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1 Introduction

We fix, once and for all, an integer M > 3 and two distinct primes p, ` with
(p`,M) = 1. We let B denote the quaternion algebra over Q ramified exactly
at `∞. We let R denote a fixed maximal order in B. For each prime q we
let Bq := B ⊗ Qq, and Rq := R ⊗ Zq. For each q 6= ` we fix, once and for
all, an isomorphism ιq : B ⊗ Qq

∼= M2(Qq) for which ιq(R⊗ Zq) = M2(Zq).
Henceforth we will use these isomorphisms to make the identifications

Bq = M2(Qq) and Rq = M2(Zq) (1.1)

whenever q 6= `.
Recall that a Hecke pair in a group G is, by definition, a pair (Σ,K) with

K ⊆ Σ ⊆ G where K is a subgroup of G and Σ is a subsemigroup of G
that commensurates K. For any rational prime q we define the Hecke pair
(Σq,Kq) in GL2(Qq) by

Σq :=

{(
a b
c d

)
∈ M2(Zq)

∣∣∣∣ ad− bc 6= 0,
a ≡ 1, b ≡ 0 (mod MZq)

}
Kq := Σq ∩GL2(Zq).

(1.2)

This Hecke pair will play the role of auxiliary tame level structure.

For any positive integer Q, we let βQ :=

(
1 0
0 Q

)
and define

Σq(Q) := Σq ∩ βQΣqβ
−1
Q , and Kq(Q) := Kq ∩ βQKqβ

−1
Q . (1.3)

We then let

Hq(Q) := H(Σq(Q),Kq(Q)) (1.4)

be the convolution algebra generated by double cosets on Σq(Q) with respect
to Kq(Q).

Let Ẑ denote the profinite completion of Z and Af := Q⊗ Ẑ denote the
finite adeles of Q. For Q ∈ Z+ we define the Hecke pair (Σ(Q),K(Q)) by

Σ(Q) :=
∏
q 6=`

′ Σq(Q), and K(Q) :=
∏
q 6=`

Kq(Q). (1.5)
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We may then define Hecke pairs (ΣGL2(Q),KGL2(Q)) and (ΣB×(Q),KB×(Q))
in GL2(Af ) and B×(Af ), respectively, by

ΣGL2(Q) := Σ`(Q)× Σ(Q), KGL2(Q) := K`(Q)×K(Q) (1.6)

and

ΣB×(Q) := R′` × Σ(Q), KB×(Q) := R×` ×K(Q). (1.7)

where R′` is the subsemigroup of non-zero elements of R`.
Finally, we define the Hecke algebra

H(Q) := H(Σ(Q),K(Q)) ∼=
⊗
q 6=`

′ Hq(Q), (1.8)

where the tensor product is the restricted tensor product with respect to the
choice of the multiplicative identity 1 ∈ Hq(Q) for each q.

If we wish to emphasize the tame level M , we will write H(M,Q) instead
of simply H(Q). We note that in more classical language, we have

H(M,Q) = Z
[
Tq, Tq,q, Ur

∣∣∣∣ q, r are primes 6= `, with q 6 |MQ and r|MQ

]
.

Note that we have omitted Hecke operators at the prime `. In particular,
this algebra acts on the cohomology of both K(Q) and KB×(Q). The Jacquet-
Langlands correspondence, a version of which is described in the next section,
is a correspondence that identifies systems of eigenvalues of H(Q) occurring
on the quaternionic side and with certain systems of Hecke eigenvalues (those
that are new at `) occurring on the GL2 side.

2 Geometric Jacquet-Langlands

2.1 Cohomology of Modular Curves

We fix, once and for all, embeddings: Q̄ ↪→ Q̄` ⊆ C. Let Z` be the ring of
integers in Q̄` and F` be the residue field. We have the diagram

s := Spec(F`) −→ S := Spec(Z`)←− η := Spec(Q̄`). (2.1)

For Z any scheme over Spec(Z`) we denote by Zs, ZS, Zη, and ZC be the
base-changes of Z via the morphisms induced by the ring homomorphisms
from Z` to F`, Z`, Q̄`, and C respectively.
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Now fix a positive integer Q and let Y := YQ be the affine modular curve
over Z` with KGL2(Q)-level structure. Let

Γ := ΓQ := GL2
+(Q) ∩ KGL2(Q) (2.2)

We also choose a section y of Y/Spec(Z`). Tensoring with s, S and η over
Spec(Z`) we obtain sections ys, yS and yη of Ys/s, YS/S and Yη/η, respectively,
and we have the following diagram with cartesian squares:

s −→ S ←− η
ys ↓ yS ↓ yη ↓
Ys −→ YS ←− Yη.

For ∗ = s, S, or η we then let

∆∗ := πet
1 (Y∗, y∗)

and note that we have canonical group homomorphisms

∆s −→ ∆S ←− ∆η ←↩ Γ

Proposition 2.1. Let p be a prime different from ` and let F be a finite
abelian p-group endowed with a continuous right action of Kp(Q) (see (1.3)).

Let F̃ be the local coefficient system on YC associated to F . Then there is a
unique finite locally constant sheaf FS on the etale site Y et

S whose base-change

to C is F̃ .

Proof. Consider the p-adic Tate module on YS

Tap(ES/YS) = lim
←−
n

ES[pn].

This is a projective limit of finite etale group schemes ES[pn] over YS and
therefore determines a representation T of ∆S. Since the action of ∆S must
respect the level structure on E/Y we have a commutative diagram of group
homomorphisms

Γ
↙ ↓

∆S −→ Kp(Q).
(2.3)
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in which the horizontal arrow is continuous and the vertical arrow is the
natural inclusion. The action of Kp(Q) on F therefore induces a continuous
action of ∆S on F which classifies a finite locally constant sheaf FS on YS.
The commutativity of the above diagram implies that the base change of FS

to C is F̃ . This proves the existence of the desired sheaf FS.
Since ∆S acts trivially on Z`, it acts trivially on p-power roots of unity

and therefore properties of the Weil pairing imply that the image of ∆S in
Kp(Q) is contained in the subgroup of elements of determinant 1. But the
image of Γ in Kp(Q) is dense. Thus the action of Γ on F determines the
action of ∆S and uniqueness of FS follows. This completes the proof.

Now assume F is a finite abelian p-group endowed with a continuous
(right) action of the semigroup Σp(Q) and let ΣGL2 act on F via projection
to Σp(Q). Under this assumption we may define Hecke operators on the
cohomology of the sheaves F∗ (∗ = s, S, η) as follows.

Let q be an arbitrary prime different from `. Then, over S, we have two
finite etale morphisms

π1, π2 : YQq −→ YQ.

The first of these is the morphism associated to forgetting the level q-structure,
while the second is associated to dividing by the level q-structure. Now let

βq :=

(
1 0
0 q

)
∈ ΣGL2(Qq) and define the group homomorphisms

i1, i2 : KGL2(Qq) −→ KGL2(Q)

by letting i1 be the natural inclusion and i2 be conjugation by βq: x 7−→
β−1

q xβq. Moreover, the map F
βq−→ F intertwines the i1-action with the

i2-action of KGL2(Qq), hence induces a morphism ρq : i∗1F −→ i∗2F .
It follows immediately from the definitions that the finite locally constant

sheaves on (YQq)S associated to i∗1(F ), i∗2(F ) by Proposition 2.1 are respec-
tively π∗1(FS) and π∗2(FS). Moreover, ρq induces a morphism of sheaves

ρq : π∗1(FS) −→ π∗2(FS).

Definition 2.2. Let Y = YQ and F be as above. Let FS be the finite locally
constant sheaf on YS associated to F by Proposition 2.1. Then for q any
prime different from ` and for ∗ = s, S, η we define

Tq : H∗c (Y∗,F∗) −→ H∗c (Y∗,F∗)
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to be the composition

H∗c (Y∗,F∗) −→ H∗c ((Y0)∗, π
∗
1F∗)

ρq−→ H∗c ((Y0)∗, π
∗
2F∗) −→ H∗c (Y∗,F∗).

Let X := XQ be the complete modular curve of level KGL2(Q) and let
α : Y ↪→ X be the associated affine modular curve, everything over Spec(Z`).
Consider the fundamental diagram

Ys
iY−→ YS

jY←− Yη

↓ αs ↓ αS ↓ αη

Xs
iX−→ XS

jX←− Xη.

(2.4)

For ∗ = s, S, or η and a finite locally constant sheaf F∗ on Y et
∗ define

Hn
c (Y∗,F∗) := Hn(X∗, α∗!(F∗)). (2.5)

2.2 Vanishing Cycles for Modular Curves

In this section we fix a positive integer Q that is not divisible by `2 and
consider the modular curve X := XQ as well as the affine modular curve
Y := YQ, as defined in the last section. We note that is X is flat and proper
over Spec(Z`) with connected geometric fibers, smooth generic fiber, and
semi-stable reduction, and that we have an open immersion

α : YS ↪→ XS

whose image is obtained from XS by removing the finite set CS of smooth
sections of XS/S associated to the cusps of XS.

Now fix a locally constant sheaf FS of finite abelian p-groups on YS and
let

Fs := i∗YFS and Fη := j∗YFS.

Then Fs, FS, and Fη are locally constant sheaves on the etale sites Y et
s , Y

et
S ,

and Y et
η , respectively.

Finally, let Σ denote the finite set of singular points in Ys and let (Fs)Σ

denote the skyscraper sheaf whose stalk at an arbitrary point y of Ys is given
by

((Fs)Σ)(y) =


(Fs)(y) if y ∈ Σ,

0 if y 6∈ Σ.
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Theorem 2.3. We have a canonical exact sequence

0 −→ H1
c (Ys,Fs) −→ H1

c (Yη,Fη) −→ H0(Ys, (Fs)Σ) −→

−→ H2
c (Ys,Fs) −→ H2

c (Yη,Fη) −→ 0.

Proof. The proof is an immediate consequence of the following two lemmas
from the theory of vanishing cycles on proper curves over Z` with semistable
reduction, together with the fact that H1(Ys, (Fs)Σ) = 0.

Lemma 2.4. Let Xs
iX
↪→ XS

X←↩ Xη be as above and let L be a constructible
sheaf of finite Z/pmZ-modules on Xet

η . Let

RnΨ(L) := ι∗X
(
RnjX,∗(L)

)
, (n ≥ 0)

be the complex of vanishing cycles sheaves on Xs (see [SGA7]). Then we
have a canonical long exact sequence

0 −→ H1(Xs,R
0Ψ(L)) −→ H1(Xη,L) −→ H0(Xs,R

1Ψ(L))

−→ H2(Xs,R
0Ψ(L)) −→ H2(Xη,L) −→ H1(Xs,R

1Ψ(L)).

Proof. Since the morphism XS −→ S is proper of relative dimension one, the
above exact sequence is induced by the vanishing cycles spectral sequence (see
[SGA7] for details).

Now let Lη and Ls be the constructible sheaves on Xet
η and Xet

s , respec-
tively, given by

Lη := (αη)!Fη and Ls := (αs)!Fs.

Lemma 2.5. The sheaves RnΨ(Lη) (n ≥ 0) on Xs are given by

(a) For each n ≥ 0 we have

RnΨX((αη)!Fη) ∼= (αs)!R
nΨY (Fη).

(b) R0Ψ(Lη) = Ls;

(c) R1Ψ(Lη) = (Fs)Σ;
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(d) RnΨ(Lη) = 0 for n ≥ 2.

Proof. First note that Fη is tamely ramified at the “cusps”, i.e. at the points
of the subscheme Cη of (Xη−Ση) associated to the points of Xη\Yη. Since Cη

is smooth over η, Proposition 2.1.9 of [SGA7], XIII applies and (a) follows.
To prove (b) we note that by definition, we have R0ΨY (F) = (iY )∗(jY )∗(Fη).

But Fη = (jY )∗FS so we have

R0ΨY (Fη) = (iY )∗(jY )∗(jY )∗FS = (iY )∗FS = Fs.

Now (b) follows from (a).
To prove (c), let y be an s-point of Xs. It follows from (a) that

(
RnΨX(Lη)

)
y

=
(
(αs)!R

nΨY (Fη)
)

y
=


0 if y ∈ Cs;

(
RnΨY (Fη)

)
y

if y ∈ Ys.

If y 6∈ Σ then y is a smooth point and the acyclicity of smooth mor-
phisms property implies that

(
RnΨY (F))

)
y

= 0. It follows that the sheaves

RnΨX(L) are skyscraper sheaves supported on Σ.

Now suppose y ∈ Σ. Let Z
f−→ YS be an étale neighborhood of y in YS

such that the restriction of FS to Z is constant, i.e. f is a finite étale cover
such that f ∗(FS) is a constant sheaf on Z. Choose z to be an s-point of Z
such that f(z) = y. Since f is proper and finite, we have

(R1ΨY (Fη))y = (f ∗s (R1ΨY (Fη)))z = (R1ΨZ(f ∗FS))z = H1(Z(z) ⊗S s, f
∗FS).

As f ∗FS is constant, equal to (f ∗FS)z = (FS)y, we have(
R1ΨY (Fη)

)
y

= H1(Z(z),ΛZ)⊗Λ (Fs)y =
(
R1ΨY (ΛY )

)
y
⊗Λ (Fs)y,

where ΛZ , ΛY are the constant sheaves Λ = Z/pmZ on Zet and Y et
S respec-

tively. From Lemma 1.5 [Il], we have
(
R1ΨY (ΛY )

)
y

=
(
R1ΨX(ΛX)

)
y

= Λ.

Hence, we have (
R1ΨY (Fη)

)
y

= (Fs)y

as claimed. This proves (c).
To prove (d), we use the fact that for every y ∈ Σ and n ≥ 1 we have(

RnΨY (F)
)

y
∼= Hn(Y(y) ×S η,F), where Y(y) is the spectrum of the strict

henselization of Y at y. For dimension considerations, if n ≥ 2 we have(
RnΨY (F)

)
y

= 0 and (d) follows.
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2.3 The `-New Cohomology Groups

We now fix a positive integer N with ` 6 |N . We let X0 := XN` and X := XN .
Similarly, we let Y0, Y be the associated affine modular curves over Z`. We
have two finite morphisms

π`, π
′
` : Y0 −→ Y

where π` is induced by the forgetful functor and π′` = π` ◦ w` where w` :
Y0 −→ Y0 is the Atkin-Lehner involution. On the special fibers, we also have
closed immersions

i, i′ : Ys ↪→ Y0,s

where i is induced by the adding level-` structure given by the canonical
subgroup at ordinary points, and i′ = w` ◦ i.

Now let F be a locally constant sheaf of finite abelian groups on Y et

and F0 := π∗(F) be the pullback to Y et
0 . We note that the Atkin-Lehner

involution induces an isomorphism F0 = π∗` (F) ∼= (π′`)
∗(F). For s ∈ {η, s}

we therefore have a homomorphism

ν∗ : H1
c (Y∗,F∗)⊕H1

c (Y∗,F∗) −→ H1
c (Y0,∗,F0,∗) (2.6)

induced by the pair of maps π∗` , (π′`)
∗ and define

H1
c (Y0,∗,F)new := Coker(ν∗).

Over the special fiber we also have a homomorphism

µs : H1
c (Y0,s,F0,s) −→ H1

c (Ys,Fs)⊕H1
c (Ys,Fs) (2.7)

induced by the pair i∗, i
′
∗. We also define

H1
c (Y0,∗,F)new := Ker(µ∗).

The composition

MF := µs ◦ νs : H1
c (Ys,Fs)⊕H1

c (Ys,Fs) −→ H1
c (Ys,Fs)⊕H1

c (Ys,Fs)

is given by the 2× 2 matrix

MF =

(
1 + ` T`

[`]−1T` 1 + `

)
over End

(
H1

c (Ys,Fs)
)
.

Now let Σ denote the set of supersingular points in the special fiber
Y0,s and let (F0)Σ be the skyscraper sheaf defined in the paragraph before
Theorem 2.3. The main theorem of this section is the following.
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Theorem 2.6. All of the follwing are true.

(a) The exact sequence in Theorem 2.3 induces an exact sequence

0→ H1
c (Y0,s,Fs)

new → H1
c (Y0,η,F0)

new → H0(Y0,s, (F0)Σ)→ H2
c (Y0,s,F0,s).

(b) Moreover, µs induces a canonical exact sequence

0→ H0(Y0,s, (F0)Σ)→ H1
c (Y0,s,F0,s)

µs→ (H1
c (Ys,Fs))

2 → 0

and a canonical isomorphism

µs : H2
c (Y0,s,F0,s)

∼−→H2
c (Ys,Fs)

2.

(c) There is a canonical exact sequence

Ker(MF)→ H0(Y0,s, (F0)Σ)→ H1
c (Y0,s,Fs)

new → Coker(MF)→ 0.

Proof. Since Ys is smooth we have RiΨY (Fη) = 0 for i ≥ 1 and therefore the
vanishing cycles sequence for Y gives isomorphisms H1

c (Ys,Fs) ∼= H1
c (Yη,Fη).

Putting everything together we obtain the following commutative diagram.

0 → (H1
c (Ys,Fs))

2 ∼= (H1
c (Yη,Fη))

2 → 0
↓ νs ↓ νη ↓

0 → H1
c (Y0,s,F0,s) → H1

c (Y0,η,F0,η) → H0(Y0,s, (F0)Σ)
↓ ↓ ||

0 → H1
c (Y0,s,F0,s)

new → H1
c (Y0,η,F0,η)

new → H0(Y0,s, (F0)Σ)
↓ ↓ ↓
0 0 0

As the first two rows of the diagram are exact, the third row is exact as well.
We then use Theorem 2.7, to continue this exact sequence as follows

H0(Y0,s, (F0)Σ) −→ H2
c (Y0,s,F0,s) −→ H2

c (Y0,η,F0,η) −→ 0.

Assertion (a) of the theorem now follows.
On the other hand, for i ≥ 0, the Meier-Vietoris sequence for Y0,s and its

two components gives a long exact sequence in cohomology

H i
c(Y0,s,F0,s) −→ (H i

c(Ys,Fs))
2 −→ H i(Y0,s, (F0)Σ) −→

−→ H i+1
c (Y0,s,F0,s)

µs−→ (H i+1
c (Ys,Fs))

2 −→ 0.
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Setting i = 0 in this sequence, and using the fact thatH2
(
Ys, (Fs)

∗(−1)
)

= 0,
since Ys is affine open in a smooth proper curve, we conclude by duality that
H0

c (Ys,Fs) = 0. So the last three terms of this sequence form a short exact
sequence proving the first assertion of (b). On the other hand, setting i = 1,
and using the fact that H1(Ys, (F0)Σ) = 0, we see that µs is an isomorphism
on H2

c , proving the second assertion of (b).
To prove (c) we start with the exact sequence of (b) and note that νs

induces a commutative diagram with short exact rows

0 → Ker(MF) → (H1
c (Ys,Fs))

2 MF→ Image(MF) → 0.
↓ ↓ νs ∩

0 → H0(Y0,s, (F0)Σ) → H1
c (Y0,s,F0,s)

µs→ (H1
c (Ys,Fs))

2 → 0.

An application of the snake lemma gives us a canonical exact sequence

Ker(MF) −→ H0(Y0,s, (F0)Σ) −→ H1
c (Y0,s,F0,s)

new −→ Coker(MF) −→ 0

and the theorem is proved.

3 Cohomological Automorphic Forms

Let G be one of the reductive algebraic groups GL2 or B×. We let Div0(P1(Q))
be the group of divisors of degree 0 supported on P1(Q) and let GL2(Q) act
on Div0(P1(Q)) on the left in the usual way by fractional linear transforma-
tions. We then define

SG :=


Div0(P1(Q))⊗ Z[GL2(Af )] if G = GL2,

Z⊗ Z[B×(Af )] if G = B×.

We let G(Q) act diagonally on the left on SG and let G(Af ) act on the right
through the second factor.

As in §1 we fix a tame level M , choose Q, with (M,Q) = 1, and consider
the Hecke pair (ΣG(Q),KG(Q)) and the corresponding Hecke algebra H :=
H(M,Q).

Definition 3.1. Let G be either GL2 or B×, and F be an abelian group
endowed with a right action of KG(Q). We let G(Q) act trivially on F on
the left and define

SG(Q,F ) := HomG(Q)×KG(Q)(SG, F ).
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We will refer to SG(Q,F ) as the space of F -valued cohomological automor-
phic forms over G.

In the applications, we will fix a prime p with (p,M`) = 1, set Q = `
or p`, and let F be a projective limit of finite p-primary groups endowed
with a continuous (right) action of ΣG(Q). Under these hypotheses we may
compute etale cohomology with values in F . In this chapter we shall ex-
plain the relationship of the groups SGL2(Q,F ) and SB×(Q,F ) to these etale
cohomology groups.

3.1 Modular Symbols and Compactly Supported Co-
homology

Let F be an abelian group endowed with a right action of Σ := Σ(Q).
We endow the group Hom(Div0(P1(Q)), F ) of additive homomorphisms from
Div0(P1(Q)) to F with a right action of Σ by ξ 7→ ξ|σ where (ξ|β)(D) =
ξ(βD)|β for ξ ∈ Hom(Div0(P1(Q)), F ) and β ∈ Σ. The group of F -valued
modular symbols over Γ := ΓQ := GL2

+(Q)∩KGL2(Q) is defined in [AS1] to
be the group

SymbΓ(F ) := Hom(Div0(P1(Q)), F )Γ.

Proposition 3.2. For ϕ ∈ SGL2(Q,F ) define ξϕ ∈ Hom(Div0(P1(Q)), F ) by
ξϕ(D) = ϕ(D ⊗ 1). Then the map ϕ 7−→ ξϕ defines a Hecke equivariant
isomorphism

SGL2(Q,F )
∼−→ SymbΓ(F ).

Moreover, we have isomorphisms

H1
c (YC, F̃ ) ∼= SGL2(Q,F ) and H2

c (YC, F̃ ) ∼= H0(ΓQ, F )

where YC is the complex Riemann surface associated to Yη and F̃ is the local
coefficient system on YC associated to the Γ-module F .

Proof. A simple calculation establishes that the map ϕ 7−→ ξϕ is a Hecke
equivariant isomorphism SGL2(Q,F )

∼−→ SymbΓ(F ). Indeed, the inverse
map is given by ξ 7−→ ϕξ where, for g ∈ GL2(Af ) and D ∈ Div0(P1(Q)), we
define

ϕξ(D ⊗ g) =
(
ξ(γD)

∣∣ γg) ∈ F
where γ ∈ GL2

+(Q) is any element for which γg ∈ KGL2(Q). That the
expression on the right is well-defined follows from the invariance of ξ under
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GL2(Q) ∩ KGL2(Q), and the invariance of ϕξ under GL2(Q) × KGL2(Q) is
an equally straightforward calculation. This proves the first assertion. The
isomorphism H1

c (YC, F̃ ) ∼= SymbΓ(F ) is Proposition 4.2 of [AS1] and the

isomorphism H2
c (YC, F̃ ) ∼= H0(ΓQ, F ) follows from Poincaré duality.

The following corollary follows from the proposition and Artin’s Compar-
ison Theorem.

Corollary 3.3. Suppose F is a profinite KGL2(Q)-module and let Fη be the
associated profinite sheaf on Yη. Then there are canonical Hecke-equivariant
isomorphisms

H1
c (Yη,Fη) ∼= SGL2(Q,F )

H2
c (Yη,Fη) ∼= H0(Γ, F ).

where I is the augmentation ideal in Z[Γ].

3.2 Skyscraper Sheaves and Quaternionic Automor-
phic Forms

Now let p be a prime different from `. Chosse Q ≥ 1 with (Q,M) = 1 and
for each prime q 6= ` let Kq := Kq(Q) ⊂ GL2(Qq) be defined as in 1.3. Let

KB := R×` ×K where K := Kp ×K(p) and K(p) :=
∏

q 6=p,`

Kq.

Fix a finite p-power torsion group F endowed with a continuous action of Kp

and let ∆0,s act on F via the homomorphism ∆0,S −→ Kp induced by the
action of Kp on the p-adic Tate module of the universal elliptic curve over
the modular curve Y0,S. We may therefore apply the language of section 2.1
and in particular we obtain a sheaf F0,S on Y0,S as in proposition 2.1. We let
Σ be the set of supersingular points on Y0,s and let (F0,s)Σ be the skyscraper
sheaf of F0,s supported on Σ.

Theorem 3.4. There is a canonical Hecke equivariant isomorphism

S(KB, F ) ∼= H0(Y0,s, (F0,s)Σ).

Proof. To see this we consider the tower Y
(p)
0,s := lim

←−
n

Y0(p
n)F`

of modular

curves in characteristic ` with full level pn-level structure. This is a galois
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tower of etale covers of Y0,s with galois group Kp, and the action of ∆0,s on
this tower is given by the surjective homomorphism ∆0,s −→ Kp. The set

Σ
(p)
` ⊆ Y

(p)
0 of (limits of) points lying over elements of Σ inherits an action

of ∆0,s that factors through this homomorphism. It follows that we have an
isomorphism

H0(Y0,s, (F0,s)Σ) ∼=
(
Maps(Σ

(p)
` , F )

)Kp
.

To complete the proof, it will therefore suffice to show that there is a canonical
Kp-equivariant bijection Σ

(p)
`

∼−→ B×\B×/KB.
Indeed, by definition Σ is the set of isomorphism classes of pairs (E, σ)

consisting of a supersingular elliptic curve E over F` together with a K(p)-
level structure σ on E. If we now let (E0, σ0) ∈ Σ be fixed and if we assume
our chosen maximal order R in B is isomorphic to the endomorphism ring
EndF`

(E0), then the set Σ
(p)
` may be regarded as the set of isomorphism

classes of triples (E, σ, ξ) consisting of an element (E, σ) ∈ Σ together with
an isomorphism ξ : Tap(E0)

∼−→ Tap(E).

On the other hand, to any g ∈ B̂×, we may associate the isomorphism
class of projective rank one right R-modules represented by the R-module
Mg := gR̂ ∩ B. We then let Eg be the supersingular elliptic curve given
by Eg := Mg ⊗R E0 (see [Se2]) and note that Mg = HomF`

(E0, Eg). In
particular, g induces an isomorphism from the level structure (σ0, ξ0) to a
corresponding level structure (σg, ξg) on Eg. Moreover, the isomorphism class
of the triple (Eg, σg, ξg) is unchanged when g is replaced by any other element

of the double coset B×gK(p)
B . It follows that the map g 7→ (Eg, σg, ξg) induces

a Kp-equivariant bijection

B×\B̂×/K(p)
B

∼−→ Σ
(p)
` .

which is, in fact, a bijection (see [G], section 2). Putting everything together
we obtain

H0(Y0,s, (F0,s)Σ) ∼=
(
Maps(Σ

(p)
` , F )

)Kp ∼= Maps(B×\B̂×, F )Kp
∼= S(KB, F )

as claimed.

3.3 Automorphic Geometric Jacquet-Langlands

We keep the conventions of the last section, so that we have a fixed tame
level M > 1 (which we suppress from the notations) and two distinct primes
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p, ` with (M, p`) = 1. We now fix N ∈ Z+ with (N,M`) = 1 and in the
following will take Q = N or Q = N`.

We have two inclusions i1, i2 : KGL2(N`) ↪→ KGL2(N) where i1 is the
natural inclusion and i2 is given by conjugation x 7−→ β−1

` xβ` with β` :=(
1 0
0 `

)
. Thus for any finite abelian group F endowed with a continuous

right action of Kp := Kp(N) the map x 7→ x|β for x ∈ F induces a KGL2(N`)-
morphism β∗ : i∗1(F ) −→ i∗2(F ). which in turn induces an isomorphism

ρβ : SGL2(N`, i
∗
1(F )) −→ SGL2(N`, i

∗
2(F )).

On the other hand, we have trace maps Trk : SGL2(N`, i
∗
k(F )) −→ SGL2(N,F ).

Thus, identifying SGL2(N`, F ) = SGL2(N`, i
∗
1(F )), we obtain a map

τ = (τ1, τ2) : SGL2(N`, F ) −→ SGL2(N,F )× SGL2(N,F )

given by τ1 = Tr1 and τ2 = Tr2 ◦ ρβ. We define

Snew
GL2

(N`, F ) := Coker(τ).

Finally, we let {F (n)}n be a projective system of finite p-primary abelian
groups endowed with a continuous right action of Kp := Kp(N), and let

{F (n)
S }n and {F (n)

0,S}n and be the associated system of p-primary sheaves on
Y et

S and Y0,S respectively. Let F = lim
←−
n

Fn be the associated projective limit

module, and use the following conventions for computing projective limits of
cohomology with values in these sheaves:

H∗(Y,F) := lim
←−
n

H∗(Y,F (n)) and H∗(Y0,F0) := lim
←−
n

H∗(Y0,F (n)
0 ).

With these conventions, the maps νs and µs defined in section 2.3 induce
maps

ν∗ : H1
c (Y∗,F∗)⊕H1

c (Y∗,F∗) −→ H1
c (Y0,∗,F0,∗)

and
µs : H1

c (Y0,s,F0,s) −→ H1
c (Ys,Fs)⊕H1

c (Ys,Fs).

As in section 2.3 we define

H1
c (Y0,∗,F)new := Coker(ν∗)
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and note that the matrix

MF := µs ◦ νs : H1
c (Ys,Fs)⊕H1

c (Ys,Fs) −→ H1
c (Ys,Fs)⊕H1

c (Ys,Fs)

is given by the 2× 2 matrix

MF =

(
1 + ` T`

[`]−1T` 1 + `

)
over End

(
H1

c (Ys,Fs)
)
.

We then have the following reformulation of Theorem 2.6 which we will
refer to as the geometric Jacquet-Langlands theorem.

Theorem 3.5. Let {Fn}n be a projective system of finite p-primary abelian
groups with continuous action of Σp and let F and F0 be the associated
systems of sheaves on Y and Y0 respectively (see above). Let F := lim

←−
n

Fn

be the projective limit of the Σp-modules Fn. Then we have canonical Hecke
equivariant exact sequences

(a) 0→ H1
c (Y0,s,F0,s)

new → Snew
GL2

(N`, F )→ SB×(N,F ) −→ H2
c (Γ, F )2;

(b) 0→ SB×(N,F )→ H1
c (Y0,s,F0,s)

µs→ (H1
c (Ys,Fs))

2 → 0;

(c) Ker(MF)→ SB×(N,F )→ H1
c (Y0,s,F0,s)

new → Coker(MF)→ 0.

Proof. From Theorem 2.6 (a) we have an exact sequence

0→ H1
c (Y0,s,F (n)

0,s )new → Snew
GL2

(N`, F (n))→ SB×(N,F (n)) −→ H2
c (Γ, F (n))2

for each n. Since these are all finite groups the Mittag-Leffler conditions
are satisfied. Passing to the projective limit over n, we therefore obtain
an exact sequence of projective limits. However, it follows immediately from
the definitions that formation of cohomological automorphic forms commutes
with projective limits. Hence

lim
←−
n

Snew
GL2

(N`, F (n)) ∼= Snew
GL2

(N`, F ) and lim
←−
n

SB×(N,F (n)) ∼= SB×(N,F ).

Likewise, since H2
c (Γ, F (n)) can be computed from a finite chain complex,

the Mittag-Leffler conditions imply that formation of cohomology commutes
with projective limits, so we have

lim
←−
n

H2
c (Γ, F (n)) ∼= H2

c (Γ, F ).

This proves (a). The proofs of (b) and (c) are similar, but easier.
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4 Locally Analytic Functions and Distribu-

tions

4.1 Basic Definitions and Simple Facts

We let | · | be the usual p-adic absolute value on Cp, i.e. the one normalized
so that |p| = p−1. More generally, for d ≥ 1 we let | · | : Cp −→ R≥0 be the
norm defined by

|(x1, . . . , xd)| = max
i=1,...,d

|xi|.

For a compact subset X ⊆ Zd
p, and a positive real number r ∈ |C×p | = pQ we

let

B[X, r] :=

{
z ∈ Cd

p

∣∣∣∣ ∃x ∈ X s.t. |z − x| ≤ r

}
and note that this is an affinoid neigborhood of X in Cd

p.
Let W denote the weight space, i.e. the rigid analytic space over Qp

whose K-points are given by: W(K) := Homcont(Z×p , K×) for any complete
subfield K of Cp. It is easy to see (and well-known) that every point of
W(K) is locally analytic on Z×p . For n a positive integer, we say that a
point κ ∈ W(K) is n-analytic if κ extends to a rigid analytic function on the
affinoid B[Z×p , p−n].

For any K-affinoid subspace S ⊂ W we let κS : Z×p −→ A(S)× be the
canonical character defined by κS(a)(s) = as for a ∈ Z×p and k ∈ S. (Here
and throughout the paper we let A(Z) = OZ(Z) denote the algebra of global
K-rigid analytic functions on Z.) In the applications, S will almost always
be either a singleton point κ ∈ W(K) or a K-affinoid subdomain U ⊆ W .

Let T0 := Z×p × Zp, which we regard as a compact open subset of the
space of row vectors (Zp)

2. We have the following structure on T0:

a) a natural left action of Z×p by scalar multiplication;

b) a natural right action of the semigroup

Ξp =

{(
a b
c d

)
∈M2(Zp)

∣∣∣∣ ad− bc 6= 0, and (a, c) ∈ Z×p × pZp

}
and its subgroup

Iw(Zp) := Ξ(Zp) ∩GL2(Zp)

given by matrix multiplication on the right.
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The two actions obviously commute.
For any K-Banach algebra A we let

A(T0, A) :=

{
f : T0 −→ A

∣∣∣∣ f is locally analytic

}
,

and for any integer n > 0 we let let A[n](T0, A) denote the subspace consist-
ing of functions that extend to A-affinoid functions on B[T0, p

−n]. Clearly, for
each n > 0,A[n](T0, A) is a BanachA-module and the inclusionA[n](T0, A) ↪→
A[n](T0, A) is a compact (i.e. completely continuous) linear map. Moreover,
we have

A(T0, A) = lim
−→
n

A[n](T0, A),

which we endow with the compact inductive limit topology (see [Sch]).

Definition 4.1. Let S be a K-affinoid subspace of W . Then we make the
following definitions:

(1) AS :=

{
f ∈ A(T0, A(S))

∣∣∣∣ ∀a ∈ Z×p , t ∈ T0, we have f(at) = κS(a)f(t)

}
.

Clearly, AS is a closed A(S)-submodule of A(T0, A(S)). We endow it
with the induced topology.

(2) DS := HomA(S)(AS, A(S)) where here and elsewhere “Hom” denotes
continuous homomorpisms.

We note that both AS and DS inherit actions of Ξ(Zp) over A(S). We will
denote these actions by

Ξ(Zp) × AS −→ AS and DS × Ξ(Zp) −→ DS

(γ , f) 7−→ γf (µ , γ) 7−→ µ|γ

Each of these pairings is continuous in both variables, that the action on AS

is a left action and the action on DS is a right action.
If S ⊆ W is a K-affinoid subspace and κ ∈ S(K), then we define special-

ization maps

AS(T0) −→ Aκ(T0) and ηκ : DS(T0) −→ Dκ(T0)
f 7−→ fκ µ 7−→ µκ

(4.1)

where fκ(x, y) := f(x, y)(κ) and µκ ∈ Dκ(T0) is given by µκ : f ∈ Aκ(T0) 7−→
µ(fS)(κ), where fS ∈ AS(T0) is given by fS(x, y) := χS(x)f(1, y/x).
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Proposition 4.2. Let U ⊆ W be a K-affinoid subdomain, let κ ∈ U(K),
and let tκ ∈ A(U) be a local parameter at κ which has no zeroes in U other
than at κ. Then we have canonical exact sequences of Ξ(Zp)-modules

0 −→ AU(T0)
tκ−→ AU(Tp) −→ Aκ(T0) → 0

0 −→ DU(T0)
tκ−→ DU(Tp)

ηκ−→ Dκ(T0) → 0.

For future reference we record in the next proposition a simple result
concerning the structure of the module DU . Before stating the theorem, it is
convenient to first give the following definitions.

Definition 4.3. For n > 0 define

A[n] := A[n](T0, K) and D[n] := Hom(A[n], K).

For any affinoid subdomain U of W we then define A(U)-Banach modules

AU [n] := A[n](T0, A(U)) and D̃U [n] := HomA(U)(AU [n], A(U)).

The module AU [n] is an orthonormalizable A(U)-Banach module, but unfor-

tunately D̃U [n] is not ON-able as A(U)-module. So we consider instead the
subspace

DU [n] := Homcpt
K (A[n](Zp), A(U)) ⊆ D̃U [n]

of completely continuous K-linear maps.

We note that DU [n] ∼= D[n]⊗̂KA(U) as A(U)-module and is therefore
orthonormalizable over A(U), since D[n] is orthonormalizable over K.

Lemma 4.4. For any K-affinoid subdomain U ⊆ W and all sufficiently large
n (depending on U), AU [n] is a Ξ(Zp)-invariant subspace of AU . Moreover,
for n sufficiently large, we have the following assertions.

(1) Ξ(Zp) acts on AU [n], and therefore by duality also on D̃U [n], as a semi-
group of operators of norm ≤ 1.

(2) DU [n] is a Ξ(Zp)-invariant subspace of D̃U [n].

(3) The canonical map DU −→ D̃U [n] is Ξ(Zp)-invariant, and its image is
contained in DU [n].

Proof. To appear.
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4.2 Distribution Modules and Finite Projective Limits

In this section we will prove the following theorem.

Theorem 4.5. For every n > 1, there is a projective system {F (m)[n]}m of
finite Λ := OK [[Z×p ]] and a Λ[Iw(Zp]-isomorphism

D[n]◦
∼−→ lim

←−
m

F (m)[n].

Proof. The proof follows immediately from the following simple lemma by
taking A = A[n] and A0 = A[1].

Lemma 4.6. Let A be a K-Banach space endowed with a continuous action
of a topological group G. Let D be the space of K-linear functionals on A,
endowed with the dual action of G. Suppose, moreover, there is a K-Banach
space A0 with continuous action of G and an inclusion i : A0 ↪→ A satisfying
the following three properties:

(1) i is G-equivariant;

(2) i is completely continuous and has norm ≤ 1;

(3) the image of i is dense in A.

Then there is a projective system {Fm), φm}m≥0 of finite G-modules F (m) and
surjective G-morphisms φm : F (m+1) −→ F (m) such that

D◦ ∼= lim
←−
m

F (m)

Proof. For each m ≥ 0, consider the image of the composition

p−mA◦0
i−→ p−mA◦ −→ p−mA◦/A◦.

The image is finite by complete continuity. Letting A(m) := p−mA◦0 +A◦, we
have an increasing sequence of open subsets of A

A◦ = A(0) ⊆ A(1) ⊆ · · · ⊆ A(n) ⊆ · · · ⊆ A.

Thus
⋃

mA
(m) is an open subset of A containing A0 =

⋃
m p
−mAo

0. Since, by
assumption A0 is dense in A we see that

A =
⋃
n

A(m).
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Now set

D(m) :=

{
µ ∈ D◦

∣∣∣∣ µ(α) ∈ Zp for all α ∈ A(m)

}
.

Then D(n) is a weakly open subset of D◦. Indeed, for any α ∈ A(n), the set
Uα := {µ ∈ D◦ |µ(α) ∈ Zp } is weakly open in D◦. Moreover, D(n) = ∩r

i=1Uαi

for any complete set α1, . . . , αr ∈ A(m) of representatives for A(m) modulo
A◦. We let

F (m) := D◦/D(m)

endowed with the discrete topology given the induced action of G. We note
that the map D◦/D(m) −→ F (m) is an isomorphism of finite discrete G-
modules.

Thus we have a sequence of inclusions

· · · ⊆ D(m) ⊆ · · ·D(1) ⊆ D(0) = D◦

of weakly open subsets of D◦. Moreover,
⋂

n D(n) = {0}. Indeed, if µ ∈⋂
n D(n), then µ(α) ∈ Zp for all α ∈

⋃
nA

(n) = A, hence µ = 0.
For each m ≥ 0 the pairing

A(n)/A◦ × D◦/D(m) −→ Qp/Zp.

is perfect and therefore the canonical map

D◦ −→ lim
←−
m

F (m)

is a G-equivariant isomorphism.

4.3 Application to Jacquet-Langlands for Eigencurves

Theorem 4.7. Fix n > 1 and let {D(m) := D(m)][n] be a projective system of
finite p-primary abelian groups defined as in the last setion. Let D◦ and D◦0 be
the associated systems of finite sheaves on Y and Y0 respectively. Let D◦ :=
lim
←−
m

F (m) be the projective limit. Then we have canonical Hecke equivariant

exact sequences

(a) 0→ H1
c (Y0,s,D◦0,s)

new → Snew
GL2

(N`,D◦)→ SB×(N,D◦) −→ H2
c (Γ,D◦)2;
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(b) 0→ SB×(N,D◦)→ H1
c (Y0,s,D◦0,s)

µs→ (H1
c (Ys,D◦s))2 → 0;

(c) Ker(MD◦)→ SB×(N,D◦)→ H1
c (Y0,s,D◦0,s)

new → Coker(MD◦)→ 0.

Tensoring the map Snew
GL2

(N`,D◦) → SB×(N,D◦) with K we obtain a
Hecke equivariant morphism

Snew
GL2

(N`,D[n])→ SB×(N,D[n])

and the above theorem can be used to prove that this map induces a closed
immersion of the quaternionic eigencurve into the new part of the modular
eigencurve.

5 Finite slope decompositions

Let as before K denote a finite extension of Qp and let (A, | · |) be a Banach
K-algebra. Let also (M,u) be a pair consisting of an ON-able Banach A-
module M together with a completely continuous, A-linear homomorphism
u : M −→ M . We recall a few definitions and results from chapter 4 of
[AS2].

Definition 5.1. An element a ∈ A× will be called a multiplicative unit if
|ax| = |a||x| for all elements x ∈ A.

Let us remark that if F (t) ∈ A[[t]] is non-zero then it has a well defined
Newton polygon (see §4.2 of [AS2].) Briefly, we first define the valuation
vA : A − {0} −→ Q by the relation |x|A = p−vA(x) for every x ∈ A − {0}.

Than, the Newton polygon of the non-zero series F (t) =
∞∑

n=0

ant
n ∈ A[[t]] is

the sub-convex hull in R2 of the following set:

{(i, vA(ai)) | i ∈ N such that ai 6= 0}.

Definition 5.2. Let h ∈ Q and non-zero elements P (t) ∈ A[t] and F (t) ∈
A[[t]].

a) We say that P (t) has slope ≤ h if the leading coefficient of P (t) is a
multiplicative unit, P (0) = 1 (i.e. P (t) is a Fredholm polynomial) and if all
the slopes of the edges of its Newton polygon are smaller or equal to h.

b) We say that F (t) has slope ≤ h if F (0) = 1 (i.e. F (t) is a Fredholm
series) and all the slopes of the edges of its Newton polygon are larger then
h.
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Remark 5.3. 1) Let us notice that the constant polynomial P (t) = 1 has
slope ≤ h for all h ∈ Q.

2) The hypothesis on the leading and constant coefficient of the polyno-
mial P (t) (respectively of the constant coefficient of F (t)) in definition 5.2
are made in order to insure the following compatibility. Suppose that A is
an affinoid algebra over K with affinoid space X = Spm(A). Let x ∈ X and

if G(t) =
∞∑

n=0

ant
n ∈ A[[t]] we set G(t)x :=

∞∑
n=0

an(x)tn ∈ k(x)[[t]].

If P (t) ∈ A[t] has slope ≤ h then for all x ∈ X, P (t)x has slope ≤ h in
k(x)[t]. If F (t) ∈ A[[t]] has slope > h, then for all x ∈ X F (t)x has slope
> h.

We will use the following notation: if Q(t) ∈ A[t] is a non-zero polynomial
of degree d, then Q∗(t) := tdQ(1/t).

Let now (M,u) be a pair as at the beginning of this section and h ∈ Q.
Let us define S = Sh ⊂ A[t] to be the set of polynomials Q∗(t), where Q(t)
runs over non-zero polynomials of slope ≤ h. Let us remark that 1 ∈ S.

It is shown in section 4.6 of [AS2] that S is a multiplicatively closed subset
of A[t]. Let us denote by S(M,u) the image of S in A[u].

Definition 5.4. A slope ≤ h decomposition of the pair (M,u) is a direct
sum decomposition as A[u]-modules

M = M (h) ⊕Mh,

with the properties:
a) M (h) is finitely generated as an A-module and for every x ∈M (h) there

is Q∗(u) ∈ S(M,u) such that Q∗(u)x = 0.
b) For every Q∗(u) ∈ S(M,u), the induced homomorphism Q∗(u) : Mh −→

Mh is an isomorphism.

It is shown in [AS2] that if a slope ≤ h decomposition of (M,u) exists then
it makes the following diagram of A[u]-modules with exact rows commutative

0 −→ M (h) −→ M
j−→ S−1

(M,u)M −→ 0

|| || ↓∼=
0 −→ M (h) −→ M −→ Mh −→ 0

Here the map j is the canonical one: j(x) =
x

1
.

We have the following:
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Theorem 5.5. If A = K, then for all h ∈ Q the pair (M,u) has a unique
slope ≤ h decomposition.

Theorem 5.6. Let now U ⊂ W be an admissible affinoid sub-domain, h ∈ Q
and x0 ∈ U(K). Then there exists an affinoid sub-domain U0 ⊂ U such that
x0 ∈ U0(K) and such that the pair (M |U0 , u|U0) has a unique slope ≤ h
decomposition over A(U0), compatible with the slope ≤ h decomposition of
(Mx0 , ux0).

Let us make precise the meaning of ”compatible” slope ≤ h decompo-
sitions in theorem 5.6. Let M |U0 = M (h) ⊕ Mh be the slope ≤ h decom-
position of (M |U0 , u|U0) given by the theorem. Let tx0 ∈ A(U) denote a
uniformizer at x0 and denote by the same symbol its restriction to U0. Let
Mx0 := M/tx0M and ux0 the reduction of u. Then (Mx0 , ux0) is a pair con-
sisting of an ON-able Banach module over K and a completely continuous
K-linear operator. By theorem 5.5 the pair (Mx0 , ux0) has a slope ≤ h de-

composition Mx0 = M
(h)
x0 ⊕ (Mx0)h. The compatibility in theorem 5.6 asserts

that we have canonical isomorphisms as K[ux0 ]-modules (M (h))x0
∼= M

(h)
x0

and (Mh)x0
∼= (Mx0)h.

All the details of the proofs of these results are in chapter 4 of [AS2] but
let us sketch here outlines of the proofs for the convenience of the reader.

The main ideas used in proving these decompositions are the following.
We first define the Fredholm determinant of u, F (t) = F(M,u)(t) = det(1 −
tu) ∈ A{{t}}. If h ∈ Q and F (t) is such a power series (it is entire and F (0) =
1) we try to find a slope ≤ h factorization of F (t). This is a factorization of
the type

F (t) = Q(t)S(t),

where Q(t) ∈ A[t] has slope ≤ h and S ∈ A{{t}} is a series of slope > h.
If a slope ≤ h factorization of the Fredholm determinant of u exists such

that moreover the ideal in A{{t}} generated by Q(t) and S(t) is the unit
ideal we have a Riesz decomposition

M ∼= MQ ⊕MS,

which can be shown to be the slope ≤ h decomposition of (M,u).
Now, if A = K the program sketched above can be followed without

obstruction: every entire, Fredholm series F (t) ∈ K{{t}} has a slope ≤ h
factorization and if F (t) = F(M.u)(t), the corresponding Riesz decomposition
of (M,u) is the desired slope ≤ h decomposition. This proves theorem 5.5.
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For theorem 5.6 let F (t) = F(M,u)(t) =
∞∑

n=0

ant
n ∈ A(U){{t}} be the

Fredholm determinant of u and let x0 ∈ U(K). We denote, as in remark
5.3 by tx0 ∈ A(U) a uniformizer of A(U) at x0 and let M0 := M/tx0M and
u0 : M0 −→M0 the induced K = A(U)/tx0A(U)-linear map. Then M0 is an
ON-able K-Banach module and u0 is completely continuous. Moreover

F0(t) = F (t)(x0) :=
∞∑

n=0

an(x0)t
n

is the Fredholm determinant of u0. By theorem 5.5 F0(t) has a slope ≤ h fac-
torization F0(t) = Q0(t)S0(t). In general this factorization cannot be lifted
to a slope ≤ h factorization of F (t) but one can explicitly define an affinoid
sub-domain U0 ⊂ U containing x0 such that F (t)|U0 has a slope ≤ h fac-
torization F (t)|U0 = Q(t)S(t) over A(U0){{t}}. Moreover this factorization
has the property that Q(t)x0 = Q0(t) and S(t)x0 = S0(t). The slope ≤ h
factorization of F (t)|U0 gives rise to a Riesz decomposition

M |U0 = MQ ⊕MS,

which turns out to be the desired slope ≤ h decomposition of (M |U0 , u|U0).
This proves theorem 5.6.

Let now U ⊂ W be an admissible affinoid disk, n ∈ N and MU [n] any one
of the A(U)-Banach modules H1

c (Γ,DU [n]), H1
c (Γ,DU [n])new−`, SU(`,Mp)[n].

Let un : MU [n] −→ MU [n] be the Up-operator. Let us recall that MU [n] an
ON-able Banach A(U)-module and un is completely continuous.

Lemma 5.7. If U0 ⊂ U is an admissible affinoid sub-domain such that
(MU [n]|U0 , un|U0) has a slope ≤ h decomposition. Then (MU0 [n], un) has a
slope ≤ h decomposition.

Proof. :

Let us now fix h ∈ Q, n ∈ N and U ⊂ W an admissible affinoid open.
Let MU [n] be one of the A(U)-modules above and let un : MU [n] −→MU [n]
be the Up-operator. We know that if U is an affinoid disk then MU [n] is
ON-able and un is completely continuous. We wish to compare Fredholm
determinants and slope ≤ h decompositions for MU [n] and MU [n + 1]. We
have (see chapter 6 of [AS2])
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Proposition 5.8. a) Suppose that U is an affinoid disk. Then the Fredholm
determinants of un and un+1 on MU [n] and MU [n+ 1] are equal.

b) Suppose that both (MU [n], un) and (MU [n + 1], un+1) have slope ≤ h
decompositions over U (where un, un+1 are the Up-operator for both modules).
Then the natural restriction maps rn : MU [n+ 1] −→ MU [n] induce isomor-
phims MU [n+ 1](h) ∼= MU [n](h).

Proof. a) Let us first recall how the Up-operator is defined. For 0 ≤ a ≤ p−1

let βa :=

(
1 a
0 p

)
∈ M2(Zp). If X ⊂ Zp is a subset we define B[X, p−n] =

{z ∈ Cp | there exists x ∈ X, |z − x| ≤ p−n}. In section ?? we denoted
U [n] = B[Zp, p

−n]. Let us remark that the βa’s shrink U [n], i.e. they give
analytic isomorphisms

βa : U [n] ∼= B[a+ pZp, p
−n−1],

where the action of βa on OCp is defined in lemma ??. Therefore let us define

by v : DU [n] −→ DU [n + 1] the A(U)-linear operator v(µ) =

p−1∑
a=0

µ|βa. The

operator un = Up on MU [n] is then defined by the composition un = rn ◦ v
and we have a natural commutative diagram (where the diagonal map is v):

MU [n]
un−→ MU [n]

rn ↑ ↘ rn ↑
MU [n+ 1]

un+1−→ MU [n+ 1]

Now the fact that the Fredholm determinants of un and un+1 are equal follows
from the following linear algebra lemma.

Lemma 5.9. Let X, Y be ON-able Banach modules over A(U) and u : X −→
X, u′ : Y −→ Y , r : Y −→ X and v : X −→ X continuous A(U)-linear maps
such that u = r ◦ v and u′ = v ◦ r. Assume that r is completely continuous.
Then

i) Both u and u′ are completely continuous.
ii) For every n ≥ 0 we have Tr(un) = Tr((u′)n).
iii) det(1− tu) = det(1− tu′).

b) Let us now prove that the restriction map rn : MU [n + 1] −→ MU [n]
induces an isomorphism on the slope ≤ h submodules. As both MU [n](h)
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and MU [n+ 1](h) are finitely generated A(U)-modules, there is a polynomial
Q(t) ∈ A(U)[t] with slope ≤ h such that Q∗(u)MU [n](h) = Q∗(u)MU [n +
1](h) = 0. Let us recall that as Q(t) has slope ≤ h its leading coefficient is
a multiplicative unit therefore we may suppose Q(t) monic, i.e. Q∗(t) = 1−
tP (t) for some polynomial P (t) ∈ A(U)[t]. It follows that on both MU [n](h)

and MU [n+1](h) we have unP (un) = id (respectively un+1P (un+1) = id), i.e.
the restrictions of un and un+1 to MU [n](h) (and respectively to MU [n+1](h))
are isomorphisms.

Let us now show the injectivity of rn : MU [n + 1](h) −→ MU [n](h). Let
x ∈ MU [n + 1](h) be such that rn(x) = 0. Therefore un+1(x) = v(rn(x)) = 0
and because un+1 is an isomorphism it follows that x = 0.

For surjectivity, let y ∈MU [n](h). Let z ∈MU [n](h) be such that un(z) =
y. Set x = v(z) ∈ MU [n + 1](h). We have rn(x) = rn(v(z)) = un(z) = y and
we are done.

6 The Jacquet-Langlands correspondence on

eigencurves

We’ll first define the notion of a compatible projective system of Banach-
modules and respectively of a compatible inductive system of Banach-modules
on the weight space W (the latter we defined in [Ch].) A compatible projec-
tive system of Banach modules M onW is the following type of data: for each
affinoid subdomain U ⊂ W , we associate a projective system (MU [n])n≥dU

of Banach A(U)-modules such that each module MU [n] has an action of
the abstract Hecke algebra HZ generated over Z by Tq for q 6 |Mp` and Up

and the transition maps are euqivariant for this action. Let us denote by
H := Λ ⊗Z HZ, where Λ = Zp[[Z×p ]] the Λ-adic universal Hecke algebra.
Moreover for every V ⊂ U admissible affinoid open ofW , and for all n ≥ dU ,
we have A(U)-linear morphisms which are continuous, compatible with the
projective system maps and with the Hecke operators MU [n] −→MV [n]. For
a sequence W ⊂ V ⊂ U of affinoid subdomains the restriction maps defined
above satisfy the usual comaptibility relation.

It is clear what a morphism of compatible projective systems of Banach-
modules is. Example of such objects and morphisms between them are:

1) H, where HU [n] := H1
c (Γ,DU [n])
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2) S(B), where S(B)U [n] = SU(`,Mp)[n]
3) Hnew−`, where Hnew−`

U [n] = H1
c (Γ,DU [n])new−`.

We have natural morphisms H −→ S(B) and an exact sequence in this
category

0 −→ S(B) −→ Hnew−` −→ S(B) −→ 0.

The definition of a compatible inductive system of Banach modules on
W is defined similarly and an example is SΓ defined as follows: for every
admissible affinoid open U ⊂ W and n ≥ 0, SU [n] := (SΓ)U [n] is the space of
p-adic families over A(U) of modular forms of tame level Γ0(M`) which are
1/(p + 1)pn-overconvergent, the map SU [n] −→ SU [n + 1] being induced by
restriction.

Let us denote by (∗) the following property of a compatible projective
(respectively inductive) system of Banach modules M.

There is an admissible covering U := {U} of W by admissible affinoid
opens with the following properties:

a) MU [n] is ON-able A(U)-module for all U ∈ U and n ≥ dU and the
Up-operator on MU [n] is compact.

b) The characteristic power series of Up on MU [n] is independent of n ≥
dU . We denote by PM,U(t) this power series.

Suppose from now on that M satisfies (∗). Then the power series PM,U(t)
glue on W to give a power series PM(t) ∈ Λ{{t}}, where Λ = Zp[[Z×p ]].

Remark 6.1. The compatible systems H,D(B),Hnew−`,SΓ satisfy the prop-
erty (∗) for the same admissible covering U . In fact the open sets in U may
be taken to be affinoid disks.

Let us denote by Pnew−` ∈ Λ{{t}} the characteristic power series of the
Up-operator acting on the p-adic families of elliptic modular forms of tame
level M`, new al `.

Lemma 6.2. We have
PS(B) = Pnew−` and PHnew−`(t) = PS(B)(t)

2.

Now we are going to attach in a functorial (contravariant) way to a compat-
ible projective (respectively inductive) system of Banach-modules M satis-
fying the condition (∗) a rigid analytic variety CM together with a natural
morphism κ : CM −→W as follows.
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We first define ZM ⊂ W ×A1
rig as the rigid analytic variety associated to

the noetherian, reduced Zp-algebra RZ := Λ〈t〉/PM(t)Λ〈t〉. In other words
the Cp-points of ZM are pairs (x, λ) ∈ W(Cp)× Cp such that (PM)x(λ) = 0.
We have the following diagram of rigid spaces and morphisms:

ZM ↪→ W × A1
rig

pr2−→ A1
rig

↓ pr1

W

associated to the ring homomorphisms: Λ −→ RZ −→ Zp〈t〉 where the
second map is induced by the natural augmentation Λ −→ Zp.

We denote by T := TM the collection of pairs (U,Q(t)) where U ⊂ W
is a connected admissible open affinoid and we have a factorization PM(t) =
Q(t)S(t) ∈ 1 + tA(U){{t}} such that Q(t) ∈ A(U)[t] with Q(0) = 1, Q∗(0) ∈
A(U)× and (Q(t), S(t)) = 1.

Lemma 6.3 ([Co1]). a) There is a natural bijection between T and the col-
lection TZ := TZ,M of admissible open affinoids Y of ZM such that:

i) V := pr1(Y ) is an admissible open affinoid of W
ii) Y is a connected component of pr−1

1 (V ) = pr−1
1 (pr1(Y ))

iii) pr1|Y : Y −→ V is a finite morphism.
b) TZ is an admissible covering of ZM.

Proof. : We will only recall here how the bijection is defined and send the
reader to [Co1] for the details.

Suppose that (U,Q(t)) ∈ T . Let us define the A(U)-algebra A(Y ) :=
A(U)[t]/(Q(t)A(U)[t]. Obviously A(Y ) is an affinoid algebra over A(U)
and let Y be the associated affinoid. The Cp-points of Y are elements
(x, λ) ∈ U(Cp)× Cp such that Qx(λ) = 0 and so Y (Cp) ⊂ ZM(Cp). Now the
factorization PM(t) = Q(t)S(t) with the properties above imply that Y is an
admissible open affinoid of ZM and it has the required properties.

Conversely, let Y ∈ TZ and let us denote by U = pr1(Y ) ⊂ W and
ZY := ZM ∩ (U × A1

rig) = pr−1
1 (U). By property ii) Y is a connected compo-

nent of ZY therefore it is open (and closed) in ZY and so it is flat over U .
By iii) Y is finite over U , therefore A(Y ) is a finite projective A(U)-module
generated as an A(U)-algebra by the image of t. Let Q(t) denote the char-
acteristic polynomial of the A(U)-linear map multiplication by t on A(Y ).
It is monic and Q(0) ∈ A(U)×. The canonical surjective homomorphism
of A(U)-algebras A(U)[t]/Q(t)A(U)[t] −→ A(Y ) is an isomorphism as both
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A(U)-modules are projective of equal rank. One may now deduce that Q(t)
divides PM(t) in A(U){{t}} and that (Q(t), PM(t)/Q(t)) = 1.

To each Y ∈ TZ as in lemma 6.3 we associate an affinoid T (Y ) as follows. Let
(U,Q(t)) ∈ T be the pair associated to Y by lemma 6.3. The factorization
PM(t) = Q(t)S(t) with (Q(t), S(t)) = 1 over A(U) gives, for every n ≥ dU a
Riesz decomposition

MU [n] = MU [n]Q ⊕MU [n]S,

compatible with the transition maps MU [n + 1] −→ MU [n] if M is a com-
patible projective system and with MU [n] −→ MU [n + 1] if M is a com-
patible inductive system of Banach modules on W . In fact by proposition
5.8 the above transition maps define isomorphisms MU [n + 1]Q ∼= MU [n]Q
and we’ll denote henceforth these modules by MU,Q. Let H(Y ) denote the
image of H ⊗Λ A(U) −→ EndA(U)(MU,Q), where let us recall H is the Λ-
algebra generated by the Hecke operators. As MU,Q is a finite projective
(in fact free as U is connected) A(U)-module, if we endow EndA(U)(MU,Q)
with the sup-norm, it becomes a finite free Banach A(U)-module. In par-
ticular, as H(Y ) is one of its A(U) commutative subalgebras, it is itself
finite, free and (topologically) closed i.e. an affinoid A(U)-algebra. We de-
note by T (Y ) its associated affinoid. We have natural ring homomorphisms
A(U) −→ A(Y ) = A(U)[t]/Q(t)A(U)[t] ∼= A(U)[Up|MU,Q)] −→ H(Y ) which

induce morphisms of affinoids (∗∗) T (Y )
πY−→ Y

pr1−→ U with composition
κY := pr1 ◦ πY .

We have the following

Proposition 6.4 ([Co1]). a) If Y1, Y2 ∈ TZ then Y1∩Y2 ∈ TZ and the natural
map T (Y1 ∩ Y2) −→ T (Y1) is an open immersion.

b) for any pair Y, Y ′ ∈ TZ let T (Y, Y ′) denote the image of T (Y ∩ Y ′) in
T (Y ) via the open immersion at a) and let i(Y, Y ′) : T (Y ∩ Y ′) −→ T (Y, Y ′)
be the natural isomorphism. Let us denote by ϕ(Y, Y ′) := i(Y, Y ′)◦i(Y ′, Y )−1.
Then the data

(
(T (Y )Y ∈TZ

, (T (Y, Y ′))Y,Y ′∈TZ
, (ϕ(Y, Y ′))Y,Y ′∈TZ

)
is a gluing

data for the family of affinoids (T (Y ))Y ∈TZ
as in [BGR], 9.3.2.

Proof. : We will only sketch the main ideas in a). Let us fix Y ∈ TZ ,
denote U = pr1(Y ) and let V ⊂ U be any admissible affinoid open. Let
Y ′ := pr−1

1 (V ) ∩ Y ⊂ ZM. Then Y ′ ∈ TZ and we claim that the canonical
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morphism T (Y ′) −→ T (Y ) is an open immersion. To see this let (U,Q(t)) ∈
T be the pair associated to Y . Then the pair associated to Y ′ is (U,Q′(t)),
where Q′(t) = Q(t)|V . By the uniqueness of Riesz decomposition MV,Q′ =
MU,Q|V = MU,Q⊗A(U)A(V ). As MU,Q is a finite free A(U)-module the natural
map

A(V )⊗A(U) EndA(U)(MU,Q) −→ EndA(V )(MV,Q′)

is an isomorphism and we have a natural commutative diagram

A(V )⊗A(U) H(Y ) ↪→ A(V )⊗A(U) EndA(U)(MU,Q)
↓ ↓∼=

H(Y ′) ↪→ EndA(V )(MV,Q′)

The first horizontal map is injective as A(U) −→ A(V ) is flat and the left
vertical arrow is surjective. It follows that the natural map A(V ) ⊗A(U)

H(Y ) −→ H(Y ′) is an isomorphism which implies that Y ′ −→ Y is an open
immersion.

Now if Y1, Y2 ∈ TZ by the above argument Y1 ∩ pr−1
1 (pr1(Y2)) ∈ TZ so we

may reduce to the case pr1(Y1) = pr2(Y2). Then it is clear that Y1 ∩ Y2 ∈ TZ

so may in fact assume further that Y2 ⊂ Y1, which is then an open immersion
into a connected component. If Yi is associated to the pair (U,Qi(t)), i = 1, 2,
then one proves that Q1(t) divides Q2(t) in A(U)[t]. It follows that MU,Q1

is a direct factor of MU,Q2 and so the natural morphism H(Y1) −→ H(Y2)
induces an isomorphism of T (Y2) with a connected component of T (Y1). In
particular the map T (Y2) −→ T (Y1) is an open immersion.

Remark 6.5. Let us remark that if we denote for Y ∈ TZ , T (Y )red the affi-
noid attached to H(Y )/N(H(Y )), where N(H(Y )) is the nilradical of H(Y ),
then the family

(
(T (Y )red)Y ∈TZ

, (T (Y, Y ′)red)Y,Y ′∈TZ
, (ϕ(Y, Y ′)red)Y,Y ′∈TZ

)
is a

gluing data for the family of affinoids (T (Y )red)Y ∈TZ
.

Let us denote by CM (respectively Cred
M ) the rigid analytic space obtained by

gluing the family of affinoids (T (Y ))Y ∈TZ
(respectively (T (Y )red)Y ∈TZ

). We
have natural morphisms induced by the diagram (∗∗)

CM
π−→ ZM

↓ κ ↓ pr1

W = W

32



The main result of the Appendix, theorem ?? is that the reduced eigen-
curve Cred

H is canonically isomorphic to the eigencurve Cred
Γ , which is the re-

duced eigencurve whose points parameterize overconvergent elliptic eigen-
forms of finite slope and of tame level M`.

We have

Theorem 6.6. The morphism between the compatible projective systems
of Banach-modules H −→ S(B) defines a closed immersion, the Jacquet-
Langlands correspondence, ϕJL : CS(B) ↪→ CΓ whose image is the new-`-part
of CΓ.

Moreover, let us go back tot he construction of the eigencurve CH. We
had a sheaf of OW-modules Hfin on TH and a sheaf of OW-algebras on the
same Grothendieck tolopogy AH. Obviously, Hfin is a sheaf of AH-modules on
TH. Therefore, Hfin induces a coherent sheaf of OCH-modules on CH, denoted

H. Similarly
(
Hnew−`

)fin
defines a coherent sheaf of OCS(B)

-modules on CS(B),

denoted Hnew−`.

Theorem 6.7. a) The sheaf H is generically of rank two on CH and we have
a canonical isomorphism ϕ∗JL(H) ∼= Hnew−` as sheaves on CS(B).

b) We have a canonical exact sequence of sheaves on CS(B):

0 −→ OCS(B)
−→ Hnew−` −→ OCS(B)

−→ 0.

(Note to ourselves: The following theorem does not belong here.)

Theorem 6.8. Let U ⊆ W be a K-admissible affinoid open and κ ∈ U(K)
be an arithmetic point. Then we have a canonical commutative diagram of
Hecke modules

0 −→ S(K,DU) −→ H1(Γ,DU)`-new −→ S(K,DU)
↓ ↓ ↓

0 −→ S(K, Vκ) −→ H1(Γ, Vκ)
`-new −→ S(K, Vκ)

Proof. For each integer t ≥ 1, let Ft := V ◦κ /p
tV ◦κ , which we regard as a finite

Ξ(d)-module. As in Corollary ??, we let Sn,t denote the directed set of finite
Ξ(Zp)-submodules of DU [n]◦/ptDU [n]◦. By Theorem ?? we have, for each
triple (n, t, Fn,t) with Fn,t ∈ Sn,t, a commutative diagram with exact rows:

0 −→ S(K, Fn,t) −→ H1(Γ, Fn,t)
`-new −→ S(K, Fn,t)

↓ ↓ ↓
0 −→ S(K, Ft) −→ H1(Γ, Ft)

`-new −→ S(K, Ft)
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We note that formation of S(K, ∗) and H1
c (Γ, ∗) commute with direct and

inverse limits, as well as with ⊗K. So, since lim
−→

and ⊗K are exact functors

and lim
←−

is left exact, we may use Corollary ?? to pass to the limit of the

above diagram over the directed set of all triples (n, t, Fn,t) to obtain the
exact sequence of Theorem 6.8. This completes the proof.

7 Appendix

by Glenn Stevens

In this appendix we wish to compare two reduced eigencurves: Cred
H and Cred

Γ .
Let us recall the projective system of Banach module H, where HU [n] =
H1

c (Γ,DU [n]), which produces the eigencurve Cred
H . In fact we prefer to work

here with the projective system of Banach modules H− defined by H−U [n] =
H1

c (Γ,DU [n])ι=−1, where ι is the natural involution acting on H1
c (Γ,DU [n]).

The Hecke equivariant morphism of compatible systems of Banach modules
H− ↪→ H induces isomorphisms of rigid spaces CH ∼= CH− and Cred

H
∼= Cred

H− .
In section 6 we also mentioned the compatible system of inductive Ba-

nach modules SΓ where (SΓ)U [n] is the A(U)-Banach module of 1/(p+ 1)pn-
overconvergent p-adic families of modular forms of tame level Γ0(M`), which
produces Cred

Γ .

Proposition 7.1. Let us fix w ∈ H an operator which acts completely con-
tinuously on every H−U [n] and SU [n] for U ∈ U , n ≥ dU . For example
w = vUp for any v ∈ H. Then the Fredholm determinants Pw,S,U,n(t) :=
det(1− tw|SU [n]) and Pw,H−,U,n := det(1− tw|H−U [n]) are independent of n.

As a consequence of proposition 7.1, the power series denoted Pw,S,U(t)
and Pw,H−,U(t) glue for various U ’s to give Fredholm series Pw,S(t), Pw,H−(t) ∈
1 + tΛ{{t}}.

Proposition 7.2. Let w ∈ H be as in proposition 7.1. Then Pw,S(t) =
Pw,H−(t) as power series in Λ{{t}}.

The Fredholm series of w on S or on H− as in the proposition 7.2 will be
denoted Pw(t). In particular the Fredholm series of Up are equal. These were
denoted in section 6 by PS(t) = PH−(t) and will be denoted henceforth by
P (t). Let us remark that the two spectral curves ZS and ZH− are canonically
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isomorphic (they only depend on the Fredholm series P (t) of Up) and will be
denoted ZP .

Let us now fix κ ∈ W(K) − {0} and n ≥ dκ. Let us denote H−κ [n] :=
H1

c (Γ,Dκ[n])ι=−1 and by Sκ[n] theK-Banach space of 1/(p+1)pn-overconvergent
modular forms of tame level Γ0(M`) and weight κ+ 2. If w ∈ H is a Hecke
operator as in proposition 7.1, then it acts completely continuously on H−κ [n]
and Sκ[n]. Moreover the Fredholm series of Up on H−κ [n] and Sκ[n] are equal

and equal to Pκ(t) =
∞∑

n=0

an(κ)tn in P (t) =
∞∑

n=0

ant
n ∈ Λ{{t}}.

Suppose that we have a factorization Pκ(t) = Q(t)S(t) ∈ 1 + tK{{t}}
where Q(t) ∈ K[t] satisfies Q(0) = 1, and Q(t), S(t)) = 1. Let H−κ [n] =
H−κ,Q ⊕ (H−κ [n])S and Sκ[n] = Sκ,Q ⊕ (Sκ[n])S be the associated Riesz decom-
positions, where let us recall that the Q(t)-components are independent of
n.

Proposition 7.3. In the above hypothesis and notations, the characteristic
polynomials of w acting on H−κ,Q and Sκ,Q are equal.

Let now (U,Q(t)) ∈ T = TH− = TS be a pair as in section 6. Let
us recall that U ⊂ W is a connected admissible affinoid open and Q(t) ∈
A(U)[t] is such that Q(0) = 1, Q∗(0) ∈ A(U)× and we have a factorization
P (t) = Q(t)S(t) ∈ 1 + tA(U){{t}} with (Q(t), S(t)) = 1. Let H−U,Q and SU,Q

be the Q(t)-factors of H−U [n] and respectively SU [n] for n >> 0 (which are
independent of n) and let w ∈ H be a Hecke operator as in proposition 7.1.

Proposition 7.4. a) H−U,Q and SU,Q are finite free A(U)-modules of rank
equal to the degree of Q(t).

b) The characteristic polynomials of w acting on H−U,Q and SU,Q are the
same.

Let as above Y ∈ TZ = TZ,H− = TZ,S be the admissible open affinoid of ZP

associated to the pair (U,Q(t)) ∈ T above. We denote byH(Y )H− andH(Y )S
the images of H⊗Λ A(U) in EndA(U)(H−U,Q) respectively in EndA(U)(SU,Q).

Proposition 7.5. We have a canonical isomorphism as A(U) algebras

ψY : H(Y )H−/N(H(Y )H−) ∼= H(Y )S/N(H(Y )S)

which commutes with the natural morphisms from A(Y ).
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Theorem 7.6. The family of isomorphisms (ψY )Y ∈TZ
in proposition 7.5 in-

duces an isomorphism of rigid spaces ψ : Cred
Γ −→ Cred

H− which commutes with
the morphisms to W and ZP respectively.

8 Miscellaneous things to be used in the above.

Corollary 8.1. a) Let κ = (k, ε) ∈ W be an arithmetic weight where k ≥ 2
and if k = 2 we assume that ε is a non-trivial character. Let us denote by
Sκ(Γ0(M`pd))new−` the space of classical ”new at `” cuspidal eigenforms for
Γ0(M`pd) of weight-character κ. Then we have an isomorphism as Hecke
modules Sκ(Γ0(M`pd)new−` ∼= Sκ(`,Mpd).

b) Let U ⊂ W be an affinoid subdomain, d = 1, n ≥ 1. Proposition ??
implies that we have an exact sequence of A(U)-modules, Hecke equivariant

0 −→ SU(`,Mp)[n] −→ H1
c (Γ,DU [n])new−` −→ SU(`,Mp)[n]

compatible with specializations at arithmetic weights κ ∈ U .

Proof. a) Using the representation Vκ of Iw(d) as in section §3 and proposition
?? we obtain an exact sequence, Hecke equivariant

0 −→ Sκ(`,Mpd) −→ H1
c (Γ, Vκ)

new−` ϕU−→ Sκ(`,Mpd) −→ 0.

The exactness on the right is a consequence of the condition on κ. By classical
Eichler-Shimura, H1

c (Γ, Vκ)
new−` ∼= (Sκ(Γ0(M`pd))new−`)2 and so a) follows.

b) We write DU [n] as a projective limit of inductive limit of finite represen-
tations F as in proposition ??, apply the proposition to each representation
and take the limits.

Let U, d, n be as in the corollary 8.1 and let us denote by MU [n] :=
H1

c (Γ,DU [n])new−`/SU(`,Mp). We’d like to study the injective A(U)-linear
map ϕU : MU [n] −→ SU(`,Mp).

Lemma 8.2. Let K be a finite extension of Qp with ring of integers OK and
residue field k and let us denote by π a uniformizer. Let A := K〈T 〉 be the
Tate algebra of dimension 1 over K and let M denote a Banach A-module
which is ON-able i.e. orthonormalizable. Let N be an A-submodule of M
such that the natural map N := N◦/πN◦ −→M := M◦/πM◦ is injective.

Then
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a) N is a Banach A-module which is ON-able.
b) N is a direct summand of M in the category of ON-able Banach A-

modules.

Proof. Let A = A◦/πA◦ ∼= k[T ]. We recall that in order to prove a) it would
be enough to show that N is a free A module. But as M is ON-able, M is a
free A-module and as the latter is a PID, every submodule of M is free.

b) Choose an A-basis of N which extends to a basis of M . Lift these to
orthonormal basis B,B′ of N respectively M such that B′ ∩ N = B. Let
B′′ = B′ − B. Then the unique A-submodule of M with orthonormal basis
B′′ is a complement of N .

Proposition 8.3. Let U, d, n be as in corollary 8.1. If U ⊂ W is an affi-
noid disk then the modules H1

c (Γ,DU [n]),MU [n],SU(`,Mp) are A(U)-Banach
modules which are ON-able.

Proof. First let us recall that by lemma 1.2 DU [n] is an A(U)-Banach module
which is ON-able.

We may writeH1
c (Γ,DU [n]) ∼= HomΓ(Div0(P1(Q)),DU [n]). As Div0(P1(Q))

is a finitely generated Z[Γ]-module, let D1, D2, ..., Dt be a set of generators.
Then we have an inclusion as A(U)-modules

H1
c (Γ,DU [n]) ↪→

t∏
i=1

DU [n] given by α −→ (α(Di))i=1,t.

Without loss of generality we may assume that U is the affinoid disk of radius
1 centered at the origin and apply lemma 8.2.

We may proceed similarly with SU(`,Mp)[n] by recalling that the double
coset space Γ\PGL2(Q`)/K` is finite.

Finally, as nowH1
c (Γ,DU [n]) is known to be ON-able, its A(U)-submodule

H1
c (Γ,DU [n])new−` is ON-able and a direct summand, therefore the quotient

MU [n] is also ON-able.

Proposition 8.4. Let U, d, n be as in proposition 8.3, i.e. U ⊂ W is an
affinoid disk. Then the morphism ϕ : MU [n] −→ SU(`,Mp)[n] defined above
is an isomorphism.

Proof. Let us consider an arithmetic weight κ = (k, ε) ∈ U satisfying the
condition of corollary 8.1 (i.e. such that k ≥ 2 and if k = 2 then ε is a non-
trivial character.) Let e be such that pe is the conductor of ε and suppose
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that e ≤ n. Then we have the following commutative diagram

MU [n]
ϕU−→ SU(`,Mp)[n]

↓ ρκ ↓ ρκ

H1
c (Γ(e), Vκ)

new−`/Sκ(`,Mpe) ∼= Sκ(`,Mpe)

The lower horizontal map is an isomorphism by corollary 8.1. So now we
have an A(U)-linear morphism ϕU between two ON-able modules such that
specializations ϕU,κ are isomorphisms for a dense subset of weights in U . It
follows that ϕU is an isomorphism. need more details here

8.0.1 more modular stuff

Let p, `,M be positive integers as in the introduction, i.e. p, ` are distinct
primes and (M, p) = (M, `) = 1 and let us fix n ≥ 0. We will view the
arithmetic group Γ0(Mp`) as a subgroup of Iw(Zp). So for every K-affinoid
subdomain U ⊂ W , the group Γ0(Mp`) acts naturally on DU and we may
consider the A(U)-module

H1
c (Γ,DU).

The elements of this module will be called distribution valued cohomological
modular forms over Γ0(Mp`). The Hecke operators Tq for q 6 |Mp` and Up act
on H1

c (Γ0(Mp`),DU) and the Up-operator acts completely continuously.
Now let κ ∈ W(K) be an arithmetic point of signature (k, ε). By this

we mean k ∈ Z≥0 is a non-negative integer, ε : Z×p −→ K× is a finite order
character, and κ ∈ W(K) is given by κ(t) = tkε(t) for t ∈ Z×p . Under
these conditions we denote by Vκ the finite dimensional K-vector space of
homogeneous polynomials of degree k in K[X, Y ]. If d ≥ 1 and ε is defined
modulo pd, then we define the pair (Iw(d),Ξ(d)) by

Ξ(d) :=

{(
a b
c d

)
∈ Ξ(Zp)

∣∣∣∣ pd divides c

}
and Iw(d) := Ξ(d)∩Iw(Zp).

We let the semigroup Ξ(d) act on the right on Vκ by (P |γ)(X, Y ) = ε(γ)P ((X, Y )γ∗)
for γ ∈ Ξ(d), where ε(γ) is the value of ε on the upper left corner of γ and
γ∗ = det(γ)γ−1. In particular, the arithmetic group Γ0(Mpd`) acts on Vκ

and we may consider the compactly supported cohomology

H1
c (Γ0(Mpd`), Vκ),
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which is a finite dimensional K-vector space. We will call the elements of this
space classical cohomological modular forms of weight k+2, level Γ0(Mpd`),
and character ε.

We note that the function T0 −→ Vκ given by (x, y) 7−→ κ(x)(Y − zX)k

with z = y/x is locally analytic and homogeneous of degree κ, so we have a
canonical continuous linear map

Dκ −→ Vκ

µ 7−→
∫

T0
κ(x)(Y − zX)kµ(x, y)

which is easily seen to be equivariant for the action of Ξ(d). For any affinoid
subspace S ⊆ W and any arithmetic point κ ∈ S we then let

ηalg
κ : DS −→ Vκ

be defined by the composition DS
ηκ−→ Dκ −→ Vκ. In particular we have the

following proposition.

Proposition 8.5. Let U ⊆ W be an affinoid subdomain and κ ∈ U be an
arithmetic point. Then the specialization map ηalg

κ : DU −→ Vκ induces a
canonical Hecke equivariant morphism

ρκ : H1
c (Γ0(Mp`),DU) −→ H1

c (Γ0(Mpd`), Vκ).

8.0.2 more quaternionic stuff

We will be interested in the sequel in two types of Ξ(d)-representations.
Namely for d = 1 and V = DU we denote

SU(`,Mp) := S(K(`,Mp),DU),

for U ⊂ W an affinoid subdomain and call the elements of this space distri-
bution valued automorphic form on B of level K(`,Mp).

If κ ∈ W is a point of signature (k, ε) where k ∈ Z≥0 and ε is a finite
order character defined modulo pd (d ≥ 1). We denote by

Sκ(`,Mpd) := S(K(`,Mpd), Vκ)

and call its elements classical automorphic forms of weight k + 2, level
K(`,Mpd) and character ε.

We have the specialization map

ρκ : SU(`,Mp) −→ Sκ(`,Mpd)

induced by the Ξ(d)-equivariant map ηalg
κ : DU −→ Vκ defined in the last

section. It follows from the definitions that ρκ is Hecke-equivariant.
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8.1 Some computations in sheaf cohomology

We obtain the obvious

Corollary 8.6. a) R0ΨX(L) ∼= (αs)!(Fs).
b) R1ΨX(L) is a sheaf supported at Σs and we have

R1ΨX(L) = ⊕y∈Σs(iy)∗(R
1ΨXL)y = ⊕y∈Σs(iy)∗(R

1ΨY (F))y,

where for every y ∈ Σs, iy is the composition y −→ Σs ⊂ Xs.
c) RiΨX(L) = 0 for i ≥ 2.

Proposition 8.7. a) For every y ∈ Σs, (R1ΨY (F))y
∼= (Fs)y

b) (Fs)y
∼= F as π1(Ys, y) ∼= π1(Y, y) ∼= π1(Y, η)-representations.

Proof. : a) For every y ∈ Σs we have (R1ΨY (F))y
∼= H1(Y(y)×S η,F), where

Y(y) is the spectrum of the strict henselization of Y at y. Let Z
f−→ YS be

a finite étale cover such that f ∗(F̃) is a constant sheaf on Z and let z be a
geometric point of Z such that f(z) = y. Let us also remark that f is proper.
We have

(R1ΨY (F))y = (f ∗s (R1ΨY (F)))z = (R1ΨZ(f ∗F̃))z = H1(Z(z) ⊗S η, f
∗F̃).

As f ∗F is constant, equal to (f ∗F̃)z = F̃y, if we denote by Λ the constant
sheaf Z/pmZ on Y (and on Z and X) we have

(R1ΨY (F))y = H1(Z(z) ×S η,Λ)⊗ F̃y = (R1ΨY (Λ))y ⊗ F̃y.

As before because on X, C ∩ Σ = φ, for every y ∈ Σs we have R1ΨY (Λ)y =
R1ΨX(Λ)y = Z/pmZ. The last equality follows from [Il] and we chose to
ignore a Tate twist by −1. This proves a)
b) By lemma ??, as F̃ is locally constant we have for y ∈ Σs

(Fs)y
∼= (F̃)y

∼= (F̃)η
∼= Fη = F,

as π1(Ys, y) ∼= π1(Y, y) ∼= π1(Y, η)-representations.

Let us now describe the sheaves RiΨ(L(d)), i ≥ 0. Let us consider the
commutative diagram of curves and morphisms

X
(d)
S

fS,d−→ XS

↑ jd ↑ j
X

(d)
η

fη,d−→ Xη
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Lemma 8.8. For every i ≥ 0 we have RiΨX((fη,d)∗L(d)) = (fS,d)∗(R
iΨX(d)L(d)).

Proof. We have j ◦ fη,d = fS,d ◦ j(d), therefore for all n ≥ 0 we have Rn(j ◦
fη,d) = Rn(fS,d ◦ j(d)). The Lerray spectral sequences computing these func-
tors

Raj∗ ◦ Rb(fη,d)∗ =⇒ Ra+b(j ◦ fη,d)∗

and
Ra(fS,d)∗ ◦ Rbj(d)

∗ =⇒ Ra+b(fS,d ◦ j(d))∗

degenerate at E2 because Rk(fη,d)∗ = 0 and Rk(fS,d)∗ = 0 for k ≥ 1 as fη,d

and fη,d are finite morphisms. Therefore we have Rnj∗◦(fη,d) = (fS,d)∗◦Rnj
(d)
∗

which implies that RnΨX((fη,d)∗L(d)) = (fS,d)∗(R
nΨX(d)L(d)).

Corollary 8.9. We have natural isomorphisms

H i(Xs,R
nΨX((fη,d)∗L(d))) ∼= H i(X(d)

s ,RnΨX(d)(L(d)),

for all i, n ≥ 0. Thus we have
a) H i(Xs,R

0ΨX(fη,d)∗L(d)) ∼= H i
c(Y

(d)
s ,F (d)).

b) H0(Xs,R
1ΨX(fη,∗)∗L(d)) ∼= H0(Y

(d)
s ,R1ΨX(d)F (d)).

8.2 Geometric Jacquet-Langlands

Let notations be as in section 2. Let us recall the diagram of section 2. In
view of lemma ?? and corollary 8.9 it may be written as:

0 −→ H1
c (Ys,Fs) −→ H1

c (Yη,F) −→ H0(Ys,R
1ΨX(F))

↓ ↓ ↓
0 −→ H1

c (Y
(d)
s ,F (d)

s ) −→ H1
c (Y

(d)
η ,F (d)) −→ H0(Y

(d)
s ,R1ΨX(d)(F (d)))

By identifying C ∼= Q̄` we may write H1
c (Yη,F) = H1

c (YC,FC) = H1
c (Γ, F )

and H1
c (Y

(d)
η ,F (d)) = H1

c (Y
(d)

C ,F (d)
C ) = H1

c (Γ(d), F (d)) where Γ = Γ0(Mp`)
and Γ(d) = Γ0(Mpd`) acting on on F , respectively on F (d) via their embedding
in Iw(Zp) and Iw(d) respectively.

On the other hand, we may use Proposition 8.7 and again Corollary 8.9
in order to describe the terms of the diagram. Let us recall from the section
4 the quaternion algebra B and the open compact subgroups K := K(`,Mp)
and K(d) := K(`,Mpd) of B̂×.
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Lemma 8.10 ([Ca]). a) We have natural isomorphisms (compatible for var-
ious M ’s)

Σs
∼= B(Q)×\B̂×/K(`,Mp) and Σ(d)

s
∼= B(Q)×\B̂×/K(`,Mpd).

b) Under the isomorphisms above we have isomorphisms of sheaves

R1ΨX(F)|Σs
∼=
(
B(Q)×\B̂× × F

)
/K(`,Mp)

and
R1ΨX(d)(F (d))|

Σ
(d)
s

∼=
(
B(Q)×\B̂× × F (d)

)
/K(`,Mpd)

c)
H0(Ys,R

1ΨX(F)) ∼= MapsK(B(Q)×\B̂×, F ) = S(K, F )

and

H0(Y (d)
s ,R1ΨX(d)(F (d))) ∼= MapsK(d)(B(Q)×\B̂×, F (d)) = S(K(d), F (d))

In view of lemma 8.10 the above diagram can be written as

0 −→ H1
c (Ys,Fs) −→ H1

c (Γ, F ) −→ S(K, F )
↓ ↓ ↓

0 −→ H1
c (Y

(d)
s ,F (d)

s ) −→ H1
c (Γ(d), F (d)) −→ S(K(d), F (d))

We can now state and prove the main result of this section.

Theorem 8.11. Let U ⊂ W be a K-affinoid sub-domain and choose an
arithmetic point κ ∈ U(K) of signature (k, ε). Then the maps ϕK,F and the
specialization maps ρκ determine a commutaive diagram, which is equivariant
for the action of the Hecke operators:

H1
c (Γ,DU)

ϕK,U−→ SU(`, pM)
↓ ρκ ↓ ρκ

H1
c (Γ(d), Vκ)

ϕK(d),κ−→ Sκ(`,Mpd)

Proof. As in Corollary ?? we may write DU in the form

DU
∼= lim

←−
n

([
lim
←−

t

lim
−→
Sn,t

Fn,t

]
⊗OK

K

)
.
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where Sn,t is the set of finite Ξ(Zp)-submodules of DU [n]◦/pt. For each Fn,t ∈
Sn,t we let Fn,t and Fn,t,s := (Fn,t)s denote the corresponding sheaves on Yη

and Ys respectively . We also let F
(d)
t := V ◦κ /p

tV ◦κ and F (d)
t and F (d)

t,s :=

(F (d)
t )s be the corresponding sheaves on Y

(d)
η and Y

(d)
s respectively.

Then from Lemma 8.10 we have, for each triple (n, t, Fn,t) with Fn,t ∈ Sn,t,
a commutative diagram

0 −→ H1
c (Ys,Fn,t,s) −→ H1

c (Γ, Fn,t) −→ S(K, Fn,t)
↓ ↓ ↓

0 −→ H1
c (Y

(d)
s ,F (d)

t,s ) −→ H1
c (Γ(d), F

(d)
t ) −→ S(K(d), F

(d)
t )

Formation of inductive limits is an exact functor and projective limits are left
exact and since formation of H1

c (Γ, ∗), S(K, ∗) and H1
c (Γ(d), ∗), S(K(d), ∗) all

commute with both inductive and projective limits we obtain a commutative
diagram of exact sequences

0 −→ Ls −→ H1
c (Γ,DU) −→ S(K,DU)

↓ ↓ ↓
0 −→ L(d)

s −→ H1
c (Γ(d), Vκ) −→ S(K(d), Vκ)

where we set

Ls := lim
←−
n

([
lim
←−

t

lim
−→
Sn,t

H1
c (Ys,Fn,t,s)

]
⊗OK

K

)

L(d)
s := lim

←−
n

([
lim
←−

t

lim
−→
Sn,t

H1
c (Y (d)

s ,F (d)
n,t,s)

]
⊗OK

K

)
This completes the proof.

8.3 Modular Sheaves

In this chapter, we define a category of sheaves that will be useful to us for
translating the modular data of the previous section into a sheaf theoretic
context.

Definition 8.12. Let YS be a smooth curve over S := Spec(Z`). We define
E(YS) to be the category whose objects and morphisms are given as follows.

(a) The objects of E(YS) are pairs (E/U) where U ∈ Y et
S and E/U is an

elliptic curve over U .
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(b) A morphism (E/U) −→ (E ′/U ′) is a pair (α, φ) where φ : U −→ U ′

is an etale morphism and α : E −→ E ′U := E ′ ×φ U is an isogeny of
elliptic curves over U .

Definition 8.13. We also define the category S(YS) to be the category whose
objects and morphisms are given as follows.

(a) The objects of S(YS) are pairs (F , U) where U ∈ Y et
S and F is a sheaf

of abelian groups on U et.

(b) A morphism (F , U) −→ (F ′, U ′) is a pair (η, φ) where φ : U −→ U ′ is
an etale morphism and η : F −→ φ∗F ′ is a morphism of sheaves on
U et.

Definition 8.14. A modular sheaf on YS is a functor F : E(YS) −→ S(YS)
satisfying the following properties.

(a) Projection of F to the second factor is the identity functor on Y et.

(b) F commutes with base change. More precisely, if (E,U) is an object

of E(YS) and V
φ−→ U is etale, then for EV := E ×U V we have

F(EV /V ) = φ∗F(E/U).

8.4 Hecke Operators

Let Y/S = Y0(N)/S and let E/Y be the universal elliptic curve over Y with
level N -structure. Let Y0(N`) := Y0(N`)/S and let E0/Y0 be the base change
of E to Y0. For each prime q 6 |N` we let Fη := F(Eη/Yη) and define

Tq : H1(Yη,Fη) −→ H1(Yη,Fη)

as follows. Let Eq/Yq be the universal elliptic curve over Yq with level Nq-
structure. We have two etale morphism π1, π2 : Yq −→ Y , where π1 is
induced by the forgetful functor and π2 = π1 ◦ wq where wq is the Atkin
Lehner operator.

Now let F be a modular sheaf on Y . Since Eq/Yq is given as base change
Eq = EYq with respect to π1 we have

Fq := F(Eq/Yq) = π∗1Fη.
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On the other hand, we have a canonical morphism (Eq, Yq) −→ (Eq, Yq) lying
over wq. So by functoriality we have a canonical isomorphism of sheaves on
Yq

Fq −→ w∗qFq

and therefore we have a canonical isomorphism π∗1Fq
∼= π∗2F . We then define

the Hecke operator Tq : H1(Yη,Fη) −→ H1(Yη,Fη) by the commutativity of
the following diagram

H∗(Yq, π
∗
1F) ∼= H∗(Yq, π

∗
2F)x y

H∗(Y,F)
Tq−→ H∗(Y,F)

(Stop Reading Here:)
Now fix geometric generic points s −→ Ys and η −→ Yη on Ys and Yη,

respectively and define

∆s := π1(Ys, s) and ∆η := π1(Yη, η).

Denoting by s, η the images of these points in YS, and letting ∆S := π1(YS, η)
we may choose a (non-canonical) isomorphism

π1(YS, s) ∼= ∆S. (8.1)

Henceforth, we shall identify these two groups via this isomorphism. The
commutative diagram

s η
↙ ↘ ↙ ↘

Ys −→ YS ←− Yη

then induces canonical continuous group homomorphisms

∆s −→ ∆S ←− ∆η. (8.2)

Finally, we let F is any finite abelian p-group endowed with a continuous
action of ∆S (on the right), then using 8.2 we may also regard F as having
continuous actions of ∆s and ∆η and let

Fs, FS, and Fη (8.3)
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be the associated lisse sheaves on the etale sites Y et
s , Y

et
S , and Y et

η , respec-
tively. We note that

Fs = i∗YFS and FS = yY,∗Fη.
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[Il] L. Illusie. Autour du théorème de monodromie locale, Asterisque 223,
1994,(9-58).

[Sch] Schneider’s book on p-adic functional analysis.

[Se1] J.-P. Serre. Endomorphismes complétement continus des espaces de Ba-
nach p-adiques, Publ.Math.I.H.E.S., no 12, 69-85, (1962).

[Se2] J.-P. Serre. Two letters on quaternions and modular forms (mod p).
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