V and let Γ be the
arithmetic group stabilizing U , then restriction of distributions to U induces a Γ-invariant
map

D(V )
ρU−→ Dist(U, K̃n(Qn)).

Then any Γ-equivariant homomorphism

ϕ : K̃n(Qn) −→M

to a Γ-module M will induce a Γ-invariant map

ξϕ : C∗(V ) −→M

and that, in turn may be viewed as an element of H∗c (Γ,M). Moreover, the GL(V )-invariance
of ξ implies ξϕ is a Hecke eigenclass and can even be used to compute the eigenvalues.
These eigenvalues will be of Eisenstein type. Celia’s calculation will arise as a special case
of this general principle (Take n = 2, U = (Z2)′ \ (pZ × Z)′, and Γ = Γ0(p); then let

ϕ : K̃2(Q2) −→ Fp(ωr) be defined as in Celia’s paper.)

Fantasies: The moral of the story is that ξ parametrizes cohomology classes

ξϕ ∈ H∗(Γ,M).

I expect (fantasize?) that these families are significant. When ϕ varies over an analytic
family, the family ξϕ should be analytic as well. Since our construction is global, we expect
to see Euler systems as special cases. Finally, this picture feels quite general. Similar
constructions should work for modular units (in place of circular units). I believe these
constructions deserve to respect representation theoretic constructions, hence one might
even dream that they point towards a form of Langlands functoriality.
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