
7. Conjugate gradients

7.1 A–orthogonal vectors

Throughout this chapter matrix A = A(n × n) is exclusively assumed to be positive

definite and symmetric. We know by now that it is of considerable interest to have matrix

P = P (n × m) so that PTAP = D is diagonal, one reason being that if matrix P is

square and D nonsingular, then A−1 = PD−1PT . Columns p1, p2, . . . , pn of matrix P in the

transformation PTAP = D are A-orthogonal; pTi Apj = 0 if i =/ j. Such are the eigenvectors

of A, which are not only A-orthogonal but moreover I-orthogonal. But eigenvectors are

expensive to compute. The triangular factorization A = LTDL of A also produces A-

orthogonal vectors inasmuch as L−TAL−1 = D.

In this chapter we explore the remarkable properties of a simple algorithm of recent

origin, dating from 1950, for the recursive generation of A-orthogonal vectors one after

another with only three vectors involved in each recursive step.

Definition. Let A be a positive definite and symmetric matrix. Vectors p and q are

A–orthogonal or A–conjugate if pTAq = qTAp = 0. I–orthogonal vectors are just orthogonal.

Theorem 7.1. The repetitive algorithm

p0 = r0 =/ o , arbitrary

1

αi =
rTi ri
pTi Api

=
pTi ri
pTi Api

ri+1 = ri − αiApi

βi = −
rTi+1Api
pTi Api

=
rTi+1ri+1

rTi ri
pi+1 = ri+1 + βipi

(7.1)

in which matrix A is a symmetric and positive definite generates vector sequences

r0, r1, . . . , rm and p0, p1, . . . , pm such that

pTi Apj = 0

rTi rj = 0
i =/ j · (7.2)

Proof. By induction. We readily verify that rT0 r1 = 0. Suppose that rTi rj = 0 i =/ j, and

pTi Apj = 0 i =/ j hold for r0, r1, . . . , rk and p0, p1, . . . , pk−1. Under these circumstances

rTi Api = pTi Ari = pTi A(pi − βi−1pi−1) = pTi Api, i = 0, 1, . . . , k − 1. (7.3)

The next vector pk is given by

pk = rk + βk−1pk−1 , βk−1 = − rTk Apk−1

pTk−1Apk−1
(7.4)

and pTk−1Apk = 0. Our assumption that pTj Apk−1 = 0, j < k − 1 leads to

pTj Apk = pTj Ark + βk−1p
T
j Apk−1 = pTj Ark , j = 0, 1, . . . , k − 2. (7.5)

But

Apj =
1

αj
(rj − rj+1) (7.6)

and

pTj Apk = rTk Apj =
1

αj
(rTk rj − rTk rj+1) = 0 j = 0, 1, . . . , k − 2 (7.7)

since rTi rj = 0 i, j = 0, 1, . . . , k i =/ j. The newly constructed pk is A–orthogonal to all

previous p0, p1, . . . , pk−1. The next vector rk+1 is given by

rk+1 = rk − αkApk , αk =
rTk rk
rTk Apk

=
rTk rk
pTkApk

(7.8)

2

and rTk+1 rk = 0. To prove that rTk+1rj = 0 j = 0, 1, 2, . . . , k − 1 we form

rTj rk+1 = rTj rk − αkr
T
j Apk = −αkr

T
j Apk (7.9)

and substitute into it rj = pj − βj−1pj−1,

rTj Apk = pTkA(pj − βj−1pj−1) = 0 j = 1, 2, . . . , k − 1 (7.10)

because pTi Apj = 0 i =/ j.

Hence starting with rT1 r0 = 0 we have that rT2 r1 = rT2 r0 = 0 and so on, or generally

rTi rj = 0 i =/ j; and pT1 Ap0 = 0, pT2 Ap1 = pT2 Ap0 = 0, or generally pTi Apj = 0 i =/ j.

We have but to prove that pTi ri = rTi ri and that −rTi+1Api/p
T
i Api = rTi+1ri+1/rTi ri.

From pj = rj + βj−1pj−1 it results that

pj = rj + ∞j−1rj−1 + · · · + ∞0r0 (7.11)

where

∞j−1 = βj−1, ∞j−2 = βj−1βj−2, . . . , ∞0 = βj−1 · · ·β1β0 (7.12)

and since rTj ri = 0 if i < j, then rTj pj = rTj rj .

From ri+1 = ri − αiApi we have that

rTi+1ri+1 = −αir
T
i+1Api = − rTi ri

pTi Api
rTi+1Api (7.13)

and rTi+1ri+1/rTi ri = −rTi+1Api/p
T
i Api. End of proof.

Corollary 7.2. Among vectors pi and ri i = 1, 2, . . . ,m generated by the algorithm of

Theorem 7.1, the following relationships hold:

1. pj = krjk2
µ

1

kr0k2
r0 +

1

kr1k2
r1 + · · · +

1

krjk2
rj

∂
.

2. pTi rj = 0 , i < j.

3. pTi rj = rTi ri , i ≥ j.

4. rTi Apj = 0 , |i− j| > 1.

5. rTi Api = pTi Api.

3

6. pTi r0 = pTi r1 = · · · = pTi ri = rTi ri.

Proof.

1. Results from a recursive application of

pj = rj + βj−1pj−1, βj−1 = rTj rj/r
T
j−1rj−1.

2. An immediate result of 1.

3. An immediate result of 1.

4. Results from ri+1 = ri − αiApi and rTi rj = 0 i =/ j.

5. A direct consequence of ri+1 = ri − αiApi.

6. An immediate result of 1.

End of proof.

Theorem 7.3. Vectors pi and ri generated in Theorem 7.1 are such that:

1. kpik2 = krik4
µ

1

kr0k2
+ · · · +

1

krik2
∂
.

2. pTi pj = krjk2kpik2/krik2 , i ≤ j.

3. krik ≤ kpik.

Proof.

1. An immediate consequence of statement 1, Corollary 7.2.

2. An immediate consequence of statement 1, Corollary 7.2 and the previous statement.

3. From statement 1 we have that

kpik = krik
µ krik2
kr0k2

+ · · · + 1
∂1/2

(7.14)

and hence kpik/krik ≥ 1. End of proof.

The following has far-reaching consequences and we devote a separate theorem to it:

Theorem 7.4. Vectors ri generated in Theorem 7.1 are such that:

rTi Arj = 0 , |i− j| > 1. (7.15)

4

Proof. Write

ri = pi − βi−1pi−1 , rj = pj − βj−1pj−1 (7.16)

to have

rTj Ari = pTi Apj − βi−1p
T
j Api−1 − βj−1p

T
j−1 pi + βi−1βj−1p

T
j−1Api−1 (7.17)

which equals zero if i =/ j, i− 1 =/ j, and j − 1 =/ i. End of proof

7.2 Inversion and tridiagonalization

The iterative algorithm in Theorem 7.1 comes to an end when rm = o.

Lemma 7.5. Let v1, v2, . . . , vn be the n orthonormal eigenvectors of the symmetric and

positive definite A, and let V m be the subspace of Rn that is spanned by v1, v2, . . . , vm. Then,

if r0 ∈ V m so are rj and pj.

Proof. If r0 and p0 are in V m, then so is Ap0, and consequently r1 and p1, and so on.

End of proof.

Theorem 7.6. Let V m be the subspace of Lemma 7.4. If r0 ∈ V m, then rm = o.

Proof. Since r0, r1, . . . , rm−1 are orthogonal in an m-dimensional vector space, the next

orthogonal is zero; there are no more than m nonzero orthogonal vectors in V m. End of

proof.

Theorem 7.7. If the symmetric and positive definite matrix A has m distinct eigenval-

ues, then rm = o for any initial r0 =/ o.

Proof. Expanded in terms of the n orthonormal eigenvectors v1, v2, . . . , vn of A

p0 = r0 = α1v1 + α2v2 + · · · + αnvn (7.18)

and we group it as

p0 = r0 = w1 + w2 + · · · + wm (7.19)

where Awi = ∏iwi, Awj = ∏jwj , ∏i =/ ∏j . Every rj and pj created by the algorithm of

Theorem 7.1 is in the m dimensional space spanned by w1, w2, . . . , wm, and since the r’s are

orthogonal by the argument of the previous theorem rm = o. End of proof.

5

Theorem 7.8. If p0, p1, . . . , pn−1 are nonzero A–orthogonal vectors, then

A−1 =
1

pT0 Ap0
p0p

T
0 +

1

pT1 Ap1
p1p

T
1 + · · · +

1

pTn−1Apn−1
pn−1p

T
n−1. (7.20)

Proof. Write P = [p0 p1 . . . pn−1]. Then PTAP = D is diagonal with Dii = pTi Api.

Since A is positive definite Dii > 0 and P−1A−1P−T = D−1 or A−1 = PD−1PT , which

when written out is the equation in the theorem. End of proof.

Theorem 7.9. Let R = [r0 r1 . . . rm−1]. Then

RTAR = T (m×m), RTR = D(m×m) (7.21)

where T is tridiagonal and D is diagonal.

Proof. This is an immediate consequence of theorems 7.1 and 7.4. End of proof.

The choice of r0, r1, . . . , rm−1 as basis for V m in the Ritz method results in the m×m

eigenproblem

Ty = µDy (7.22)

for tridiagonal T = RTAR and diagonal D = RTR. Reduction of the Ritz eigenproblem

to that of a tridiagonal matrix is due to Lanczos to whom we owe the recursive scheme of

Theorem 7.1. Deeper discussion of the Lanczos method is deferred to the next chapter.

exercises

7.2.1. Let Q = [q1 q2 . . . qn] be such that for given A = AT (n×n), T = QTAQ is tridiagonal.

Write QT = AQ,



 q1 q2 q3








α1 β2

β2 α2 β3

β3 α2



 =



Aq1 Aq2 Aq3





and show that the choice of q1 determines Q and T , if βj > 0.

7.3 Iterative solution of Ax = f

Let Ax = f be a system of linear equations with a positive definite and symmetric matrix

A. If we choose an arbitrary vector x0 and in Theorem 7.1 set p0 = r0 = f − Ax0, then we

6

find that
r1 = r0 − α0Ap0

= f −A(x0 + α0p0)

= f −Ax1

(7.23)

where x1 = x0 + α0p0. Hence the conjugate gradient algorithm:

p0 = r0 = f −Ax0 , x0 arbitrary

αi = rTi ri/p
T
i Api

xi+1 = xi + αipi

ri+1 = ri − αiApi

βi = rTi+1ri+1/r
T
i ri

pi+1 = ri+1 + βipi

(7.24)

for the iterative solution of Ax = f . Since in this algorithm r0 = f − Ax0, r1 = f −

Ax1, . . . , rk = f −Axk, when rk = o then xk is the solution of Ax = f .

Some comments on the above algorithm are in order here.

Remark 1. The conjugate gradient algorithm requires only one matrix vector multi-

plication, namely Api, in each iterative cycle and it is therefore reasonable to compute the

residual vector ri recursively rather than from ri = f − Axi, which requires the additional

matrix vector product Axi. In fact the algorithm does not require A explicitly but only

Api which can often be systematically constructed from minimal data. Because matrix A

itself is not needed in the conjugate gradient algorithm, sparseness is more efficiently taken

advantage of than in direct solution procedures based on Gauss elimination.

The conjugate gradient algorithm needs only four vectors xi, pi, ri, and Api for its exe-

cution, and if the procedure to form Api is concise, then the storage requirement is much

lower than that of the Gauss algorithm for the solution of the same Ax = f .

Moreover, the huge finite element global stiffness matrix K consists of the assembly

of simple small element stiffness matrices, which allow Kp to be computed elementwise in

parallel.

Remark 2. An initial guess of the form x0 = αx does not result in a one-step conjugate

gradient solution of Ax = f , and it is therefore advisable to scale x0. Let x00 be arbitrary

7

and write x0 = αx00, r0 = f − αAx00 = f − αq0. Then

rT0 r0 = fT f − 2αfT q0 + α2qT0 q0 (7.25)

and the minimum of rT0 r0 with respect to α occurs at α = fT q0/qT0 q0. Now if x00 = αx, then

x0 = x.

In the finite element method a good initial guess can be furnished by a low-order dis-

cretization for later use in a higher-order, more accurate, approximation.

Remark 3. Diagonal system Dx = f, Dii =/ Djj , requires n conjugate gradient steps,

but the prescaling x = D−1
2x0 which results in

D−1
2DD−1

2x0 = Ix0 = D−1
2f (7.26)

creates a system that is solved in one step. It is found that scaling by diagonal matrix

D which transforms Ax = f into D−1
2AD−1

2x0 = D−1
2f such that (D−1

2AD−1
2)ii = 1 is

generally worth doing before entering the conjugate gradient algorithm.

More complicated prescaling schemes have been suggested to accelerate convergence, but

they mar the pristine simplicity of the algorithm.

Remark 4. Let V m be a subspace of Rn spanned by m eigenvectors of A. If f ∈ V m

and we start the conjugate gradient algorithm with x0 = o, r0 = p0 = f , then all generated

ri are in V m and termination occurs in no more than m steps. This means that, at least

in theory, the conjugate gradient algorithm can be applied to the solution of Ax = f with

a positive semi definite A provided that f is orthogonal to the nullspace of A. For then

Ax = f is consistent and r0 = p0 = Ax0 = f is in V m, the space spanned by eigenvectors

corresponding to the nonzero eigenvalues of A.

Consider for example Ax = f with

A =





1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 1




and f =





−1

1




. (7.27)

Matrix A is positive semidefinite with eigenvector v1 = [1 1 1 1 1]T corresponding to ∏1 = 0,

and fT v1 = 0. We verify that x0 = [−2 − 1 0 1 2]T is a particular solution of Ax = f and

its general solution is therefore x = x0 + αv1, for arbitrary scalar α.

8

Starting with x0 = [1 1 1 1 1]T we compute

p0 = r0 = f =





−1

1




, Ap0 =





−1
1

−1
1




,

rT0 r0 = 2

pT0 Ap0 = 2

α0 = 1

, x1 =





0
1
1
1
2





r1 =





−1

1




−





−1
1

−1
1




=





−1

1




,

rT1 r1 = 2

rT0 r0 = 2

β0 = 1

, p1 =





−1

1




+





−1

1




=





−1
−1

1
1





Ap1 =





−1

1




,

pT1 Ap1 = 2

rT1 r1 = 2

α1 = 1

, x2 =





0
1
1
1
2




+





−1
−1

1
1




=





−1
0
1
2
3




, r2 =





−1

1




−





−1

1




= o.

(7.28)

Another initial guess x0 would have produced another solution.

The reality of floating-point computations and round-offs is different and often unpleas-

ant. A simple example will obviate to us the treacherous effect round-off errors can have on

the workings of the otherwise theoretically pure and perfect conjugate gradient algorithm.

Matrix

A =





1 −1
−1 2 −1

.
−1 2 −1

−1 1









1 −1
−1 2 −1

.
−1 2 −1

−1 1




=





2 −3 1
−3 6 −4 1
1 −4 6 −4 1

1 −4 6 −3
1 −3 2





(7.29)

is positive semidefinite with a one-dimensional nullspace spanned by v1 = [1 1 . . . 1]T . We

propose to compute v1 as the solution of Ax = o using the conjugate gradient algorithm with

x0 = e1, for A = A(10×10). Table 7.1 lists the results of this numerical experiment for single

precision computation (machine round-off unit 0.5 10−6), while table 7.2 lists the results for

double precision computation (machine round-off unit 10−16). In these tables j denotes the

step index and φoj the angle between rj and r0. Theoretically, rj is in the 9-dimensional

space spanned by the nine eigenvectors corresponding to the nine nonzero eigenvalues of A,

and with exact arithmetic we should have r9 = o. Not in reality.

9

In table 7.1 orthogonality of the r vectors is seen to falter at j = 8 and r9 is far from zero.

Interestingly enough, if the iterative procedure is continued without interruption the residual

vector keeps decreasing and a good approximation to v1 eventually emerges. The actual

behavior of the conjugate gradients method observed in table 7.1 is alarming, suggesting

that the method is unstable and of little practical use, but we shall see in a wider range of

numerical experiments that for certain matrices possessing special properties, the method

of conjugate gradients can be a serious competitor to Gauss elimination. Table 7.1 shows

also how round-off errors cause the recursive residual rj to deviate from the true residual

−Axj . Any error analysis based on the magnitude of the residual must be done with the

true residual rather than the recursive one.

Higher computational accuracy makes the algorithm behave in a manner closer to the the-

oretical. In table 7.2 kr8k/kx8k = 10−2 but the next step brings the plunge to kr9k/kx9k =

10−9, and a very good approximation to v1. Continuation of the algorithm further improves

the accuracy.

Table 7.1: single precision computation

log10 log10 log10
j φoj krjk/kxjk kAxjk/kxjk k 1

kxjkxj − v1k
1 90.00 0.227 0.227 0.050
2 90.00 0.042 0.042 0.038
3 90.00 -0.161 -0.161 0.028
4 90.00 -0.292 -0.292 0.020
5 90.00 -0.410 -0.410 0.012
6 90.00 -0.650 -0.650 0.003
7 90.00 -1.134 -1.134 -0.013
8 89.63 -2.118 -2.119 -0.058
9 95.79 -1.152 -1.152 -0.071
10 51.52 -1.024 -1.024 -1.13
11 104.9 -1.675 -1.675 -2.20
12 90.37 -2.146 -2.146 -2.83
13 44.15 -2.650 -2.650 -3.38
14 81.42 -3.952 -3.956 -4.08
15 96.12 -4.529 -4.537 -4.36
16 74.27 -4.266 -4.253 -4.46
17 83.14 -5.772 -5.085 -4.66
18 115.7 -5.326 -5.311 -4.67
19 68.06 -5.916 -5.125 -4.73

10

Table 7.2: double precision computation

log10 log10 log10
j φoj krjk/kxjk kAxjk/kxjk k xj

kxjk − v1k
1 90.00 0.227 0.227 0.050
2 90.00 0.042 0.042 0.038
3 90.00 -0.161 -0.161 0.028
4 90.00 -0.292 -0.292 0.020
5 90.00 -0.410 -0.410 0.012
6 90.00 -0.650 -0.650 0.003
7 90.00 -1.134 -1.134 -0.013
8 90.00 -2.121 -2.121 -0.059
9 102.22 -9.075 -9.075 -10.26
10 64.92 -10.71 -10.71 -11.75
11 93.58 -11.52 -11.52 -12.16
12 39.75 -11.92 -11.92 -12.80
13 72.35 -12.94 -12.93 -13.50
14 104.44 -13.59 -13.59 -13.64
15 80.23 -14.08 -14.06 -13.88
16 90.80 -15.28 -14.84 -14.17
17 89.10 -14.92 -14.77 -14.00
18 95.05 -13.13 -13.13 -11.13
19 73.87 -12.63 -12.63 -11.13

exercises

7.3.1. Repeat the computation described in table 7.1. Terminate the iterative process after

n steps and use the last approximation as a new initial guess.

7.4 Variational interpretation

The conjugate gradient algorithm of the previous section for the iterative solution of

the linear system Ax = f with a positive definite and symmetric A can be interpreted as a

procedure for the minimization of the quadratic functional

φ(x) =
1

2
xTAx− xT f (7.30)

to locate its unique minimum φ(s) at x = s, As = f .

By the conjugate gradient method xi+1 = xi + αipi and therefore

φ(xi+1) = φ(xi + αipi) = φ(xi) +
1

2
α2
i p

T
i Api − αip

T
i ri. (7.31)

11

The minimum of f(xi+1) with respect to αi occurs at

αip
T
i Api − pTi ri = 0 (7.32)

or αi = pTi ri/p
T
i Api, the same αi as in Theorem 7.1. With this αi,

φ(xi+1)− φ(xi) = −1

2

(rTi ri)
2

pTi Api
(7.33)

and the conjugate gradient algorithm monotonically decreases φ(x). In this sense the conju-

gate gradient algorithm is a true iterative method; each step brings us closer to the solution.

In fact the minimization of φ(xi+1) is carried out not only in the direction of pi but in

the whole subspace of p0, p1, . . . , pi; and in this sense the search for the minimum is optimal.

Theorem 7.10. The conjugate gradient algorithm is optimal.

Proof. From

xi+1 = x0 + α0p0 + α1p1 + · · · + αipi (7.34)

it results that

φ(xi+1) = φ(x0) +
1

2
α2

0p
T
0 Ap0 +

1

2
α2

1p
T
1 Ap1 + · · · +

1

2
α2
i p

T
i Api

−α0p
T
0 r0 − α1p

T
1 r1 − · · · − αip

T
i ri. (7.35)

The best α’s are obtained from

@φi+1

@α0
=

@φi+1

@α1
= · · · =

@φi+1

@αi
= 0 (7.36)

or
α0p

T
0 Ap0 − pT0 r0 = 0

α1p
T
1 Ap1 − pT1 r0 = 0

...

αip
T
i Api − pTi r0 = 0.

(7.37)

Since pTi r0 = pTi ri, the α’s are precisely those of the conjugate gradient method and xi+1 =

xi + αipi. End of proof.

12

Each step of the conjugate gradient algorithm can be construed as a two-dimensional

minimization of φ(x) to select the optimal αi+1 and βi. Indeed, if we write

xi+1 = xi + αipi = xi + αi(ri + βi−1pi−1)

= xi + αiri + (αiβi−1)pi−1

(7.38)

and minimize φ(xi+1) with respect to both αi and βi−1 we obtain the conjugate gradients’

expressions for the two scalars.

A geometrical interpretation of the two-dimensional conjugate gradient minimization is

shown in Fig. 7.1.

Fig. 7.1

The length of residual vector ri is not reduced monotonically by the conjugate gradient

algorithm, but

Theorem 7.11. The conjugate gradient approximations x0, x1, . . . , xi are distinct, and

φ(xi+1)− φ(xi) = −1

2
αikrik < 0 (7.39)

so that φ(xi+1) < φ(xi).

Proof. Since

kpik2 = krik4
µ
kr0k−2 + kr1k−2 + · · · + krik−2

∂
(7.40)

13

pi =/ o if r0 =/ o, r1 =/ o, . . . , ri =/ o, and

kxi+1 − xik = αikpik =
krik2kpik
pTi Api

=/ 0. (7.41)

From xi+1 = xi + αipi we have that

φ(xi+1)− φ(xi) =
1

2
α2
i p

T
i Api − αip

T
i ri (7.42)

which with pTi ri = rTi ri and αi = rTi ri/p
T
i Api produces the first inequality in the theorem.

End of proof.

The next theorem is more forceful.

Theorem 7.12. At each step of the conjugate gradient method the error vector ei = s−xi
is reduced in length. In fact

kei+1k2 − keik2 = − pTi pi
pTi Api

(eTi+1Aei+1 + eTi Aei). (7.43)

Proof. Because the conjugate gradient algorithm terminates in a finite number of steps

we may write

s = x0 + α0p0 + α1p1 + · · · + αmpm (7.44)

which with

xi = x0 + α0p0 + · · · + αi−1pi−1 (7.45)

becomes

ei = αipi + αi+1pi+1 + · · · + αmpm. (7.46)

Consequently, since pTi Apj = 0, i =/ j

eTi Aei = α2
i p

T
i Api + · · · + α2

mp
T
mApm (7.47)

or with αi = krik2/pTi Api

eTi Aei = αikrik2 + · · · + αmkrmk2. (7.48)

On the other hand, since xi+1 = xi + αipi, then

−ei+1 = −ei + αipi (7.49)

14

and

kei+1k2 = keik2 + α2
i kpik2 − 2αip

T
i ei (7.50)

or, by eq. (7.46)

kei+1k2 = keik2 − α2
i kpik2 − 2αi(αi+1p

T
i pi+1 + · · · + αmp

T
i pm) (7.51)

which with

pTi pj = krjk2kpik2/krik2 i ≤ j (7.52)

becomes

kei+1k2 = keik2 −
pTi pi
pTi Api

(αikrik2 + 2αi+1kri+1k2 + · · · + 2αmkrmk2) (7.53)

or

kei+1k2 = keik2 −
pTi pi
pTi Api

(α2
i p

T
i Api + 2α2

i+1p
T
i+1Api+1 + · · · + 2α2

mp
T
mApm) (7.54)

from which, using eq. 7.46, the equality of the theorem readily results. End of proof.

exercises

7.4.1. Consider the iterative method whereby x1 = x0 + α0r0, r0 = f − Ax0. Determine α0

by the condition that ρ2
1(α0) = rT1 r1 is minimal with respect to α0.

7.5 Practicalities

How does the conjugate gradient algorithm compare with Gauss elimination for the

solution of the linear system Ax = f with a positive definite and symmetric A? In two

very fundamental ways Gauss elimination is superior: the arithmetical work it requires to

solve the system is a known function of such explicit parameters as bandwidth and number of

equations, and is therefore predictable; and it is numerically stable or insensitive to round-off

errors. Vast theoretical and numerical experience suggests that the round-off errors incurred

during the Gauss solution of the linear system is comparable with the round-off error suffered

by the system just by storage.

The drawbacks of Gauss elimination are that its execution requires the coefficient matrix

to be in tabular form, necessitating complicated and costly programming expedients to make

15

it efficient in the presence of sparseness, and it is therefore not well-suited to take advantage

of the highly structured matrices of mathematical physics that are often compactly described

by a formula or an algorithm.

Generally, Gauss elimination is also faster. The number of steps needed with conjugate

gradients depends, as we shall soon see, on the intrinsic nature of A and the accuracy of the

arithmetic, and cannot be accurately predicted. On the rough assumption that n conjugate

gradient steps are needed to solve an n× n system of linear equations of half bandwidth k,

some 2kn2 arithmetical operations are required by the algorithm, while Gauss elimination

completes the same solution in only 1
2k

2n operations.

Storagewise the conjugate gradient algorithm has the marked advantage over Gauss

elimination in that it does not require matrix A itself but only the product Ap, and this

matrix vector multiplication can be done concisely and efficiently, avoiding sparseness zero

operations. Repetitiveness and composition, common in finite difference and finite element

matrices, is fully exploited when forming Ap and the storage requirements for A can be mini-

mal. The algorithm is simple to program and exacts little overhead. Symmetries manifested

in repeated eigenvalues are naturally taken advantage of by the algorithm in reducing the

number of iterations for a solution.

But the decisive advantage of the conjugate gradients algorithm–its true salvation–comes

from its potent iterative nature and its fast convergence in certain recognized circumstances.

A theoretical analysis of the algorithm deeper than that of the previous four sections is too

copious for this book, but we should be able to form a balanced opinion on the workings,

practicalities, failings, and worth of the algorithm as a practical tool for the solution of

the large systems of linear equations of mathematical physics by looking at some carefully

designed numerical experiments.

Symmetric matrix A is described by its n eigenvalues and the corresponding n orthogonal

eigenvectors. In Chapter 3 we considered the finite difference matrices resulting from the

discretization of the one-dimensional, second- and fourth-order equations– d2u/dx2 = f(x)

and d4u/dx4 = f(x) with various physically plausible boundary conditions. Stiffness matrix

A = A(n × n) for the one-dimensional second-order boundary value problem is with an

16

eigenvalue distribution close to

∏i = ∏1i
2 , i = 1, 2, . . . , n (7.55)

and that of the fourth-order problem with eigenvalue distribution close to

∏i = ∏1i
4 , i = 1, 2, . . . , n. (7.56)

We start our numerical experiments with an examination of the performance of the

conjugate gradient algorithm on systems of equations with such matrices, assuming that A

is the diagonal Dii = ∏i = iα with α ranging from 0.1 to 4. As starting vectors we choose

p0 = r0 = [1 1 . . . 1]T and compute the error ej = s− xj at step j from s− xj = A−1rj .

Figure 7.2 shows the reduction of kejk =
q
eTj ej as iteration proceeds through its cycles.

Computation described in this figure is done in single precision (round-off error unit u =

0.5 10−6) for a 20× 20 system with a coefficient matrix having the eigenvalues ∏i = iα. The

two most striking features of Fig. 7.2 is that the conjugate gradient algorithm is capable of

producing good approximate solutions in fewer than n steps even for matrices with distinct

eigenvalues if they are clustered; and that round-off errors can have a marked effect in

delaying convergence in ill-conditioned circumstances.

For α = 0.1

∏1 = 1., ∏2 = 1.0718, . . . , ∏19 = 1.3424, ∏20 = 1.3493 (7.57)

and convergence is nearly linear and of such impressive rate that kejk gets to be 10−8 in less

than n/3 steps. As α in ∏i = iα is increased convergence slows down and for α = 2, n steps

bring a mere kejk = 10−1. Continuation of the iteration beyond n cycles brings after a few

additional steps a sudden drop in the error. Convergence after more than n steps is clearly

the insidious work of round-off errors destroying orthogonalities and A-orthogonalities. This

phenomenon becomes more pronounced for α = 4. Here even extra n steps barely reduce

the error, but a few more steps bring a nearly vertical decline in kejk.

Higher, or extended precision (round-off unit u = 10−32) computations have a decisive

effect only after n steps as seen in Fig. 7.3. For α ≤ 1 use of this extreme (and costly)

accuracy does not seem to alter the convergence pattern of the algorithm. For α > 1

17

Fig. 7.2

convergence is still nearly the same for single and extended precision computations, but

termination occurs here invariably at n steps. Slow convergence is due to the nature of the

matrix, and round-off errors only stretch it out beyond n steps.

Fast convergence of the conjugate gradient algorithm in cases of matrices spectrally close

to the identity implies that accurate matrix inversion is wasteful in such cases, and in this

lies the hope of the algorithm.

The conjugate gradient algorithm is of little practical interest for the small finite differ-

ence matrices that arise in the discretization of one-dimensional boundary value problems.

It is the large multi-dimensional discretizations we are after.

From previous experience we have an indication that the theoretical convergence of the

conjugate gradient algorithm depends on the eigenvalue spread of matrix A, that is on

∏n/∏1, as well as on their distribution. To separate the two effects we experiment next with

a diagonal matrix A with eigenvalues recursively given by

∏1 = ∏1 , ∏i+1 = ∏i + ∏iα i = 1, 2, . . . , n− 1 (7.58)

18

Fig. 7.3

in which ∏ and α are two parameters. We have for this spectrum that

∏n = ∏1 + ∏(1α + 2α + · · · + (n− 1)α) (7.59)

and for any chosen ∏1 and α we fix ∏ so that ∏n = 1 and ∏n/∏1 = ∏−1
1 . In this way ∏1

determines the spread of the eigenvalues and α their distribution. Figure 7.4 shows this

spectrum for α = 0, α = 1, α = 2 and α = 4 for the fixed values of n = 100 and ∏1 = 10−4.

The choice α = 0 produces a uniform eigenvalue distribution while an increase in α causes

the eigenvalues to crowd near ∏1.

Figures 7.5 to 7.9 are for α that grows from 0 to 2, and in each figure ∑ = ∏n/∏1 is varied

between 101 and 106. Computation of the results in Figs. 7.5 to 7.9 are done in double

precision (u = 10−16). Ill-conditioned matrices, say k > 3, are invariably associated with

slow initial convergence, but if the eigenvalues are nearly uniformly distributed, that is, α

is near zero, then a clear turning point exists at which convergence suddenly accelerates to

bring about an early termination. Such a turning point disappears as α is increased, and

convergence becomes almost perfectly linear with a constant rate ρ so that

kejk = ρjke0k. (7.60)

19

Fig. 7.4

But it can be painfully slow. Round-off errors are implicated in continuation beyond n steps.

Careful numerical analysis establishes that the linear rate of convergence ρ of the conjugate

gradient algorithm is given by

ρ =

√
∑− 1√
∑ + 1

(7.61)

where ∑ = ∏n/∏1 is the spectral condition number of matrix A.

Hence the method of conjugate gradients is most suited for large well-conditioned sys-

tems. There it can rival Gauss elimination. Such systems are common in applied linear

algebra.

Finite difference and finite element matrices arising from the approximation of om-

nipresent second-order spatial differential equation

uxx + uyy + uzz + f(x, y, z) = 0 (7.62)

with appropriate boundary conditions have a spectrum typically given by

∏ijk = αi2 + βj2 + ∞k2 i, j, k = 1, 2, . . . ,m (7.63)

with α, β, ∞ > 0. The top of Fig. 7.4 shows the spectrum for α = 1.0, β = 1.412, ∞ = 2.236,

and m = 5(n = 5× 5× 5 = 125).

20

Fig. 7.5 Fig. 7.6

Fig. 7.7

Figure 7.10 shows the convergence of the conjugate gradients algorithm for a 900× 900

system simulating a two-dimensional eq. (7.62). Iteration is started with the initial guess

p0 = r0 = α[1 1 . . . 1]T , where α is adjusted so that ke0k = 1. Extended precision (u = 10−32)

21

Fig. 7.8

Fig. 7.9

computation is seen to have a slight advantage over single precision computation. Some 200

iterations reduce kejk to 10−8. Performance of the conjugate gradient algorithm becomes

more impressive in three dimensions. Figure 7.11 is for an 8000 × 8000 system for which

kejk is reduced from 1 to 10−8 in no more than 160 steps, in agreement with the prediction

22

Fig. 7.10

of eq. 7.61. Here, ∑ = ∏n/∏1 = m2 and the algorithm’s rate of convergence is

ρ =

√
∑− 1√
∑ + 1

=
m− 1

m+ 1
. (7.64)

To achieve an error reduction from 1 to kejk = 10−7 the j steps needed are given by

10−7 = (
m− 1

m+ 1
)j or − 7 = j log

m− 1

m+ 1
(7.65)

which for m = 20 yields j = 161. For large m the above formula means that the number of

conjugate gradient steps needed to achieve an acceptable accuracy is proportional to m only.

Figure 7.12 shows the convergence of the conjugate gradients algorithm for a system

with a matrix that has the eigenvalues

∏ij = i4 + 1.412 j4 i = 1, 2, . . . , 20, j = 1, 2, . . . , 20 . (7.66)

Such matrices occur in the discretization of the biharmonic or thin plate bending equation

@4u

@x4 +
@4u

@y4 = f(x, y) (7.67)

with appropriate boundary conditions. Convergence is slower here and the round-off error

effects more disruptive.

23

Fig. 7.11

Timely termination of the iterative process is obviously important. Computation of

the true residual rj = f − Axj and termination when krjk/kfk reaches the level of the

round-off unit u, or when krjk ceases to change, is reasonable but expensive since it requires

the computation of Axi at each step at double the cost. Figure 7.13 shows the magnitude

reductions of the true, or exact, residual re and the computed or recursive residual rc.

Computation is done in single precision (u = 0.5 10−6) and we notice the existence of a

minimal value to which krek can reduce, after which it remains constant. In contrast, krck

declines relentlessly even after krek ceased to do so. Figure 7.13 suggests that the algorithm

be stopped as soon as krck reaches the prevailing round-off error level, here krck = 10−6.3.

Figure 7.14 repeats the computation in double precision (u = 10−16) with the suggested

termination criterion.

Figures 7.15 and 7.16 are for the more difficult biharmonic case, lending further credence

to the suggested termination signal krck = u.

24

Fig. 7.12

Fig. 7.13

25

Fig. 7.14

Fig. 7.15

26

Fig. 7.16

exercises

7.5.1. Second- and fourth-order boundary value problems with the differential equations

−d
2u

dx2 + ≤u = f(x) and
d4u

dx4 + ≤u = f(x) , ≤ > 0

are common. Corresponding to the first we have the typical linear finite difference n × n

system

(
1

h2





2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2




+ ≤





1
1

1
1

1




)x = f, h =

1

n+ 1

and corresponding to the second the typical

(
1

h4





5 −4 1
−4 6 −4 1
1 −4 6 −4 1

1 −4 6 −4
1 −4 5




+ ≤





1
1

1
1

1




)x = f , h =

1

n+ 1
.

Study the influence of ≤ on the performance of the conjugate gradient method.

27

