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The Algebraic Eigenproblem
Variational principles

If xj is an eigenvector corresponding to eigenvalue ∏j of symmetric matrix A, then

∏j = xTj Axj/x
T
j xj . The rational function

∏(x) =
xTAx

xTBx
(6.223)

where A = AT , and where B is positive definite and symmetric is Rayleigh’s quotient. Apart

from the obvious ∏(xj) = ∏j , Rayleigh’s quotient has remarkable properties that we shall

discuss here for the special, but not too restrictive, case B = I.

Theorem (Rayleigh) 6.50. Let the eigenvalues of A = AT be arranged in the ascending

order ∏1 ≤ ∏2 ≤ · · · ≤ ∏n, with orthogonal eigenvectors x1, x2, . . . , xn. Then

∏k+1 ≤
xTAx

xTx
≤ ∏n if xTx1 = xTx2 = · · · = xTxk = 0, x =/ o (6.224)

with the lower equality holding if and only if x = xk+1, and the upper inequality holding if

and only if x = xn. Also

∏1 ≤
xTAx

xTx
≤ ∏n−k if xTxn = xTxn−1 = · · · = xTxn−k+1 = 0, x =/ o (6.225)

with the lower equality holding if and only if x = x1, and the upper if and only if x = xn−k.

The two inequalities reduce to

∏1 ≤
xTAx

xTx
≤ ∏n (6.226)

for arbitrary x ∈ Rn.

Proof. Vector x ∈ Rn, orthogonal to x1, x2, . . . , xk has the unique expansion

x = αk+1xk+1 + αk+2xk+2 + · · · + αnxn (6.227)
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with which

xTAx = ∏k+1α
2
k+1 + ∏k+2α

2
k+2 + · · · + ∏nα

2
n. (6.228)

We normalize x by

xTx = α2
k+1 + α2

k+2 + · · · + α2
n = 1 (6.229)

and use this equation to eliminate α2
k+1 from xTAx so as to have

∏(x) = xTAx = ∏k+1 + α2
k+2(∏k+2 − ∏k+1) + · · · + α2

n(∏n − ∏k+1). (6.230)

By assumption ∏j − ∏k+1 ≥ 0 if j > k + 1 and hence

∏(x) = ∏k+1 + non-negative quantity (6.231)

or ∏(x) ≥ ∏k+1, with equality holding if and only if

α2
k+2(∏k+2 − ∏k+1) + · · · + α2

n(∏n − ∏k+1) = 0. (6.232)

In case of distinct eigenvalues, ∏j − ∏k+1 =/ 0 j = k + 2, . . . , n, equality holds if and only if

αk+2 = αk+3 = · · · = αn = 0, and ∏(xk+1) = ∏k+1. If eigenvalues repeat and ∏j − ∏k+1 = 0,

then αj need not be zero, but equality still holds if and only if x is in the invariant subspace

spanned by the eigenvectors of ∏k+1.

To prove the upper bound we use

α2
n = 1− α2

k+1 − α2
k+2 − · · · − α2

n−1 (6.233)

to eliminate it from ∏(x), so as to be left with

∏(x) = ∏n − α2
k+1(∏n − ∏k+1)− · · · − α2

n−1(∏n − ∏n−1) (6.234)

and ∏(x) ≤ ∏n with equality holding if and only if x = xn.

The proof to the second part of the theorem is the same. End of proof.

Corollary 6.51. If A = AT , then the (k + 1)th and (n − k)th eigenvalues of A are

variationally given by

∏k+1 = min
x =/ o

∏(x), xTx1 = xTx2 = · · · = xTxk = 0 (6.235)

2



∏n−k = max
x =/ o

∏(x), xTxn = xTxn−1 = · · · = xTxn−k+1 = 0.

The two extremum statements reduce to

∏1 = min
x =/ o

∏(x), ∏n = max
x =/ o

∏(x) (6.236)

for arbitrary x ∈ Rn.

Proof. This is an immediate consequence of the previous theorem. If ∏j is isolated, then

the minimizing (maximizing) element of ∏(x) is unique, but if ∏j repeats, then the minimizing

(maximizing) element of ∏(x) is any vector in the invariant subspace corresponding to ∏j .

End of proof.

Minimization of ∏(x) may be subject to the k linear constraints xTp1 = xTp2 = · · · =

xTpk = 0, where p1, p2, . . . , pk are any k constant vectors in Rn. Because of the constraints

the minimum of ∏(x) is raised, and the maximum of ∏(x) is lowered. The question is by how

much.

Theorem (Fischer) 6.52. If A = AT , then

min
x =/ o

xTAx

xTx
≤ ∏k+1

xTp1 = xTp2 = · · · = xTpk = 0. (6.237)

max
x =/ o

xTAx

xTx
≥ ∏n−k

Proof. We order the eigenvalues of A in the ascending order ∏1 ≤ ∏2 ≤ · · · ≤ ∏n, with

the corresponding orthogonal eigenvectors x1, x2, . . . , xn. Any vector x ∈ Rn is uniquely

expanded in the form x = α1x1 + α2x2 + · · ·+ αnxn. We shall start with the one constraint

xTp1 = 0 that in terms of α1, α2, . . . , αn is

0 = α1x
T
1 p1 + α2x

T
2 p1 + · · · + αnx

T
np1. (6.238)

This is one homogeneous equation in the n unknowns α1, α2, . . . , αn and possesses a nontrivial

solution. We may even set α3 = α4 = · · · = αn = 0 and still be left with α1xT1 p1+α2xT2 p1 = 0

that has a nontrivial solution. Thus, when α3 = α4 = · · · = αn = 0, ∏(x) = (∏1α2
1 +

∏2α2
2)/(α

2
1 + α2

2), by Rayleigh’s theorem ∏(x) ≤ ∏2, and obviously min∏(x) ≤ ∏2.

3



On the other hand if we choose α1 = α2 = · · · = αn−2 = 0, then we are left with

the constraint equation αn−1xTn−1p1 + αnxTnp1 = 0, which we know possesses a nontrivial

solution. Now ∏(x) = (∏n−1α2
n−1 +∏nα2

n)/(α
2
n−1 +α2

n), by Rayleigh’s theorem ∏(x) ≥ ∏n−1,

and obviously max∏(x) ≥ ∏n−1.

Extension of the proof to k constraints is straightforward and is left as an exercise. End

of proof.

The following interlace theorem is the first important consequence of Fischer’s theorem.

Theorem 6.53. Let the eigenvalues of A = AT be ∏1 ≤ ∏2 ≤ · · · ≤ ∏n with correspond-

ing eigenvectors x1, x2, . . . , xn. If

∏0k = min
x =/ o

∏(x),

(
xTx1 = xTx2 = · · · = xTxk−1 = 0
xTp1 = · · · = xTpm = 0

, 1 ≤ k ≤ n−m (6.239)

then

∏k ≤ ∏0k ≤ ∏k+m (6.240)

In particular, for m = 1

∏1 ≤ ∏01 ≤ ∏2, ∏2 ≤ ∏02 ≤ ∏3, · · · , ∏n−1 ≤ ∏0n ≤ ∏n. (6.241)

Proof. The lower bound on ∏0k is a consequence of Rayleigh’s theorem, and the upper

bound of Fischer’s with k +m− 1 constraints. End of proof.

Theorem (Cauchy) 6.54. Let A = AT with eigenvalues ∏1 ≤ ∏2 ≤ · · · ≤ ∏n, be

partitioned as

A =





n−m m

A0 C

CT B




n−m
m.

(6.242)

If ∏01 ≤ ∏02 ≤ · · · ≤ ∏0n−m are the eigenvalues of A0 then

∏k ≤ ∏0k ≤ ∏k+m, k = 1, 2, . . . , n−m. (6.243)

Proof. minx0
T
A0x0/x0

T
x0, x0 ∈ Rn−m can be interpreted as minimization of xTAx/xTx,

x ∈ Rn under the m constraints xT en−m+1 = · · · = xT en = 0. Theorem 6.53 then assures

the inequalities. End of proof.
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Theorem 6.55. Let x be a unit vector, ∏ a real scalar variable, and define for A = AT

the residual vector r(∏) = r = Ax− ∏x. Then ∏ = ∏(x) = xTAx minimizes rT r.

Proof. If x happens to be an eigenvector, then rT r = 0 if and only if ∏ is the corre-

sponding eigenvalue. Otherwise

rT r(∏) = rT r = (xTA− ∏xT )(Ax− ∏x) = ∏2 − 2∏xTAx+ xTA2x. (6.244)

The vertex of this parabola is at ∏ = xTAx and min
∏

rT r = xTA2x− (xTAx)2. End of proof.

If x is given as an approximation to an eigenvector, then Rayleigh’s quotient ∏ = ∏(x) is

the best approximation, in the sense of min rT r, to the corresponding eigenvalue. We shall

look more closely at this approximation.

Theorem 6.56. Let ∏j be an eigenvalue of A = AT with corresponding unit eigenvector

xj. Consider unit vector x as an approximation to xj and ∏ = ∏(x) as an approximation to

∏j. Then

|∏j − ∏| ≤ (∏n − ∏1)4 sin2 φ

2
(6.245)

where φ is the angle between xj and x, and where ∏1 and ∏n are the extreme eigenvalues of

A.

Proof. Decompose x into x = xj + e. Since xTx = xTj xj = 1, eT e+ 2eTxj = 0, and

∏ = (xj + e)TA(xj + e) = ∏j + eT (A− ∏jI)e. (6.246)

But

|eT (A− ∏jI)e| ≤ max
k

|∏k − ∏j|eT e ≤ (∏n − ∏1)e
T e (6.247)

and therefore

|∏j − ∏| ≤ eT e(∏n − ∏1) (6.248)

which with eT e = 2(1− cosφ) = 4 sin2 φ
2 establishes the inequality. End of proof.

To see that the factor ∏n−∏1 in Theorem 6.56 is realistic take x = x1+≤xn, xTx = 1+≤2,

so as to have

∏− ∏1 =
≤2

1 + ≤2
(∏n − ∏1). (6.249)
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Theorem 6.56 is theoretical. It tells us that a reasonable approximation to an eigen-

vector should produce an excellent Rayleigh quotient approximation to the corresponding

eigenvalue. To actually know how good the approximation is requires yet a good deal of

hard work.

Theorem 6.57. Let ∏1 ≤ ∏2 ≤ · · · ≤ ∏n be the eigenvalues of A = AT with correspond-

ing orthonormal eigenvectors x1, x2, . . . , xn. Given unit vector x and scalar ∏, then

min
j

|∏j − ∏| ≤ krk (6.250)

if r = Ax− ∏x.

Proof. In terms of the n eigenvectors of A, x = α1x1 + α2x2 + · · · + αnxn so that

r = α1(∏1 − ∏)x1 + α2(∏2 − ∏)x2 + · · · + αn(∏n − ∏)xn. (6.251)

Consequently

rT r = α2
1(∏1 − ∏)2 + α2

2(∏2 − ∏)2 + · · · + α2
n(∏n − ∏)2 (6.252)

and

rT r ≥ min
j

(∏j − ∏)2(α2
1 + α2

2 + · · · + α2
n). (6.253)

Recalling that α2
1 + α2

2 + · · · + α2
n = 1, and taking the positive square root on both sides

yields the inequality. End of proof.

Theorem 6.57 does not refer specifically to ∏ = ∏(x), but it is reasonable to choose this

∏, that we know minimizes rT r. It is of considerable computational interest because of its

numerical nature. The theorem states that given ∏ and krk there is at least one eigenvalue

∏j in the interval ∏− krk ≤ ∏j ≤ ∏ + krk.

At first sight Theorem 6.57 appears disappointing in having a right-hand side that is

only krk. Theorem 6.56 raises the expectation of a power to krk higher than 1, but as we

shall see in the example below, if an eigenvalue repeats, then the bound in Theorem 6.57 is

sharp; equality does actually happen with it.

Example. For

A =
∑
1 ≤
≤ 1

∏
x1 =

√
2

2

∑
1
1

∏
∏1 = 1 + ≤, x2 =

√
2

2

∑
1
−1

∏
∏2 = 1− ≤ (6.254)
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we choose x = [1 0]T and obtain ∏(x) = 1, and r = ≤[0 1]T . The actual error in both ∏1 and

∏2 is ≤, and also krk = ≤.

For

A =
∑
1 ≤
≤ 2

∏
, ∏1 = 1− ≤2, ∏2 = 2 + ≤2, ≤2 << 1 (6.255)

we choose x = [1 0]T and get ∏(x) = 1, and r = ≤[0 1]T . Here krk = ≤, but the actual error

in ∏1 is ≤2.

Fig. 6.3

A better inequality can be had, but only at the heavy price in practicality of knowing

the eigenvalues’ separation. See Fig.6.3 that refers to the following

Theorem (Kato) 6.58. Let A = AT , xTx = 1, ∏ = ∏(x) = xTAx, and suppose that α

and β are two real numbers such that α < ∏ < β and such that no eigenvalue of A is found

in the interval α ≤ ∏ ≤ β.

Then

(β − ∏)(∏− α) ≤ rT r = ≤2, r = Ax− ∏x (6.256)

and the inequality is sharp.

Proof. Write x = α1x1 + α2x2 + α3x3 + · · · + αnxn to have

Ax− βx = (∏1 − β)α1x1 + (∏2 − β)α2x2 + · · · + (∏n − β)αnxn

Ax− αx = (∏1 − α)α1x1 + (∏2 − α)α2x2 + · · · + (∏n − α)αnxn.
(6.257)

Then

(Ax− βx)T (Ax− αx) = (∏1 − β)(∏1 − α)α2
1 + (∏2 − β)(∏2 − α)α2

2

+ · · · + (∏n − β)(∏n − α)α2
n ≥ 0 (6.258)
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because (∏j − β) and (∏j − α) are either both negative or both positive, or their product is

zero.

But
Ax− αx = Ax− ∏x+ (∏− α)x = r + (∏− α)x

Ax− βx = Ax− ∏x+ (∏− β)x = r + (∏− β)x
(6.259)

and therefore

(r + (∏− α)x)T (r + (∏− β)x) ≥ 0. (6.260)

Since xT r = 0, xTx = 1, multiplying out yields

rT r + (∏− α)(∏− β) ≥ 0 (6.261)

and the inequality is proved.

To show that equality does occur in Kato’s theorem assume that x = α1x1 +α2x2, α2
1 +

α2
2 = 1. Then

∏ = α2
1∏1 + α2

2∏2, ∏1 − ∏ = α2
2(∏1 − ∏2), ∏− ∏2 = α2

1(∏1 − ∏2),

≤2 = α2
1(∏1 − ∏)2 + α2

2(∏2 − ∏)2 = α2
1α

2
2(∏1 − ∏2)

2
(6.262)

and in fact ≤2 = (∏2 − ∏)(∏− ∏1). End of proof.

Example. The three eigenvalues of matrix

A =




1 −1
−1 2 −1

−1 2



 (6.263)

are ∏j = 4 sin2(θj/2), θj = (2j − 1)º/7 j = 1, 2, 3, or numerically

∏1 = 0.1980623, ∏2 = 1.5549581, ∏3 = 3.2469796. (6.264)

We take

x01 =




3
2
1



 , x02 =




2
−1
−2



 , x03 =




1
−2
2



 (6.265)

as approximations to the three eigenvectors of A and compute the corresponding Rayleigh

quotients

∏01 =
3

14
= 0.2143, ∏02 =

14

9
= 1.5556, ∏03 =

29

9
= 3.2222. (6.266)

8



These are seen to be excellent approximations, and we expect them to be so in view of

Theorem 6.56, even with eigenvectors that are only crudely approximated. But we shall not

know how good ∏01, ∏
0
2, ∏

0
3 are until the approximations to the eigenvalues are separated.

We write rj = Ax0j − ∏0jx
0
j , compute the three relative residuals

≤1 =
kr1k
kx01k

=

√
5

14
= 0.1597, ≤2 =

kr2k
kx02k

=

√
2

9
= 0.1571, ≤3 =

kr3k
kx03k

=

√
5

9
= 0.2485 (6.267)

and have from Theorem 6.57 that

0.0546 ≤ ∏1 ≤ 0.374, 1.398 ≤ ∏2 ≤ 1.713, 2.974 ≤ ∏3 ≤ 3.471. (6.268)

Figure 6.4 has the exact ∏1, ∏2, ∏3, the approximate ∏01, ∏
0
2, ∏

0
3, and the three intervals marked

on it.

Fig. 6.4

Even if the bounds on ∏1, ∏2, ∏3 are not very tight, they at least separate the eigenvalue

approximations. Rayleigh and Kato’s theorems will help us do much better than this.

Rayleigh’s theorem assures us that ∏1 ≤ ∏01, and hence we select α = ∏1, β = 1.398 in

Kato’s inequality so as to have

(∏01 − ∏1)(1.398− ∏01) ≤ ≤21 (6.269)

and

0.1927 ≤ ∏1 ≤ 0.2143. (6.270)

If ∏02 ≤ ∏2, then we select α = ∏01, β = ∏2 in Kato’s inequality and obtain

∏02 ≤ ∏2 ≤ ∏02 +
≤22

∏02 − ∏01
(6.271)
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while if ∏02 ≥ ∏2, then we select α = ∏2, β = ∏03 in Kato’s inequality and

∏02 −
≤22

∏03 − ∏02
≤ ∏2 ≤ ∏02. (6.272)

Hence, wherever the location of ∏02 relative to ∏2

∏02 −
≤22

∏03 − ∏02
≤ ∏2 ≤ ∏02 +

≤22
∏02 − ∏01

(6.273)

or numerically

1.5407 ≤ ∏2 ≤ 1.5740. (6.274)

The last approximate ∏03 is, by Rayleigh’s theorem, less than the exact, ∏03 ≤ ∏3, and we

select α = 1.5740, β = ∏3 in Kato’s inequality,

(∏3 − ∏03)(∏
0
3 − 1.5740) ≤ ≤23 (6.275)

to obtain

3.222 ≤ ∏3 ≤ 3.260. (6.276)

Now that better approximations to the eigenvalues are available to us, can we use them

to improve the approximations to the eigenvectors? Consider ∏1, x1 and ∏01, x
0
1. Assuming

the approximations are good we write

x1 = x01 + dx1, ∏1 = ∏01 + d∏1 (6.277)

and, upon neglecting the product d∏1dx1, obtain

(A− ∏1I)x1 = (A− ∏01I)(x
0
1 + dx1)− d∏1x

0
1 = o

from which the approximation

x1 = d∏1(A− ∏01I)
−1x01 (6.278)

readily results. Factor d∏1 is irrelevant, but its smallness is a warning that (A − ∏01I)
−1x01

can be of a considerable magnitude because (A− ∏1I) may well be nearly singular.

The enterprising reader should undertake the numerical correction of x01, x
0
2, x

0
3.
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Now that supposedly better eigenvector approximations are available, they can be used in

turn to produce better Rayleigh approximations to the eigenvalues, and the corrective cycle

may be repeated, even without recourse to the complicated Rayleigh-Kato bound tightening.

This is in fact the essence of the method of shifted inverse iterations, or linear corrections,

described in Sec. 8.5.

Error bounds on the eigenvectors are discussed next.

Theorem 6.59. Let the eigenvalues of A = AT be ∏1 ≤ ∏2 ≤ · · · ≤ ∏n, with corre-

sponding orthonormal eigenvectors x1, x2, . . . , xn, and x a unit vector approximating xj. If

ej = x− xj, and ∏ = xTAx, then

kejk ≤
µ
2− 2

µ
1−

µ
≤j
α

∂2∂1/2∂1/2
,
≤j
α
< 1 (6.279)

where ≤j = krjk, rj = Ax− ∏x, and where

α = min
k =/ j

|∏k − ∏|. (6.280)

If |≤j/α| << 1, then

kejk ≤
≤j
α
. (6.281)

Proof. Write

x = α1x1 + α2x2 + · · · + αjxj + · · · + αnxn, α
2
1 + α2

2 + · · · + α2
n = 1 (6.282)

so as to have

ej = x− xj = α1x1 + α2x2 + · · · + (αj − 1)xj + · · · + αnxn (6.283)

and

eTj ej = α2
1 + α2

2 + · · · + (αj − 1)2 + · · · + α2
n. (6.284)

Because xTx = 1

eTj ej = 2(1− αj) , αj = 1− 1

2
eTj ej . (6.285)

Also,

≤2j = rTj rj = α2
1(∏1 − ∏)2 + α2

2(∏2 − ∏)2 + · · · + α2
j (∏j − ∏) + · · · + α2

n(∏n − ∏)2 (6.286)
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and

≤2j ≥ α2
1(∏1 − ∏)2 + α2

2(∏2 − ∏)2 + · · · + 0 + · · · + α2
n(∏n − ∏)2. (6.287)

Moreover

≤2j ≥ min
k =/ j

(∏k − ∏)2(α2
1 + α2

2 + · · · 0 + · · · + α2
n) (6.288)

or

≤2j ≥ α2(1− α2
j ). (6.289)

But αj = 1− 1
2e

T
j ej and therefore

(1− 1

2
eTj ej)

2 ≥ 1−
µ
≤j
α

∂2
. (6.290)

With the proper sign choice for x, 1
2e

T
j ej < 1, and taking the positive square root on both

sides yields the first inequality. The simpler inequality comes from

µ
1−

µ
≤j
α

∂2∂1
2

= 1− 1

2

µ
≤j
α

∂2
(6.291)

for (≤j/α) << 1. End of proof.

Notice that Theorem 6.57 does not require ∏ to be xTAx, but in view of Theorem 6.55 it

is reasonable to choose it this way. Notice also that as x→ xj , ∏ may be replaced with ∏j ,

and α becomes the least of ∏j+1−∏j and ∏j −∏j−1. To compute a good bound on kx− xjk

we need to know how well ∏j is separated from its left and right neighbors. To see that the

bounds are sharp take x = x1 + ≤x2, ≤2 << 1, so as to get kx− x1k = krk/(∏2 − ∏1).

Lemma 6.60. If x ∈ Rn and xTx = 1, then

|x1|2 + |x2|2 + · · · + |xn|2 = 1 and |x1| + |x2| + · · · + |xn| ≤
√
n. (6.292)

proof. Select vector s with components ±1 so that sTx = |x1| + |x2| + · · · + |xn|.

Obviously ksk =
√
n. By the Cauchy–Schwarz inequality

sTx ≤ kskkxk =
√
n (6.293)

since kxk = 1, and hence the inequality of the lemma. Equality occurs in eq.(6.292) for

vector x with all components equal in magnitude. End of proof.
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Theorem (Hirsch) 6.61. Let matrix A = A(n × n) have a complex eigenvalue ∏ =

α + iβ. Then

|∏| ≤ nmax
i,j

|Aij|, |α| ≤ nmax
i,j

1

2
|Aij +Aji|, |β| ≤ nmax

i,j

1

2
|Aij −Aji|. (6.294)

proof. Let x be a unit, xHx = 1, eigenvector corresponding to eigenvalue ∏ so that

Ax = ∏x. Then

∏ = xHAx = A11x1x1 +A12x1x2 +A21x1x2 + · · · +Annxnxn (6.295)

and

|∏| ≤ max
i,j

|Aij|(|x1|2 + 2|x1||x2| + · · · + |xn|2) (6.296)

or

|∏| ≤ max
i,j

|Aij|(|x1| + |x2| + · · · + |xn|)2 (6.297)

and since |x1|2 + |x2|2 + · · · + |xn|2 = 1, Lemma 6.60 guarantees the first inequality of the

theorem. To prove the other two inequalities we write x = u + iv, uTu = 1 vT v = 1, and

separate the eigenproblem into

Au = αu− βv, Av = αv + βu (6.298)

from which we get through premultiplication by uT and vT

2α =
1

2
uT (A+AT )u+

1

2
vT (A+AT )v, 2β = uT (A−AT )v. (6.299)

From the second equation we derive the inequality

2β ≤ max
i,j

|Aij −Aji|(|u1||v1| + |u1||v2| + |u2||v1| + · · · + |un||vn|) (6.300)

or

2β ≤ max
i,j

|Aij −Aji|(|u1| + |u2| + · · · + |un|)(|v1| + |v2| + · · · + |vn|). (6.301)

Recalling lemma 6.60 we ascertain the third inequality of the theorem. The second inequality

of the theorem is proved likewise. End of proof.

For matrix A = A(n× n), Aij = 1, the estimate |∏| ≤ n of Theorem 6.61 is sharp; here

in fact ∏n = n. For upper-triangular matrix U,Uij = 1, |∏| ≤ n is a terrible over estimate;
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all eigenvalues of U are here only 1. Theorem 6.61 is nevertheless of theoretical interest. It

informs us that a matrix with small entries has small eigenvalues, and that a matrix only

slightly asymmetric has eigenvalues that are only slightly complex.

We close this section with a monotonicity theorem and an application.

Theorem (Weyl) 6.62. Let A and B in C = A+B be symmetric. If α1 ≤ α2 ≤ · · · ≤

αn are the eigenvalues of A, β1 ≤ β2 ≤ · · · ≤ βn the eigenvalues of B, and ∞1 ≤ ∞2 ≤ · · · ≤ ∞n

the eigenvalues of C, then

αi + βj ≤ ∞i+j−1, ∞i+j−n ≤ αi + βj . (6.302)

In particular

αi + β1 ≤ ∞i ≤ αi + βn. (6.303)

Proof. Let a1, a2, . . . , an be the n orthonormal eigenvectors of A, and b1, b2, . . . , bn the

orthonormal eigenvectors of B. Obviously

min
x

xTCx

xTx
≥ min

x

xTAx

xTx
+ min

x

xTBx

xTx
xTa1 = · · · = xTai−1 = 0 xTa1 = · · · = xTai−1 = 0 xT b1 = · · · = xT bj−1 = 0

xT b1 = · · · = xT bj−1 = 0.

(6.304)

By Fischer’s theorem the left-hand side of the above inequality does not exceed ∞i+j−1,

while by Rayleigh’s theorem the right-hand side is equal to αi + βj . Hence the first set of

inequalities.

The second set of inequalities are obtained from

max
x

xTCx

xTx
≤ max

x

xTAx

xTx
+ max

x

xTBx

xTx
xTai+1 = · · · = xTan = 0 xTai+1 = · · · = xTan = 0 xT bj+1 = · · · = xT bn = 0

xT bj+1 = · · · = xT bn = 0.

(6.305)

By Fischer’s theorem the left-hand side of the above inequality is not less than ∞i+j−n, while

by Rayleigh’s theorem the right-hand side is equal to αi + βj .
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The particular case is obtained with j = 1 on the one hand and j = n on the other hand.

End of proof.

Theorem 6.62 places no limit on the size of the eigenvalues but it may be put into a

perturbation form. Let positive ≤ be such that −≤ ≤ β1, βn ≤ ≤. Then

|∞i − αi| ≤ ≤ (6.306)

and if ≤ is small |∞i−αi| is smaller. The above inequality together with Theorem 6.61 carry

an important implication: if the entries of symmetric matrix A are symmetrically perturbed

slightly, then the change in each eigenvalue is slight.

One of the more interesting applications of Weyl’s theorem is the following. If in the

symmetric

A =
∑
K RT

R M

∏
(6.307)

matrix R = O, then A reduces to block diagonal and the eigenvalues of A become those of

K together with those of M . We expect that if matrix R is small, then the eigenvalues of

K and M will not be far from the eigenvalues of A, and indeed we have

Corollary 6.63. If

A =
∑
K RT

R M

∏
=
∑
K

M

∏
+

∑
RT

R

∏
= A0 + E (6.308)

then

|∏i − ∏0i| ≤ |ρn| (6.309)

where ∏i and ∏0i are the ith eigenvalue of A and A0, respectively, and where ρ2
n is the largest

eigenvalue of RTR, or RRT .

Proof. Write
∑

RT

R

∏ ∑
x
x0

∏
= ρ

∑
x
x0

∏
. (6.310)

Then RTRx = ρ2x or RRTx0 = ρ2x0, provided that ρ =/ 0. If ρ2
n is the largest eigenvalue

of RTR (or equally RRT ), then the eigenvalues of E are between −ρn and +ρn, and the

inequality in the corollary follows from the previous theorem. End of proof.
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exercises

6.16.1. Let A = AT . Show that if Ax− ∏x = r, ∏ = xTAx/xTx, then xT r = 0. Also, that

Bx = ∏x for

B = A− (xrT + rxT )/xTx.

6.16.2. Use Fischer’s and Rayleigh’s theorems to show that

∏2 = max
p

(min
x⊥p

∏(x)), ∏n−1 = min
p

(max
x⊥p

∏(x))

where ∏(x) = xTAx/xTx.

6.16.3. Let A and B be symmetric positive definite. Show that

∏n(AB) ≤ ∏n(A)∏n(B)

and

∏1(A+B) ≥ ∏1(A) + ∏1(B) , ∏n(A+B) ≤ ∏n(A) + ∏n(B).

6.16.4. Show that for square A

α1 ≤
xTAx

xTx
≤ αn

where α1 and αn are the extremal eigenvalues of 1
2(A+AT ).

6.16.5. Let A = AT and A0 = A0
T

have eigenvalues ∏1 ≤ ∏2 ≤ · · · ≤ ∏n and ∏01 ≤ ∏02 ≤ · · · ≤

∏0n such that ∏0j ≥ ∏j for all j. Is it true that xTA0x ≥ xTAx for any x? Consider

A =
∑−1 −1
−1 −1

∏
and A0 =

∑ −1.1
√

0.88√
0.88 −0.8

∏
.

6.16.6. Prove that if for symmetric A0 and A, xTA0x ≥ xTAx for any x, then pairwise

∏i(A0) ≥ ∏i(A).

6.16.7. Let A = AT be such that Aij ≥ 0. Show that for any x, xi ≥ 0,

(xTAx)2 ≤ (xTx)(xTA2x).
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6.16.8. Use corollary 6.63 to prove that symmetric

A =
∑
α aT

a A0

∏

has an eigenvalue in the interval

|α− ∏| ≤ (aTa)1/2

Generalize the bound to other diagonal elements of A using a symmetric interchange of rows

and columns.

6.16.9. Let σi = (∏i(ATA))1/2 be the singular values of A = A(n × n), and let σ0i be the

singular values of A0 obtained from A through the deletion of one row (column). Show that

σi ≤ σ0i ≤ σi+1 i = 1, 2, . . . , n− 1.

Generalize to more deletions.

6.16.10. Let σi = (∏i(ATA))1/2 be the singular values of A = A(n × n). Show, after Weyl,

that

σ1σ2 · · ·σk ≤ |∏1||∏2| · · · |∏k|, and σk . . . σn−1σn ≥ |∏k| . . . |∏n−1||∏n|, k = 1, 2, . . . , n

where ∏k = ∏k(A) are such that |∏1| ≤ |∏2| ≤ · · · ≤ |∏n|.

6.16.11. Recall that

kAkF = (
X

i,j

A2
ij)

1/2

is the Frobenius norm of A. Show that among all symmetric matrices, S = (A + AT )/2

minimizes kA− SkF .

6.16.12. Let nonsingular A have the polar decomposition A = (AAT )1/2Q. Show that among

all orthogonal matrices, Q = (AAT )−1/2A is the unique minimizer of kA−QkF . Discuss the

case of singular A.

Bounds and perturbations
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Computation of even approximate eigenvalues and their accuracy assessment is a seri-

ous computational affair and we appreciate any quick procedure for their enclosure. Ger-

schgorin’s theorem on eigenvalue bounds is surprisingly simple, yet general and practical.

Theorem (Gerschgorin) 6.64. Let A = A(n × n). If A = D + A0, where D is the

diagonal Dii = Aii, then every eigenvalue of A lies in at least one of the discs

|∏−Aii| ≤ |A0i1| + |A0i2| + · · · + |A0in| i = 1, 2, . . . , n (6.311)

in the complex plane.

Proof. Even if A is real its eigenvalues and eigenvectors may be complex. Let ∏ be any

eigenvalue ofA and x = [x1 x2 . . . xn]T the corresponding eigenvector so thatAx = ∏x x =/ o.

Assume that the kth component of x, xk, is largest in magnitude (modulus) and normalize

x so that |xk| = 1 and |xi| ≤ 1. The kth equation of Ax = ∏x then becomes

Ak1x1 +Ak2x2 + · · · +Akk + · · · +Aknxn = ∏ (6.312)

and
|∏−Akk| = |A0k1x1 +A0k2x2 + · · · +A0knxn|

≤ |A0k1| |x1| + |A0k2| |x2| + · · · + |A0kn| |xn|

≤ |A0k1| + |A0k2| + · · · + |A0kn|.

(6.313)

We do not know what k is, but we are sure that ∏ lies in one of these discs. End of proof.

Example. Matrix

A =




2 −3 1
−2 1 3
1 −4 2



 (6.314)

has the characteristic equation

−∏3 + 5∏2 − 13∏ + 14 = 0 (6.315)

with the three roots

∏1 =
3

2
+

√
19

2
i, ∏2 = ∏1 =

3

2
−
√

19

2
i, ∏3 = 2. (6.316)

18



Gerschgorin’s theorem encloses the eigenvalues in the three discs

δ1 : |2− ∏| ≤ 4, δ2 : |1− ∏| ≤ 5, δ3 : |2− ∏| ≤ 5 (6.317)

shown in Fig. 6.5. Not even a square root is needed to have these bounds.

Corollary 6.65. If ∏ is an eigenvalue of symmetric A, then

min
k

(Akk − |A0k1| − · · · − |A0kn|) ≤ ∏ ≤ max
k

(Akk + |A0k1| + · · · + |A0kn|) (6.318)

where A0ij = Aij and A0ii = 0.

Proof. When A is symmetric ∏ is real and the Gerschgorin discs become intervals on

the real axis. End of proof.

Fig. 6.5

Gerschgorin’s eigenvalue bounds are utterly simple, but on difference matrices the theo-

rem fails where we need it most. The difference matrices of mathematical physics are, as we

noticed in Chapter 3, most commonly symmetric and positive definite. We know that for

these matrices all eigenvalues are positive, 0 < ∏1 ≤ ∏2 ≤ · · · ≤ ∏n but we would like to have
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a lower bound ∏1 in order to secure an upper bound on ∏n/∏1. In this respect Gerschgorin’s

theorem is a disappointment.

For matrix

A =





2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2




(6.319)

Gerschgorin’s theorem yields the eigenvalue interval 0 ≤ ∏ ≤ 4 for any n, failing to predict

the positive definiteness of A. For matrix

A2 =





5 −4 1
−4 6 −4 1
1 −4 6 −4 1

1 −4 6 −4
1 −4 5




(6.320)

Gerschgorin’s theorem yields −4 ≤ ∏ ≤ 16, however large n is, where in fact ∏ > 0.

Similarity transformations can save Gerschgorin’s estimates for these matrices. First

we notice that D−1AD and D−1A2D, with the diagonal D,Dii = (−1)i turns all entries

of the transformed matrices nonnegative. Matrices with nonnegative or positive entries are

common; A−1 and (A2)−1 are with entries that are all positive.

Definition. Matrix A is nonnegative, A ≥ O, if Aij ≥ 0 for all i and j. It is positive,

A > O, if Aij > 0.

Discussion of good similarity transformations to improve the lower bound on the eigen-

values is not restricted to the finite difference matrix A, and we shall look at a broader class

of these matrices.

Theorem 6.66. Let symmetric tridiagonal matrix

T =





α1 + α2 −α2

−α2 α2 + α3 −α3

−α3
. . . −αn
−αn αn + αn+1



 (6.321)

be such that α1 ≥ 0, α2 > 0, α3 > 0, . . . , αn > 0, αn+1 ≥ 0. Then eigenvector x correspond-

ing to its minimal eigenvalue is positive, x > o.
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Proof. If x = [x1 x2 . . . xn]T is the eigenvector corresponding to the lowest eigenvalue

∏, then

∏(x) =
α1x2

1 + α2(x2 − x1)2 + α3(x3 − x2)2 + · · · + αn(xn − xn−1)2 + αn+1x2
n

x2
1 + x2

2 + · · · + x2
n

(6.322)

and matrix T is seen to be positive semidefinite. Matrix T is singular only if both α1 =

αn+1 = 0, and then x = [1 1 . . . 1]T . Suppose therefore that α1 and αn+1 are not both zero.

Looking at the equation Ax = ∏x we readily observe that no two consecutive components

of x, including x1 and x2, may be zero, for this would imply x = o. No interior component of

x can be zero either; speaking physically the string may have no interior node, for this would

contradict the fact, by Theorem 6.49, that x is the unique minimizer of ∏(x0). Say n = 4

and x2 = 0. Then the numerator of ∏(x) is (α1 + α2)x2
1 + α3x2

3 + α4(x3 − x4)2 + α5x2
4, and

replacing x1 by −x1 leaves ∏(x) un affected. The components of x cannot be of different signs

because sign reversals would lower the numerator of ∏(x) without changing the denominator

contradicting the assumption that x is a minimizer of ∏(x0). Hence we may choose all

components of x positive. End of proof.

For the finite difference matrix A of eq.(6.319), or for that matter for any symmetric

matrix A such that Aii > 0 and Aij ≤ 0, the lower Gerschgorin bound on first eigenvalue ∏1

may be written as

∏1 ≥ min
i

(Ae)i (6.323)

for e = [1 1 1 . . . , 1]T . If D is a positive diagonal matrix, D > O, then also

∏1 ≥ min
i

(D−1ADe)i (6.324)

where equality holds for De = x1 if x1 > o.

Matrix A of eq.(6.319) has a first eigenvector with components that are all positive,

that is, approximately x01 = [0.50 0.87 1.00 0.87 0.50]T . Taking the diagonal matrix D with

Dii = (x01)i yields

D−1AD =





2 −1.740
−0.575 2 −1.15

−0.87 2 −0.87
−1.15 2 −0.575

−1.74 2




(6.325)
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and from its five rows we obtain the five, almost equal, inequalities

∏1 ≥ 0.260, ∏1 ≥ 0.275, ∏1 ≥ 0.260, ∏1 ≥ 0.275, ∏1 ≥ 0.260 (6.326)

so that certainly ∏1 ≥ 0.260, whereas actually ∏1 = 4 sin2 15o = 0.26795.

On the other hand according to Rayleigh’s theorem ∏1 ≤ ∏1(x01) = 0.26797, and 0.260 ≤

∏1 ≤ 0.26797.

Gerschgorin’s theorem does not require the knowledge that x01 is a good approximation

to x1, but suppose that we know that ∏01 = ∏(x01) = 0.26797 is nearest to ∏1. Then from

r = Ax01 − ∏01x
0
1 = 10−3[3.984 6.868 7.967 6.868 3.984]T we get that 0.260 ≤ ∏1 ≤ 0.276.

Similarly, if symmetric A is nonnegative A ≥ O, then Gerschgorin’s upper bound on the

eigenvalues of A becomes

∏n ≤ max
i

(D−1ADe)i (6.327)

for any D > O.

The following is a symmetric version of Perron’s theorem on positive matrices.

Theorem (Perron) 6.67. If A is a symmetric positive matrix, then the eigenvector

corresponding to the largest (positive) eigenvalue of A is positive and unique.

Proof. If xn is a unit eigenvector corresponding to ∏n, and x =/ xn is such that xTx = 1,

then

xTAx < ∏n = ∏(xn) = xTnAxn (6.328)

and ∏n is certainly positive. Moreover, since Aij > 0 the components of xn cannot have

different signs, for this would contradict the assumption that xn maximizes ∏(x). Say then

that (xn)i ≥ 0. But none of the (xn)i components can be zero since Axn = ∏nxn, and

obviously Axn > o. Hence xn > o.

There can be no other positive vector orthogonal to xn, and hence the eigenvector, and

also the largest eigenvalue ∏n, are unique. End of proof.

Theorem 6.68. Suppose that A has a positive inverse, A−1 > O. Let x be any vector

satisfying Ax− e = r, e = [1 1 . . . 1]T , krk1 < 1. Then

kxk1
1 + krk1

≤ kA−1k1 ≤
kxk1

1− krk1
. (6.329)
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Proof. Obviously x = A−1e+A−1r so that

kxk1 ≤ kA−1ek1 + kA−1rk1 ≤ kA−1k1 + kA−1k1krk1 (6.330)

and
kxk1

1 + krk1
≤ kA−1k1. (6.331)

To prove the other bound write x = A−1e − (−A−1r), observe that kA−1ek1 = kA−1k1,

and have that
kxk1 ≥ kA−1ek1 − kA−1rk1

≥ kA−1k1 − kA−1k1krk1.
(6.332)

Hence, if krk1 < 1, then
kxk1

1− krk1
≥ kA−1k1. (6.333)

End of proof.

Gerschgorin’s theorem has some additional interesting consequences.

Theorem 6.69. The eigenvalues of a symmetric matrix depend continuously on its

entries.

Proof. Let matrix B = BT be such that |Bij| < ≤. The theorems of Gerschgorin and

Hirsch assure us that the eigenvalues of B are in the interval −n≤ ≤ β ≤ n≤. If C = A+B,

then according to Theorem 6.62 |∞i−αi| ≤ n≤ where α1 ≤ α2 ≤ · · · ≤ αn are the eigenvalues

of A and ∞1 ≤ ∞2 ≤ · · · ≤ ∞n are the eigenvalues of C. As ≤ → 0 so does |∞i − αi|, and

|∞i − αi|/≤ is finite for all ≤ > 0. End of proof.

The eigenvalues of any matrix depend continuously on its entries. It is a basic result

of polynomial equation theory that the roots of the equation depend continuously on the

coefficients (which does not mean that roots cannot be very sensitive to small changes in

the coefficients.) We shall not prove it here, but will accept this fact to prove the second

Gerschgorin theorem on the distribution of the eigenvalues in the discs. It is this theorem

that makes Gerschgorin’s theorem invaluable for nearly diagonal symmetric matrices.

Theorem (Gerschgorin) 6.70. If k Gerschgorin discs of matrix A are disjoint from

the other discs, then precisely k eigenvalues of A are found in the union of the k discs.
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Proof. Write A = D+A0 with diagonal Dii = Aii, and consider matrix A(τ) = D+ τA0

0 ≤ τ ≤ 1. Obviously A(0) = D and A(1) = A. For clarity we shall continue the proof for a

real 3× 3 matrix, but the argument is general.

Suppose that the three Gerschgorin discs δ1 = δ1(1), δ2 = δ2(1), δ3 = δ3(1) for A = A(1)

are as shown in Fig. 6.6 For τ = 0 the three circles contract to points ∏1(0) = A11, ∏2(0) =

A22, ∏3(0) = A33. As τ is increased the three discs δ1(τ), δ2(τ), δ3(τ) for A(τ) expand and

the three eigenvalues ∏1(τ), ∏2(τ), ∏3(τ) of A vary inside them. Never is an eigenvalue of

A(τ) outside the union of the three discs. Disc δ1(τ) is disjoint from the other two discs for

any 0 ≤ τ ≤ 1. Since ∏1(τ) varies continuously with τ it cannot jump over to the other two

discs, and the same is true for ∏2(τ) and ∏3(τ). Hence δ1 contains one eigenvalue of A and

δ1 ∪ δ2

Fig. 6.6

Example. Straightforward application of Gerschgorin’s theorem to

A =




1 −10−2 2 10−2

−5 10−3 2 10−2

10−2 −10−2 3



 (6.334)

yields

|∏1 − 1| ≤ 3.0 10−2, |∏2 − 2| ≤ 1.5 10−2, |∏3 − 3| ≤ 2.0 10−2 (6.335)

and we conclude that the three eigenvalues are real. A better bound on, say, ∏1 is obtained

with a similarity transformation that maximally contracts the disc around ∏1 but leaves it
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disjoint of the other discs. Multiplication of the first row of A by 10−2 and the first column

of A by 102 amounts to the similarity transformation

D−1AD =




1 −10−4 210−4

−0.5 2 10−2

1 −10−2 3



 (6.336)

from which we obtain the better |∏1 − 1| ≤ 3.0 10−4.

Corollary 6.71. A disjoint Gerschgorin disc of a real matrix contains one real eigen-

value.

Proof. For a real matrix all discs are centered on the real axis and there are no two

disjoint discs that contain ∏ = α + iβ and ∏ = α− iβ, β =/ 0. Hence β = 0. End of proof.

With a good similarity transformation Gerschgorin’s theorem may be made to do well

even on a triangular matrix. Consider the upper-triangular U,Uij = 1. Using diagonal

D,Dii = ≤n−i we have

DUD−1 =





1 ≤ ≤2 ≤3

1 ≤ ≤2

1 ≤
1



 (6.337)

and we can make the discs have arbitrarily small radii around ∏ = 1.

Gerschgorin’s theorem does not know to distinguish between a matrix that is only slightly

asymmetric and a matrix that is grossly asymmetric, and it is might be desirable to decouple

the real and imaginary parts of the eigenvalue bounds. For this we have

Theorem (Bendixon) 6.72. If real A = A(n× n) has complex eigenvalue ∏ = α+ iβ,

then α is neither more nor less than any eigenvalue of 1
2(A + AT ), and β is neither more

nor less than any eigenvalue of 1
2i(A−AT ).

Proof. As we did in the proof to Theorem 6.61 we write Ax = ∏x with x = u+iv, uTu =

vT v = 1, and decouple the complex eigenproblem into the pair of equations

2α =
1

2
uT (A+AT )u+

1

2
vT (A+AT )v, 2β = uT (A−AT )v. (6.338)

Now we think of u and v as being variable unit vectors. Matrix A+AT is symmetric, and it

readily results from Rayleigh’s Theorem 6.50 that α in eq.(6.338) can neither dip lower than
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the minimum nor can it rise higher than the maximum eigenvalues of 1
2(A + AT ). Matrix

A − AT is skew-symmetric and has purely imaginary eigenvalues of the form ∏ = ±i2σ.

Also, uT (A − AT )u = 0 whatever u is. Therefore we restrict v to being orthogonal to u,

and propose to accomplish this by v = −1/2β(A − AT ), with factor −1/2β guaranteeing

vT v = 1. Presently,

4β2 = −uT (A−AT )2u. (6.339)

Matrix −(A − AT )2 is symmetric and has nonnegative eigenvalues all of the form ∏ = σ2.

Rayleigh’s theorem assures us again that 4β2 is invariably located between the least and

most values of 4σ2, and the proof is done.

exercises

6.17.1. Show that the roots of ∏2 − a1∏ + a0 = 0 depend continuously on the coefficients.

Give a geometrical interpretation to ∏∏.

6.17.2. Use Gerschgorin’s theorem to show that the n× n

A =





α 1 1 1
1 α 1 1
1 1 α 1
1 1 1 α





is positive definite if α > n− 1. Compute all eigenvalues of A.

6.17.3. Use Gerschgorin’s theorem to show that

A =





5 −1
−1 4 2

1 −3 1
1 −2





is nonsingular.

6.17.4. Does

A =





2 1
−1 6 1

−1 10 1
−1 14 1

−1 18





have complex eigenvalues?

26



6.17.5. Consider

A =





1 −1
−1 4 −3

−3 8 −5
−5 12



 and D =





1
α

0.7
0.4



 .

Show that the spectrum of A is nonnegative. Form D−1AD and apply Gerschgorin’s theorem

to this matrix. Determine α so that the lower bound on the lowest eigenvalue of A is as high

as possible.

6.17.6. Nonnegative matrix A with row sums all being equal to 1 is said to be a stochastic

matrix. Positive, Aij > 0, stochastic matrix A is said to be a transition matrix. Obviously

e = [1 1 . . . 1]T is an eigenvector of transition matrix A for eigenvalue ∏ = 1. Use the

Gerschgorin circles of Theorem 6.64 to show that all eigenvalues of transition matrix A are

such that |∏| ≤ 1, with equality holding only for ∏ = 1. The proof that eigenvalue ∏ = 1

is of algebraic multiplicity 1 is more difficult, but it establishes a crucial property of A that

assures, by Theorem 6.46, that the Markov process An = An has a limit as n→1.

6.17.7. Let S = S(3 × 3) be a stochastic matrix with row sums all equal to ∏. Show that

elementary operations matrix

E =




1 1

1 1
1



 , E−1 =




1 −1

1 −1
1





is such that E−1SE deflates matrix S to the effect that

E−1SE =




A11 −A31 A12 −A32 0
A21 −A31 A22 −A32 0

A31 A32 ∏



 .

Apply this to

A =




2 3 2
1 2 4
5 1 1





for which ∏ = 7. Then apply Gerschgorin’s Theorem 6.64 to the leading 2×2 diagonal block

of E−1SE to bound the rest of the eigenvalues of S. Explain how to generally deflate a

square matrix with a known eigenvalue and corresponding eigenvector.
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6.17.8. Referring to Theorem 6.68 take

A =





1 −1
−1 4 −3

−3 8 −5
−5 12 −7

−7 16





and x = α[5 4 3 2 1]T . Fix α so that krk1 is lowest and make sure it is less than 1. Bound

kA−1k1 = kA−1ek1 and compare the bounds with the computed kA−1k1.

6.17.9. The characteristic equation of companion matrix

C =





−a0

1 −a1

1 −a2

1 −a3





is z4 + a3z3 + a2z2 + a1z + a0 = 0. With diagonal matrix D,Dii = αi > 0, obtain

D−1CD =





−a0α4/α1

α1/α2 −a1α4/α2

α2/α3 −a2α4/α2

α3/α4 −a3α4/α4



 .

Recall Gerschgorin’s theorem to deduce from it that root z of a polynomial equation of

degree n is of modulus

|z| ≤ max(
αi
αi+1

+ |ai|
1

αi+1
), i = 0, 1, . . . , n− 1

if α0 = 0 and αn = 1.

6.17.10. For matrix A define σi = |Aii| −
P

i =/ j |Aij|. Show that if σi > 0 for all i, then

A−1 = B is such that |Bij| ≤ σ−1
i .

6.17.11. Prove Schur’s inequality:

nX

i=1

|∏i|2 ≤
nX

i,j=1

|Aij|2

where ∏i i = 1, 2, . . . , n are the eigenvalues of A.

6.17.12. Prove Browne’s theorem: If A = A(n × n) is real, then |∏(A)|2 lies between the

smallest and largest eigenvalues of AAT .
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6.17.13. Show that if A is symmetric and positive definite, then its largest eigenvalue is

bounded by

max
i

|Aii| ≤ ∏n ≤ nmax
i

|Aii|.

6.17.14. Show that if A is diagonalizable, A = XDX−1 with Dii = ∏i, then for any given

scalar ∏ and unit vector x

min
i

|∏i − ∏| ≤ kXk kX−1k krk

where r = Ax− ∏x. Hint: Write x = Xx0.

6.17.15. Prove the Bauer-Fike theorem: If A is diagonalizable, A = XDX−1, Dii = ∏i then

for any eigenvalue ∏0 of A0 = A+ E,

min
i

|∏i − ∏0| ≤ kX−1EXk ≤ kXk kX−1k kEk.

6.17.16. Show that if A and B are positive definite, then C,Cij = AijBij , is also positive

definite.

6.17.17. Show that every A = A(n×n) with det(A) = 1 can be written as A = (BC)(CB)−1.

6.17.18. Prove that real A(n× n) = −AT , n > 2, has an even number of zero eigenvalues if

n is even and an odd number of zero eigenvalues if n is odd.

6.17.19. Diagonal matrix I 0 is such that I 0ii = ±1. Show that whatever A, I 0A + I is

nonsingular for some I 0. Show that every orthogonal Q can be written as Q = I 0(I −S)(I +

S)−1, where S = −ST .

6.17.20. Let ∏1 and ∏n be the extreme eigenvalues of positive definite and symmetric matrix

A. Show that

1 ≤ xTAx

xTx

xTA−1x

xTx
≤ (∏1 + ∏n)2

4∏1∏n
.

6.18 The Ritz reduction

Matrices raised by such practices as computational mechanics are of immense order n,

but usually only few eigenvalues at the lower end of the spectrum are of interest. We may
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know a subspace of dimension m, much smaller than n, in which good approximations to

the first m0 ≤ m eigenvectors of the symmetric A = A(n× n) can be found.

The Ritz reduction method tells us how to find optimal approximations to the first m0

eigenvalues of A with eigenvector approximations confined to the m-dimensional subspace

of Rn, by solving an m×m eigenproblem only.

Let v1, v2, . . . , vm be an orthonormal basis for subspace V m of Rn. In reality the basis

for V m may not be originally orthogonal but in theory we may always assume it to be so.

Suppose that we are interested in the lowest eigenvalue ∏1 of A = AT only, and know that a

good approximation to the corresponding eigenvector x1 lurks in V m. To find x ∈ V m that

produces the eigenvalue approximation closest to ∏1 we follow Ritz in writing

x = y1v1 + y2v2 + · · · + ymvm = V y (6.340)

where V = [v1v2 . . . vm], and where y = [y1 y2 . . . ym]T , and seek y =/ o in Rm that minimizes

ρ(y) =
xTAx

xTx
=
yTV TAV y

yT y
. (6.341)

Setting gradρ(y) = o produces

(V TAV )y = ρy (6.342)

which is only an m×m eigenproblem.

Symmetric matrix V TAV has m eigenvalues ρ1 ≤ ρ2 ≤ · · · ≤ ρm and m corresponding

orthogonal eigenvectors y1, y2, . . . , ym. According to Rayleigh’s theorem ρ1 ≥ ∏1 and is as

near as it can get to ∏1 with x ∈ V m. What about the other m− 1 eigenvalues? The next

two theorems clear up this question.

Theorem (Poincaré) 6.73. Let the eigenvalues of the symmetric n × n matrix A be

∏1 ≤ ∏2 ≤ · · · ≤ ∏n. If matrix V = V (n × m), m ≤ n, is with m orthonormal columns,

V TV = I, then the m eigenvalues ρ1 ≤ ρ2 ≤ · · · ≤ ρm of the m×m eigenproblem

V TAV y = ρy (6.343)

are such that

∏1 ≤ ρ1 ≤ ∏n−m+1, ∏2 ≤ ρ2 ≤ ∏n−m+2, . . . , ∏m−1 ≤ ρm−1 ≤ ∏n−1, ∏m ≤ ρm ≤ ∏n. (6.344)
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Proof. Let V = [v1v2, . . . , vm] and call V m the column space of V . Augment the basis

for V m to the effect that v1, v2, . . . , vm, . . . , vn is an orthonormal basis for Rn and start with

ρm = max
y

yTV TAV y

yT y
, y ∈ Rm (6.345)

or

ρm = max
x

xTAx

xTx
, x ∈ V m. (6.346)

This, in turn, is equivalent to

ρm = max
x

xTAx

xTx
, xT vm+1 = · · · = xT vn = 0 (6.347)

and Fischer’s theorem tells us that ρm ≥ ∏m. The next Ritz eigenvalue ρm−1 is obtained

from the maximization under the additional constraint yT y1 = xTV y1 = xTx01, x ∈ V m,

ρm−1 = max
x

xTAx

xTx
, xTx01 = xT vm+1 = · · · = xT vn = 0 (6.348)

and by Fischer’s theorem ρm−1 ≥ ∏m−1. Continuing this way we prove the m left-hand

inequalities of the theorem.

The second part of the theorem is proved starting with

ρ1 = min
x

xTAx

xTx
, xT vm+1 = · · · = xT vn (6.349)

and with the assurance by Fischer’s theorem that ρ1 ≤ ∏n−m+1, and so on. End of proof.

If subspace V m is given by the linearly independent v1, v2, . . . , vm and if a Gram-Schmidt

orthogonalization is impractical, then we still write x = V y and have that

ρ(y) =
xTAx

xTx
=
yTV TAV y

yTV TV y
(6.350)

with a positive definite and symmetric V TV . Setting gradρ(y) = o yields now the more

general

(V TAV )y = ρ(V TV )y. (6.351)

The first Ritz eigenvalue ρ1 is obtained from the minimization of ρ(y), the last ρm from

the maximization of ρ(y), and hence the extreme Ritz eigenvalues are optimal in the sense

31



that ρ1 comes as near as possible to ∏1, and ρm comes as close as possible to ∏n. All the

Ritz eigenvalues have a similar property and are optimal in the sense of

Theorem 6.74. Let A be symmetric and have eigenvalues ∏1 ≤ ∏2 ≤ · · · ≤ ∏n. If

ρ1 ≤ ρ2 ≤ · · · ≤ ρm are the Ritz eigenvalues with corresponding orthonormal eigenvectors

x01, x
0
2, . . . , x

0
m, then for k = 1, 2, . . . ,m

ρk − ∏k = min
x∈Vm

µ
xTAx

xTx
− ∏k

∂
, xTx01 = · · · = xTx0k−1 = 0 (6.352)

and

∏n+1−k − ρm+1−k = min
x∈Vm

µ
∏n+1−k −

xTAx

xTx

∂
, xTx0m = · · · = xTx0m+2−k = 0. (6.353)

Proof. For a proof to the first part of the theorem we consider the Ritz eigenvalues as

obtained through the minimization

ρk = min
y

yTV TAV y

yT y
, yT y1 = · · · = yT yk−1 = 0 (6.354)

where V = V (n×m) = [v1v2, . . . , vm] has m orthonormal columns. Equivalently

ρk = min
x∈Vm

xTAx

xTx
, xTx01 = · · · = xTx0k−1 = 0 (6.355)

where x = V y, and x0j = V yj . By Poincaré’s theorem ρk ≥ ∏k and hence the minimization

lowers ρk as much as possible to bring it as close as possible to ∏k under the restriction that

x ∈ V m and xTx1 = · · · = xTx0k−1 = 0.

The second part of the theorem is proved similarly by considering the Ritz eigenvalues

as obtained by the maximization

ρm+1−k = max
x∈Vm

xTAx

xTx
, xTx0m = · · · = xTx0m+2−k (6.356)

the details of which are left as an exercise. End of proof.

For any given Ritz eigenvalue ρj and corresponding approximate eigenvector x0j we may

compute the residual vector rj = Axj 0 − ρjxj 0 and are assured that the interval |ρj − ∏| ≤

krjk/kxj 0k contains an eigenvalue of A. The bounds are not sharp but they require no

32



knowledge of the eigenvalue distribution, nor that xj 0 be any special vector and ρj any

special number. If such intervals for different Ritz eigenvalues and eigenvectors overlap, then

we know that the union of overlapping intervals contain an eigenvalue of A. Whether or not

more than one eigenvalue is found in the union is not revealed to us by this simple error

analysis.

An error analysis based on Corollary 6.63 involving a residual matrix rather than residual

vectors removes the uncertainty on the number of eigenvalues in overlapping intervals.

Let X 0 = X 0(n ×m) = [x01x
0
2 . . . x

0
m], D the diagonal Dii = ρi, and define the residual

matrix

R = AX 0 −X 0D. (6.357)

Obviously X 0TR = X 0TAX 0 −D = O, since the columns of X 0 are orthonormal. Augment

X 0 so that Q = [X 0X
00
] is an orthogonal matrix and form

QTAQ =

"
X 0TAX 0 X 0TAX

00

X 00TAX 0 X 00TAX
00

#

=

"
D X 00TR

RTX
00

X 00TAX
00

#

. (6.358)

The maximal eigenvalue of X 00TRRTX
00

is less than the maximal eigenvalue of RRT or RTR.

Hence by Corollary 6.63 if ≤2 is the largest eigenvalue of RTR, then the union of intervals

|ρi − ∏| ≤ |≤| i = 1, 2, . . . ,m contains m eigenvalues of A.

Example. Let x be an arbitrary vector in Rn, and let A = A(n × n) be a symmetric

matrix. In this example we want to examine the Krylov sequence x,Ax, . . . , Am−1x as a

basis for V m. An obvious difficulty with this sequence is that the degree of the minimal

polynomial of A can be less than n and the sequence may become linearly dependent for

m−1 < n. Near-linear dependence among the Krylov vectors is more insidious, and we shall

look also at this unpleasant prospect.

To simplify the computation we choose A = A(100×100) to be diagonal, with eigenvalues

∏i,j =
1

2.5
(i2 + 1.5j2) i = 1, 2, . . . , 10 j = 1, 2, . . . , 10 (6.359)

so that the first five are 1., 2.2, 2.8, 4.0, 4.2; and the last one is 100.0. It occurs to us

to take x =
√
n/n[1 1 . . . 1]T , and we normalize Ax, A2x, . . . , Am−1x to avoid very large

vector magnitudes.
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The table below lists the four lowest Ritz eigenvalues computed from V m with a Krylov

basis, as a function of m.
m ρ1 ρ2 ρ3 ρ4

4 7.615 31.47 61.83 91.85

6 4.141 17.08 36.78 58.94

8 2.680 10.57 23.42 39.38

12 1.469 5.049 11.19 19.63.

Since the basis of V m is not orthogonal, the Ritz eigenproblem is here the general V TAV y =

ρV TV y and we solved it with a commercial procedure. For m larger than 12 the eigenvalue

procedure returns meaningless results. Computation of the eigenvalues of V TV itself revealed

a spectral condition number ∑(V TV ) = (1.5m)! which means ∑ = 6 · 5 1015 for m = 12, and

all the high accuracy used could not save V TV from singularity.

exercises

6.18.1. For matrix A

A =





1 −1
−1 4 −3

−3 8 −5
−5 12





determine α1 and α2 in x = α1[1 1 0 0]T + α2[0 0 1 1]T so that xTAx/xTx is minimal.

Answers

section 6.1

6.1.1. ∏ = 2, α1 = −α2 = ±
√

2/2 or ∏ = 4, α1 = α2 = ±
√

2/2.

6.1.2. Yes, ∏ = −2.

6.1.3. Yes, ∏ = 1/3.

section 6.2

6.2.1. ∏1 = ∏2 = ∏3 = ∏4 = 0, x = α1e1 + α3e3 for arbitrary α1, α2.

6.2.2.

for A : ∏1 = 1, x1 =




1
0
0



 ; ∏2 = −2, x2 =




−1
3
0



 ; ∏3 = 1, x3 =




7
4
10



 .
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for B : ∏1 = ∏2 = ∏3 = 1, x = e1.

for C : ∏1 = ∏2 = 1, x = α1e1 + α2e2; ∏3 = 2, x3 =




2
−3
1



 .

section 6.3

6.3.1.
∑

1− ∏ 1 + ∏
−1 + 2∏ −1− ∏

∏
→

∑
1− ∏ 1 + ∏

1 1 + ∏

∏
→

∑−∏ 0
1 1 + ∏

∏
.

6.3.2. −∏3 + α2∏2 − α1∏ + α0 = 0.

6.3.5. f(A) = ∏2
1 + ∏2

2.

6.3.6.

for A : ∏1 = 1, x1 =
∑

1
−2

∏
; ∏2 = 4, x2 =

∑
1
1

∏
.

for B : ∏ = 1 ± i, x1 =
∑

1
±i

∏
.

for C : ∏1 = 0, x1 =
∑
1
i

∏
; ∏2 = 2, x2 =

∑
1
−i

∏
.

for D : ∏1 = ∏2 = 0, x1 =
∑−i

1

∏
.

6.3.7.

for A : ∏1 = −1, x1 =




−1
0
1



 ; ∏2 = 0, x2 =




0
1
0



 ; ∏3 = 1, x3 =




1
0
1



 .

for B : ∏1 = 0, x1 =




0
1
0



 ; ∏2 = i, x2 =




1
0
i



 ; ∏3 = −i, x3 =




1
0
−i



 .

6.3.8. α1 = α2 = 2.

6.3.9 α2 < 1/4.

6.3.10. α = 1, ∏ = 0.

6.3.11. ∏ = 2.

6.3.12. ∏ = 1.
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6.3.13. An eigenvector of A for ∏ = 1.

section 6.4

6.4.1. Yes. α1 = −3 + 4i, α2 = 2− 3i, α3 = 5− 3i.

6.4.2. Yes. No, v2 = (1 + i)v1.

6.4.3. α = 1 + i.

6.4.4. q2 = [1 − i 2i].

section 6.7

6.7.1. α1 = α2 = −1.

section 6.9

6.9.3. 1× 1, 2× 2, 3× 3, 3× 3, 3× 3, 4× 4 blocks.

6.9.5. (A− I)x1 = o, (A− I)x2 = x1, (A− I)x3 = x2, X = [x1 x2 x3].

X =




2 −1 −2
1 0 0
0 −1 −3



 , X−1AX =




1 1

1 1
1



 .

6.9.8.

X =




α β ∞

α β
α



 .

section 6.10

6.10.5. β = 0.

section 6.13

6.13.1. D2 − I = O, (R− I)2(R + I) = O.

6.13.2. A2 − 3A = O.

6.13.3. (A− ∏I)4 = O, (B − ∏I)3 = O, (C − ∏I)2 = O, D − ∏I = O.
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