
8. Eigenvector and eigenvalue computations

8.1 Classification

Eigenproblems rooted in mathematical physics are mostly symmetric. In Chapter 6 we

unfolded the theoretical richness of the symmetric eigenproblem. In this chapter we turn

to the computational dilemmas of the problem with most attention still paid to symmetric

Ax = ∏Bx with a positive definite B.

Computation of the symmetric eigenproblem can be divided into three prototypical

groups each with its own distinct computational stipulation.

1. The first category consists of those problems Ax = ∏Bx in which A and B are small

(say order < 100) and dense. All eigenvalues and eigenvectors are usually required in this

case with good accuracy. Sparse algorithms are irrelevant here and the matrices are stored

in tabular form entry by entry.

General eigenproblem Ax = ∏Bx is first reduced to Sx0 = ∏x0, S = ST , with the

factorization of B = LLT and the construction of S = L−1AL−T , x0 = LTx. If a good

complete orthogonal system of eigenvectors X is available for B such that XTBX = D2

where D is diagonal, then Ax = ∏Bx may be reduced to Sx0 = ∏x0 with S = D−1XTAXD−1

and x0 = DX−1x.

Computation of all eigenvalues of dense matrix A is invariably based on similarity trans-

formations P−1AP that repeatedly work to transform A into a matrix ever closer to diagonal.

2. The second sort consists of Ax = ∏Bx with very large (say order > 100) and sparse

A and B. Eigenproblems of this kind arise from finite difference and finite element ap-

1

proximations and are of band form or some other distinct sparseness pattern. Typical to

these eigenproblems is the fact that only a small fraction of the eigenvalues and correspond-

ing eigenvectors at the lower end of the spectrum is of interest. Storage of A and B in

tabular form is out of the question for such large problems, and suitable solutions rely on

matrix-vector product algorithms.

Some of the more sophisticated solution procedures of class 2 require the repeated solu-

tion of the general eigenproblem of class 1.

3. Because any symmetric matrix can be similarly reduced to tridiagonal form in a finite

number of elementary steps, computation of the eigenvalues and eigenvectors of a tridiagonal

matrix constitutes an important class all by itself.

8.2 The characteristic equation

Eigenvalue algorithms based on the computation of the coefficients of the characteristic

equation det(A − ∏I) = 0 and its numerical solution are unpopular. Apart from the ques-

tion of computational efficiency, such methods are inherently unstable. Slight changes in

the computed coefficients as resulting from numerical inaccuracies may cause considerably

magnified errors in the roots.

In Sec. 6.3 we raised the issue of the change in a repeating root as a result of small

changes in the coefficients of the polynomial characteristic equation, and have shown that it

can be considerable. The nth order −∏n = 0 has n zero roots, but −∏n + ≤ = 0, ≤ > 0 has

the n distinct roots ∏ = ≤
1
n (cos θ+ i sin θ), cosnθ = 1, sinnθ = 0, of a modulus considerably

larger than that of ≤. Great sensitivity of the roots to variations in the coefficients is, however,

a phenomenon not strictly associated with repeating roots.

Suppose that

pn(∏) = (∏1 − ∏)(∏2 − ∏) . . . (∏n − ∏)

= (−∏)n + an−1(−∏)n−1 + an−2(−∏)n−2 + . . .+ a0

(8.1)

has no repeating roots. To see what differential changes in the coefficients do to the jth root

we differentiate the equation to have

d∏j = − 1

p0(∏j)

√
da0

a0
a0 +

da1

a1
a1(−∏j) +

da2

a2
a2(−∏j)2 + . . .+

dan−1

an−1
an−1(−∏j)n−1

!

(8.2)

2

where the derivative

−p0(∏j) = (∏1 − ∏j)(∏2 − ∏j) . . . (∏k − ∏j) . . . (∏n − ∏j), k =/ j. (8.3)

Close roots are problematic in rendering |p0(∏)| small, but the appearance of the very high

powers (−∏j)k, k = n− 1, n− 2, . . . in the expression for d∏j is also a source for concern. It

appears in eq.(8.2) that the higher eigenvalues are very sensitive to changes in the coefficients

of the high powers of ∏ in the characteristic equation.

Example. For the modest case of ∏i = i, i = 1, 2, . . . , 7,

p7(∏) = −∏7 + 28∏6 − 322∏5 + 1960∏4 − 6769∏5 + 13132∏2 − 13068∏ + 5040 = 0

p07(∏1) = p07(∏7) = −720,
(8.4)

and
d∏1

∏1
= 7

da0

a0
− 18.15

da1

a1
+ 18.23

da2

a2
− 9.40

da3

a3
+ 2.72

da4

a4

−0.45
da5

a5
+ 0.039

da6

a6

d∏7

∏7
=
da0

a0
− 18.15

da1

a1
+ 127.67

da2

a2
− 460.66

da3

a3
+ 933.7

da4

a4

−1073.78
da5

a5
+ 653.51

da6

a6
. (8.5)

For this reason we shall not dwell on algorithms for the computations of the coefficients

of the characteristic equation, except for the interesting method of Krylov, and this also we

shall present only under the simpler circumstances of a matrix having n separate eigenvalues.

It is founded on

Lemma 8.1. Let A = A(n× n) be with n distinct eigenvalues |∏1| < |∏2| < · · · < |∏n|,

and n corresponding linearly independent eigenvectors v1, v2, . . . , vn. If x0 is such that the

expansion

x0 = α1v1 + α2v2 + · · · + αnvn (8.6)

is with nonvanishing α’s, then the n vectors

x0, x1 = Ax0, x2 = A2x0, . . . , xn−1 = An−1x0 (8.7)

3

are linearly independent.

Proof. We have from eq. (8.6) that

xk = α1∏
k
1v1 + α2∏

k
2v2 + · · · + αn∏

k
nvn (8.8)

and shall show that

r = β0x0 + β1x1 + · · · + βn−1xn−1 = o (8.9)

only if β0 = β1 = · · · = βn−1 = 0. Indeed,

r = α1(β0 + β1∏1 + β2∏
2
1 + · · · + βn−1∏

n−1
1)v1

+α2(β0 + β1∏2 + β2∏
2
2 + · · · + βn−1∏

n−1
2)v2

...

+αn(β0 + β1∏n + β2∏
2
n + · · · + βn−1∏

n−1
n)vn (8.10)

and since v1, v2, . . . , vn are linearly independent and the α’s all nonzero, r = o occurs only if

β0 + β1∏i + β2∏
2
i + · · · + βn−1∏

n−1
i = 0 i = 1, 2, . . . , n. (8.11)

But this is impossible with nonvanishing β’s since a polynomial equation of degree n − 1

cannot have n distinct roots. Only when β0 = β1 = · · ·βn−1 = 0 is r = o. End of proof.

Theorem 8.2. Under the assumptions of the previous lemma, vectors x0, x1, . . . , xn,

xk = Akx0 are linearly dependent so that

β0x0 + β1x1 + · · · + βn−1xn−1 + (−1)nxn = o (8.12)

with the β’s being the coefficients of the characteristic equation

(−1)n∏n + · · · + β2∏
2 + β1∏ + β0 = 0 (8.13)

of matrix A.

4

Proof. Say for simplicity that A = A(2 × 2). Then x0, x1, x2 are three vectors in R2

that are certainly linearly dependent; β0x0 + β1x1 + β2x2 = o for some nonzero β0, β1, β2.

In terms of the two eigenvectors v1 and v2 of A we have that

x0 = α1v1 + α2v2, x1 = α1∏1v1 + α2∏2v2, x2 = α1∏
2
1v1 + α2∏

2
2v2 (8.14)

and

α1v1(β0 + β1∏1 + β2∏
2
1) + α2v2(β0 + β1∏2 + β2∏

2
2) = o. (8.15)

Since v1 and v2 are linearly independent and α1 =/ 0, α2 =/ 0 it results that

β0 + β1∏1 + β2∏
2
1 = 0 and β0 + β1∏2 + β2∏

2
2 = 0 (8.16)

with β2 =/ 0 by virtue of ∏1 =/ ∏2. The two roots fix the quadratic equation, in fact β0 =

∏1∏2β2, β1 = −(∏1 + ∏2)β2. End of proof.

Example.

A =
∑

1 1
−1 1

∏
, x0 =

∑
1
0

∏
, x1 =

∑
1
−1

∏
, x2 =

∑
0
−2

∏
(8.17)

β0 = 2, β1 = −2, and ∏2 − 2∏ + 2 = 0.

Matters, in this respect, are particularly attractive for the irreducible symmetric tridi-

agonal matrix, which we know has n distinct eigenvalues. Let

A =





a1 b2
b2 a2 b3

b3 a3 b4
b4 a4



 bi =/ 0 i = 2, 3, 4 (8.18)

be such a matrix, and let x0 = e1. Then

x0 =





1
0
0
0



 , x1 =





×
b2
0
0



 , x2 =





×
×
b2b3
0



 , x3 =





×
×
×

b2b3b4



 , x4 =





×
×
×
×



 (8.19)

and the coefficients β0, β1, β2, β3 of the characteristic equation of A, here a quartic, are

obtained as the solution of the upper-triangular system




1 × × ×
b2 × ×

b2b3 ×
b2b3b4









β0

β1

β2

β3



 = −x4 (8.20)

5

which is triangular of type 1 and possesses a unique solution.

Example. Matrix

A =




2 −1
−1 2 −1

−1 2



 (8.21)

is known to have the characteristic equation

−∏3 + 6∏2 − 10∏ + 4 = 0. (8.22)

For this matrix 


1 2 5
−1 −4

1








β0

β1

β2



 =




14
−14
6



 (8.23)

and we find that β0 = 4, β1 = −10, β2 = 6.

Something even simpler comes to mind. Say A = A(3 × 3) so that det(A − ∏I) =

−∏3 +α2∏2 +α1∏+α0. Computing δi = det(A−∏iI) for the three arbitrary values ∏1, ∏2, ∏3

of variable ∏ we can determine the three coefficients α0, α1, α2 of the characteristic equation

from the set of three linear equations




1 ∏1 ∏2

1
1 ∏2 ∏2

2
1 ∏3 ∏2

3








α0

α1

α2



 =




δ1 + ∏3

1
δ2 + ∏3

2
δ3 + ∏3

3



 (8.24)

with a Vandermonde matrix that is independent of A. It is simple but generally impractical.

It is theoretically not easy, but numerical experience readily exposes the great sensitivity of

system (8.24) to aberrations in its data. Minute round-off errors in the matrix entries and

right-hand sides can be enormously magnified in the solution to produce defective α’s; and

if the coefficients are flawed, then the roots are useless.

exercises

8.2.1. The characteristic equation of matrix

A =




2 −1
−1 2 −1

−1 2





is

−∏3 + 6∏2 − 10∏ + 4 = 0

6

having the three distinct roots ∏1 = 2−
√

2, ∏2 = 2, ∏3 = 2 +
√

2.

Write the perturbed

−∏2 + 6(1− ≤)∏2 − 10(1 + ≤)∏ + 4(1− ≤) = 0

and study the effect of a small ≤ on the roots. See what happens close to ≤ = 0.014.

8.2.2. Given complex eigenvalue ∏ = α + iβ of real matrix A, find the corresponding

eigenvector x = u+ iv using real arithmetic.

8.2.3. Show that if for some x0 =/ o

β0x0 + β1Ax0 + β2A
2x0 −A3x0 = o

then the roots of

β0 + β1∏ + β2∏
2 − ∏3 = 0

contain an eigenvalue of A. Also, that if

β0x0 + β1Ax0 +A2x0 = o, x0 =/ o

and the roots of

β0 + β1∏ + ∏2 = 0

are the complex ∏1 and ∏1, then they are both eigenvalues of A.

8.3 Jacobi methods

The method of Jacobi is one of the oldest (dating from 1846) methods to solve the

symmetric algebraic eigenproblem but nonetheless remains one of the most elegant, compact,

and practical routines for the computation of all eigenvalues and eigenvectors of small dense

symmetric matrices. Its underlying idea is a succession of similarity transformations A0 =

Q−1AQ with Q designed to make A0 closer than A to diagonal form.

To be effective, matrix Q in the similarity transformation should be such that Q−1 is

easily computed, and the matrix multiplications inexpensive. Matrix Q must also include

7

convenient parameters to be adjusted to make A0 as near to diagonal form as possible, and

above all the matrix should not induce excessive errors upon the repeated multiplications.

Jacobi liked the orthogonal

Q = Jkl =





k l

1

k c s

1

l −s c

1





(8.25)

with c2 + s2 = 1 or c = cos θ, s = sin θ, that we have already found so useful in Sec. 5.8.

With this matrix, A0 = QTAQ and the similarity transformation preserves symmetry.

To clearly see the effect of postmultiplying A by Q we write A = [a1 a2 . . . an] and have

that

B = AQ =
∑ k l

a1 cak − sal . . . cal + sak an

∏
. (8.26)

In this, columns k and l of A are replaced by their linear combinations bk = cak − sal, and

bl = cal + sak, respectively. All other columns remain unchanged. Similarly, if we write the

rows of B as bT1 , b
T
2 , . . . , b

T
n , then

A0 = QTB =





bT1

k cbTk − sbTl
...

l cbTl + sbTk

bTn





(8.27)

and what AQ did to the columns of A, QTB does to the rows of B. The similarity trans-

formation QTAQ with the Jacobi rotation matrix Q = Jkl affects only the kth and lth rows

8

and columns of A as is schematically shown below

A0 = QTAQ =





k l

× ×

k × × × × ×

× ×

l × × × × ×

× ×





. (8.28)

It is readily verified that since Q is orthogonal

bTk bk + bTl bl = aTk ak + aTl al (8.29)

and consequently
X

A2
ij =

X
B2
ij =

X
A0

2

ij (8.30)

where the three sums extend over all i and j; the sum of A2
ij over the matrix is invariant

under the similarity transformation QTAQ.

We also readily verify that

A0kk = c2Akk − 2csAkl + s2All

A0ll = s2Akk + 2csAkl + c2All

A0kl = (c2 − s2)Akl + cs(Akk −All)

A0kj = cAkj − sAlj

A0lj = sAkj + cAlj

j =/ k, l (8.31)

and

A0
2

kk +A0
2

ll + 2A0
2

kl = A2
kk +A2

ll + 2A2
kl. (8.32)

To qualify what we mean by A0 = QTAQ being closer to diagonal form than A we

introduce the three scalar functions φ = φ(A) =
P
A2
ij , δ = δ(A) =

P
A2
ii, ω = ω(A) = φ− δ

and use ω/φ = 1−δ/φ to measure how near A is to being diagonal. Only when δ(A) = φ(A),

or ω(A) = 0, is A diagonal.

Here, in view of eq.(8.32),

ω(A0) = ω(A) + 2A0
2

kl − 2A2
kl

δ(A0) = δ(A) + 2A2
kl − 2A0

2

kl

φ(A0) = φ(A)

(8.33)

9

and ω(A0)/φ(A0) is maximally reduced with the choice of A0kl = 0.

Theorem (Jacobi) 8.3. Let entry Akl of A = AT (n × n), be such that |Akl| ≥ |Aij|

for all i =/ j. If in the orthogonal transformation A0 = QTAQ the rotation angle θ is chosen

according to

g = ctn2θ =
All −Akk

2Akl
, t = tan θ =

sign (g)

|g| + (1 + g2)1/2
(8.34)

so that c = cos θ = (1 + t2)−1/2 and s = sin θ = tc, then

ω(A0) ≤ (1− 2

n2 − n
)ω(A). (8.35)

Proof. To minimize ω(A0) we set

A0kl = (c2 − s2)Akl + cs(Akk −All) = 0 (8.36)

and obtain the expression for ctn 2θ using the trigonometric identities 2cs = sin 2θ and

c2 − s2 = cos 2θ. Some more trigonometry leads to

t2 + 2gt = 1 (8.37)

and the smaller root of the quadratic equation is used to fix c and s.

With A0kl = 0, ω(A0) = ω(A) − 2A2
kl, and since |A0kl| is the largest among the n2 − n

off-diagonal entries

ω(A) ≤ (n2 − n)A2
kl (8.38)

from which the inequality of the theorem readily results. End of proof.

It is important that we bear in mind that an off-diagonal entry set to zero does not remain

so under successive rotations designed to annul other off-diagonal entries. Sparseness is not

maintained by the Jacobi method.

Each step of the Jacobi method reduces ω(A0), and the limit of this process is a diagonal

matrix. Indeed, if we denote A and A0 by Ak−1 and Ak, respectively, then the equality in

Jacobi’s theorem becomes

ω(Ak) ≤ (1− 2

n2 − n
)ω(Ak−1) (8.39)

10

or

ω(Ak) ≤ (1− 2

n2 − n
)kω(A0) (8.40)

and ω(Ak)→ 0 as k →1.

Interestingly enough, convergence of the Jacobi method is proved independently of any

intrinsic property of matrix A, except that it be symmetric. The proof gives the impression

that convergence is only linear, ωk/ω0 = ρk with ρ = 1 − 2/(n2 − n), becoming slower and

more expensive as n increases. We shall see this to be numerically true at the beginning,

but as the similarly reduced matrix nears diagonal form convergence accelerates to become

quadratic.

In proving Jacobi’s theorem we tacitly gave a constructive proof to the spectral theorem

that states that for every symmetric matrix A there exists an orthogonal matrix Q such that

QTAQ is diagonal.

The above is the classical Jacobi method. But searching for the largest |Aij| i =/ j before

each rotation is onerous, and an alternative, a serial variant, is devised for the method

whereby A0kl = 0 is systematically done rowwise. One passage over all the n(n − 1)/2 off-

diagonal entries of the matrix is called a sweep. Before A0kl is set to zero |Akl|/(A2
kk +A2

ll)
1/2

is compared with a sweep-dependent tolerance to see if the rotation is profitable or should

be skipped.

Each sweep brings the matrix closer to diagonal form, and after so many sweeps the

matrix is reduced to practically diagonal form with the eigenvalues on the diagonal.

If Q0, Q1, . . . , Qm are the m rotation matrices used in the succession of orthogonal trans-

formations to reduce A to diagonal form, then Q = Q0Q1 · · ·Qm holds in its columns the

eigenvectors of A.

A theoretical analysis on the convergence of the serial Jacobi method with skips is too

technical for presentation here, but we shall look at a substantial numerical example.

A commercially available, professionally written, serial Jacobi computer program is used

to compute all eigenvalues of the n× n matrix

11





2 −1
−1 2 −1

−1 2 −1
−1 1





−1

=





1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4



 (8.41)

for n = 10. To measure the closeness of the transformed matrix to diagonal form we use

≤k = [ω(Ak)/δ(Ak)]
1/2 (8.42)

and Fig. 8.1 shows log(≤k/≤0) vs. the number of sweeps. During the first two sweeps con-

vergence is nearly linear, but as the matrix nears diagonal form, convergence accelerates

considerably. This aspect of the convergence behavior of the Jacobi method saves its practi-

cality and preserves it in the books. The fast final convergence of the Jacobi method means

that high accuracy is inexpensive and that typically no more than four sweeps are needed

for convergence.

Fig. 8.1

To assess the number of arithmetical operations required by the Jacobi method we ob-

serve that there are approximately n2/2 rotations per sweep, and as each rotation requires

about 4n operations the work per sweep is 2n3 operations. Assuming that convergence

requires 4 sweeps, a total sum of 8n2 operations is required for the computation of all n

eigenvalues of the symmetric matrix. Work is nearly doubled if eigenvectors are also sought.

12

exercises

8.3.1. Carry out one Jacobi sweep over matrix

A =




1 α α
α 1 α
α α 1



 .

8.4 The power method

Now that we possess a good algorithm to solve the complete eigenproblem of small dense

matrices we turn to the large and sparse Ax = ∏Bx. Working with full matrices is here out of

the question for reasons of space and time, and we shall look at routines that take advantage

of sparseness. Some of these iterative routines require the solution of a small generalized

eigenproblem at each step. Solution of the very large Ax = ∏Bx is regulated by the fact

that only a very small number of eigenvalues (say 10) and their corresponding eigenvectors

are usually of any practical interest.

The algebraic eigenproblem Ax = ∏Bx is often the end product of the mathematical

modeling of elastic structure vibrations. In this, ωi =
√
∏i are the approximate natural

frequencies of the structure and xi the corresponding discrete natural vibration modes. Even

for the simplest of solids it is physically impossible to isolate and measure vibration modes

higher than the tenth.

The power method in its various manifestations is the simplest imaginable algorithm,

requiring no more than a repeated matrix vector multiplication, yet is one of the most useful

methods for the large sparse eigenproblem.

We shall first present the method under the propitious circumstances of B = I, and A

being symmetric semidefinite. Analysis is simplified with the assumption of non-negative

eigenvalues while still displaying the essence of the algorithm. Negative eigenvalues present

a slight complication of sign that the reader may easily resolve as an exercise.

Theorem 8.4. Let A = A(n × n) be symmetric positive semidefinite with eigenvalues

ordered by magnitude as

0 ≤ ∏1 ≤ ∏2 ≤ · · · ≤ ∏n−2 < ∏n−1 < ∏n (8.43)

13

and with corresponding orthonormal eigenvectors v1, v2, . . . , vn. If

x0 = α1v1 + α2v2 + · · · + αnvn , αn =/ 0 (8.44)

and

xk = Axk−1 , k = 1, 2, . . . (8.45)

then

lim
k→1

k xk
kxkk

− vnk/ρkn−1 = |αn−1

αn
| (8.46)

and

lim
k→1

µ
∏0k − ∏n

∏n

∂
/ρ2k

n−1 =
µ
αn−1

αn

∂2
(8.47)

where

∏0k =
xTkAxk
xTk xk

and ρj =
∏j
∏n

, j = 1, 2, . . . , n. (8.48)

Proof. Since vn is of arbitrary sign we may assume that αn > 0. At the kth iteration

xk = α1∏
k
1v1 + · · · + αn−1∏

k
n−1vn−1 + αn∏

k
nvn (8.49)

or

xk = αn∏
k
n

µ
α1

αn
ρk1v1 + · · · + αn−1

αn
ρkn−1vn−1 + vn

∂
(8.50)

where ρj = ∏j/∏n. Because ρj < 1 if j < n, ρkj → 0 as k → 1, and xk becomes closer in

direction to vn as iteration proceeds.

Actually

kxkk = αn∏
k
n

µµ
α1

αn

∂2
ρ2k
1 + · · · +

µ
αn−1

αn

∂2
ρ2k
n−1 + 1

∂1/2
(8.51)

or approximately

kxkk = αn∏
k
n

µ
1 +

1

2

µ
α1

αn

∂2
ρ2k
1 + · · · + 1

2

µ
αn−1

αn

∂2
ρ2k
n−1

∂
(8.52)

when (αj/αn)2ρ2k
j << 1, and

αn∏kn
kxkk

= 1− 1

2

µ
α1

αn

∂2
ρ2k
1 − · · · − 1

2

µ
αn−1

αn

∂2
ρ2k
n−1. (8.53)

14

We readily verify that

k xk
kxkk

− vnk2 = 2(1− xTk vn
kxkk

) = 2(1− αn∏kn
kxkk

) (8.54)

whereupon

k xk
kxkk

− vnk/ρkn−1 =
1

αn

µ
α2

1

µ
∏1

∏n−1

∂2k
+ α2

2

µ
∏2

∏n−1

∂2k
+ · · · + α2

n−1

∂1/2
(8.55)

and since ∏j/∏n−1 < 1 if j < n − 1, as k → 1 the right-hand side of the above equality

tends to |αn−1/αn|. For a sufficiently large k we may write

k xk
kxkk

− vnk = |αn−1

αn
|
µ
∏n−1

∏n

∂k
(8.56)

meaning that, asymptotically, convergence of xk/kxkk towards vn is linear.

To prove the second limit we establish that

∏n − ∏0k
∏n

=

µ
α1/αn

∂2
ρ2k
1 (1− ρ1) + · · · +

µ
αn−1/αn

∂2
ρ2k
n−1(1− ρn−1)

µ
α1/αn

∂2
ρ2k
1 + · · · +

µ
αn−1/αn

∂2
ρ2k
n−1 + 1

(8.57)

from which the desired result is obtained.

For a sufficiently large k we may write

∏0k − ∏n
∏n

=
µ
αn−1

αn

∂2 µ∏n−1

∏n

∂2k
(8.58)

meaning that, asymptotically, convergence of ∏0k to ∏n is linear with an ultimate rate of

convergence that is (∏n−1/∏n)2. End of proof.

Application of the power method is best for matrices for which |∏n−1/∏n| << 1. This is

most dramatically illustrated on matrices

A =





2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 1




and A−1 =





1 1 1 1 1
1 2 2 2 2
1 2 3 3 3
1 2 3 4 4
1 2 3 4 5




. (8.59)

We know that the n eigenvalues of the positive definite and symmetric A are

∏j = 4 sin2 º

2

µ
2j − 1

2n+ 1

∂
j = 1, 2, . . . , n (8.60)

15

and those of A−1 are ∏−1
n < ∏−1

n−1 < . . . < ∏−1
1 . When n is large

∏n−1 = 4
µ
1− º2

n2

∂
, ∏n = 4

µ
1− º2

4n2

∂
, ρn−1 =

∏n−1

∏n
= 1− 3º2

4n2 (8.61)

and the rate of convergence of the power method applied to A slumps as n increases. Con-

vergence of ∏n can be painfully slow. On the other hand, for matrix A−1

∏n(A−1)

∏n−1(A−1)
=

∏2(A)

∏1(A)
=

1

9
(8.62)

independently of n, and a few steps produce accurate approximations to ∏n(A−1) = ∏−1
1 (A)

for any matrix size.

Figure 8.2 numerically substantiates the theory. Computations also demonstrate the

importance of a good initial guess x0. With an iterative process that converges only linearly,

accurate results are expensive and a good initial guess can result in substantial computational

savings. Computation of Axk is the most expensive item in the power method if A is large,

and any reduction in the number of iterations is welcome.

Fig. 8.2

16

Some more remarks on the power method:

Suppose that ∏n−1 is close to ∏n so that ∏n−1/∏n is only slightly less than 1, but that

∏n−2 is well separated from the top two eigenvalues. Under these circumstances convergence

of the power method to ∏n may be impractically slow. But we must recognize that the

high computational cost to obtain a precise vn is a result of our determination to accurately

separate the two close eigenvalues. If we agree to disregard the difference between ∏n−1 and

∏n and look upon them as one repeating eigenvalue, then the rate of convergence becomes

(∏n−2/∏n)2 and xk tends to an eigenvector, depending on x0, that lies in the plane of vn and

vn−1.

A decidedly more efficient way to separate close eigenvalues is discussed in Sec. 8.6.

We easily perceive that the requirement that matrix A in Theorem 8.4 be positive

semidefinite is not essential to the success of the power method. But if A is merely symmetric

we must brace for the eventuality of eigenvalues equal in magnitude but different in sign.

Application of the power method to the general symmetric eigenproblem Ax = ∏Bx,

where B is positive definite, is in principle as simple as for the particular case of B = I.

Factorization of B reduces the general eigenproblem to the particular L−1AL−Tx0 = ∏x0,

where x0 = LTx, and where B = LLT . The power method becomes

Axk−1 = LLTxk (8.63)

and two systems of triangular equations need be solved at each step. Sparseness is taken

advantage of both in the operation Axk and in the LLT factorization of B, but this factor-

ization is expensive and space-consuming. Another possibility that does not require the LLT

decomposition and can lead to considerable space saving in case of highly structured B is to

write Axk−1 = Bxk and solve the linear system Bxk = (Axk−1) with the conjugate gradient

method. Such a scheme is often feasible since it is common for B to be very well-conditioned.

Let A = AT have eigenvalues |∏1| ≤ |∏2| ≤ |∏n−1| < |∏n| with corresponding orthonor-

mal eigenvectors v1, v2, . . . , vn. Then

Ak = ∏kn(ρ
k
1v1v

T
1 + ρk2v2v

T
2 + . . .+ ρkn−1vn−1v

T
n−1 + vnv

T
n), ρj = ∏j/∏n (8.64)

17

and as k →1 matrix Ak approaches the rank one matrix ∏knvnv
T
n . After so many iterations

vector xk remains nearly colinear with vn,

xk = Akx0 = ∏kn(v
T
n x0)vn (8.65)

approximately, and

|∏n| = kxk+1k/kxkk, |∏n| = (kxkk/(xT0 vn))1/k (8.66)

for very large k.

Say symmetric matrix A happens to have two dominant eigenvalues equal in magnitude

but opposite in sign, ∏ and ∏0 = −∏, respectively, with corresponding orthonormal eigenvec-

tors v and v0. After a good number of power iterations vector xk becomes nearly confined

to the two-dimensional space spanned by v and v0. Then

xk = αv + α0v0, xk+1 = ∏(αv − α0v0), xk+2 = ∏2(αv + α0v0) (8.67)

and

∏ = ±(kxk+2k/kxkk)1/2. (8.68)

Any matrix with distinct eigenvalues has n linearly independent eigenvectors, expansion

(8.44) exists for its eigenvectors, and eq. (8.49) is true for this matrix as it is true for the

symmetric. Let the dominant eigenvalues of A be ∏ and ∏ with corresponding eigenvectors

v and v. After a great number of iterations essentially

xk = Akx0 = αv + α0v (8.69)

where α0 = α by dint of xk being real.

Hence

xk = αv + αv, xk+1 = α∏v + α∏v, xk+2 = α∏2v + α∏
2
v (8.70)

are linearly dependent,

xk+2 + β1xk+1 + β0xk = αv(∏2 + β1∏ + β0) + αv(∏
2
+ β1∏ + β0) = o (8.71)

18

and eigenvalues ∏ and ∏ are the two conjugate roots of the quadratic equation ∏2+β1∏+β0 =

0.

In reality, vectors xk+2, xk+1, xk are never truly colinear and eq. (8.71) is solved for β0

and β1 in some approximate sense.

In many matrix iterative processes only the modulus of the dominant eigenvalue–the

spectral radius of A–is desired. Then

ρ = max
j

|∏j| = lim
k→1

kAkx0k
1
k = lim

k→1
kxk+1k/kxkk (8.72)

for any random x0, whether A is diagonalizable or not, but convergence can be painfully

slow. Applying this to

A =





3 4 4 4
−3 −5 −8 −9
3 6 10 10
−1 −2 −3 −2



 , x0 =





1
−1
1
−1



 (8.73)

that has eigenvalues ∏1 = ∏2 = 1, ∏3 = ∏4 = 2 with two linearly independent eigenvectors,

we obtain ρk = 2.39, 2.20, 2.10, 2.05 for k = 5, 10, 20, 40.

One last remark. If |∏n| > 1, kxkk increases with k to the point of causing overflow

failure, hence it is prudent to normalize xk at each step of the power method.

exercises

8.4.1. Apply the power method to

A =





1
−1 1

−1 1
−1 1

−1




, x0 =





1
0
0
0
0





and

A2 =





−1 1
−2 1

1 −2 1
1 −2

1 −1




, x0 =





1
0
0
0
0




.

19

8.4.2. Apply the power method to

J =





1 1
1 1

1 1
1 1

1




, x0 =





1
1
1
1
1




, x0 =





0
1
1
1
1




.

8.4.3. For matrix

A =





1 −1
−1 4 −3

−3 8 −5
−5 12 −7

−7 16





carry out one inverse iteration starting with x0 = [5 4 3 2 1]T . Having found x1 = A−1x0,

assume that x1 = v and form diagonal matrix D,Dii = vi. Apply the similarity transforma-

tion D−1AD to A and use Gerschgorin’s theorem to establish a nontrivial lower bound on

∏1, the smallest eigenvalue of A. Use Rayleigh’s quotient to establish an upper bound on ∏1.

Apply the power method starting with x0 = [1 − 1 1 − 1 1]T and do the same to ∏5.

Improve the bounds with more power and inverse iterations.

8.5 Shifted inverse iteration

Inverse iteration is the name given to the application of the power method to A−1. From

our last numerical example, we can understand when and why this version of the power

method holds special appeal.

Let A be symmetric positive definite with eigenvalues 0 < ∏1 < ∏2 ≤ ∏3 ≤ · · · ≤ ∏n

and corresponding eigenvectors v1, v2, . . . , vn. The eigenvalues of A−1 are then 0 < ∏−1
n ≤

∏−1
n−1 ≤ · · · ≤ ∏−1

2 < ∏−1
1 , with corresponding eigenvectors vn, vn−1, . . . , v1. Applied to A−1,

the power method, starting with x0, xT0 v1 =/ 0, produces a vector sequence x0, x1, . . . , xk =

A−1xk−1 that converges to v1 at the asymptotic rate ∏1/∏2. For finite difference and finite

element stiffness matrices this rate is independent of n.

In practice, inverse iteration is carried out as Lx0 = xk−1, L
Txk = x0 requiring only two

back-substitutions per step. Extension of inverse iteration to Ax = ∏Bx is obvious.

20

The subtraction A − ∏0I causes every eigenvalue ∏j of A to shift to ∏j − ∏0, and the

jth eigenvalues of (A − ∏0I)−1 become (∏j − ∏0)−1. If ∏0 is well near ∏m for some m, then

(∏m − ∏0)−1 is the largest eigenvalue in magnitude of (A − ∏0I)−1, it is clearly separated

from the rest of the eigenvalues, and convergence of inverse iteration to the eigenvector

corresponding to ∏m is fast. With a good choice of ∏0 no more than two or three cycles

should be needed for convergence.

In the extreme the shift may be performed at each step of inverse iteration,

∏0k =
xTkAxk
xTk xk

, (A− ∏0k−1I)xk = xk−1 (8.74)

for which convergence becomes asymptotically cubic. Consider

A =




∏1

∏2

∏3



 , x0 =




1
η2≤
η3≤



 (8.75)

with ∏1 < ∏2 < ∏3, and parameter |≤| << 1. For this initial vector

∏0 = ∏0(x0) =
∏1 + ≤2(∏2η2

2 + ∏3η2
3)

1 + ≤2(η2
2 + η2

3)
(8.76)

and since ≤2 is minute

∏1 − ∏0 = −≤2((∏2 − ∏1)η
2
2 + (∏3 − ∏1)η

2
3), ∏2 − ∏0 = ∏2 − ∏1, ∏3 − ∏0 = ∏3 − ∏1. (8.77)

The difference between the Rayleigh approximation ∏0(x0) and ∏1 is already proportional to

≤2. Next

x1 =
1

∏1 − ∏0




1

≤(∏1 − ∏0)/(∏2 − ∏0)
≤(∏1 − ∏0)/(∏3 − ∏0)



 =
1

∏1 − ∏0




1

η2(∏)≤3

η3(∏)≤3



 (8.78)

where η2(∏) and η3(∏) are rational functions of ∏1, ∏2, ∏3. Now

∏1 − ∏0(x1) = −≤6 (∏2 − ∏1)η2
2 + (∏3 − ∏1)η2

3

1 + ≤6(η2
2 + η2

3)
(8.79)

and the error in ∏0(x1) is nearly proportional to ≤6.

The price for the accelerated convergence: repeated factorization of A− ∏0k−1I.

Notice that in any event A− ∏0I may not be positive semidefinite, causing difficulties in

the triangular factorization.

21

One of the more important uses of inverse iteration is to compute an eigenvector for an

approximate eigenvalue ∏0. In this case A − ∏0I is nearly singular and it becomes more so

as the approximation is improved. It appears that this would doom inverse iteration, for

at each step we need to solve a nearly singular system of linear equations that is highly

susceptible to round-off errors. But it does not.

To understand why this is so we shall start by considering the nearly singular 2 × 2

system
∑

1 −1
−1 1 + ≤

∏ ∑
x1

x2

∏
=

∑
1
0

∏
, Ax = f, |≤| << 1 (8.80)

with matrix A that has two eigenvalues, ∏1 = 1
2≤ and ∏2 = 2 + 1

2≤, and corresponding

eigenvectors v1 = [1 1 − 1
2≤]

T , v2 = [1 − 1 − 1
2≤]

T . When ≤ = 0, ∏1 = 0, ∏2 = 2, v1 =

[1 1]T , v2 = [1 − 1]T , and A is singular.

We readily solve the system for x = [1 + ≤ 1]T/≤ and as ≤ decreases in magnitude vector

x grows in length, accurately enough kxk =
√

2/≤. Small changes in ≤ cause large changes

in the magnitude of x, but they barely change the eigenvectors of A = A(≤), and the near

colinearity of x and v1. Indeed

xT v1

kxk kv1k
= 1− 1

16
≤2,

xT v2

kxk kv2k
=

1

4
≤ (8.81)

and this is what we want: x to be nearly colinear with v1. Magnitudes do not count in the

eigenproblem, it is direction that is important.

Graphically, the solution of our 2 × 2 nearly singular system can be described as the

intersection of nearly parallel lines. Small changes in the coefficient matrix A or right-hand

side vector f cause large movements of the intersection point, but these movements are

nearly parallel to v1; the error in the solution is overwhelmingly in the v1 direction.

For an analytic explanation of the success of inverse iteration applied to a nearly singular

symmetric matrix, we assume the eigenvectors v1, v2, . . . , vn of A normalized, and write

A−1 =
1

∏1
v1v

T
1 +

1

∏2
v2v

T
2 + · · · + 1

∏n
vnv

T
n (8.82)

to have one inverse iteration produce

x1 = A−1x0 =
vT1 x0

∏1
v1 +

vT2 x0

∏2
v2 + · · · + vTn x0

∏n
vn. (8.83)

22

Round-off error effects can be looked upon as causing a slight change in A. The eigenval-

ues and eigenvectors of A barely change (assuming well-separated eigenvalues) due to this

perturbation, and even if ∏1/∏n << 1, x1 remains nearly colinear with v1, provided that

vT1 x0 =/ 0.

One might hope to circumvent inverse iteration for the computation of v1, the eigenvector

belonging to the smallest eigenvalue of the positive definite and symmetric A, by doing this:

Suppose that a good approximation ∏0n is found to the largest eigenvalue ∏n of A. Suppose

even that ∏0n is so near ∏n that for all practical purposes we may take ∏0n = ∏n. The shifted

matrix ∏nI − A has eigenvalues 0, ∏n − ∏n−1, . . . , ∏n − ∏1 with corresponding eigenvectors

vn, vn−1, . . . , v1. Since ∏n−∏1 is largest in magnitude the power method applied to ∏nI−A

will converge to v1. This shifting device looks attractive inasmuch as it does not require

factorizations or back substitutions, but it is, unfortunately, inefficient. For matrix A with

∏i = i2, for instance,
∏n − ∏2

∏n − ∏1
=
n2 − 4

n2 − 1
= 1− 3

n2 (8.84)

if n is large, intimating a dismal convergence rate.

8.6 Ritz separation of close eigenvalues

In case of the largest eigenvalues being nearly equal in magnitude, the power method,

or for that matter inverse iteration, brings xk into the subspace spanned by the eigenvectors

corresponding to the dominant eigenvalues, but convergence to one of them may be irri-

tatingly slow and wasteful. To be specific, suppose that inverse iteration is carried out on

matrix A with close ∏1 and ∏2 but with eigenvalues that are otherwise well-separated from

∏2. After a sufficiently large number of iterations the method turns out

xk = α1v1 + α2v2, xk+1 = ∏1α1v1 + ∏2α2v2, xk+2 = ∏2
1α1v1 + ∏2

2α2v2 (8.85)

that are linearly dependent.

If so then there are two nonzero scalars β0 and β1 so that

xk+2 + β1xk+1 + β0xk = o (8.86)

23

or in terms of v1 and v2

α1v1(∏
2
1 + β1∏1 + β0) + α2v2(∏

2
2 + β1∏2 + β0) = o (8.87)

and the two eigenvalues are obtained from the quadratic equation

∏2 + β0∏ + β0 = 0. (8.88)

The Ritz separation method starts with the trial vector

x = β0x0 + β1x1 (8.89)

where x0 and x1 are written for xk and xk+1, then proceeds to minimize ∏(x) = xTAx/xTx

over β0 and β1. This leads to the 2× 2 general eigenproblem
"
xT0 Ax0 xT0 Ax1

xT1 Ax0 xT1 Ax1

"
β0

β1

#

= ∏

"
xT0 x0 xT0 x1

xT1 x0 xT1 x1

"
β0

β1

#

(8.90)

for which the characteristic equation is

∏2
ØØØØ
Z00 Z01

Z10 Z11

ØØØØ−∏
ØØØØ
Z00 Z01

Z11 Z12

ØØØØ+
ØØØØ
Z01 Z11

Z11 Z12

ØØØØ= 0 (8.91)

where Zij = xTi xj , and x2 = Ax1.

The smaller root of the characteristic equation approximates ∏1, and the larger, ∏2.

Each root comes with a pair β0, β1, which when put back into x = β0x0 + β1x1 yields an

approximation to the corresponding eigenvector.

Clearly, the procedure may be extended to higher-dimensional vector subspaces to sep-

arate more than two close eigenvalues. Extension of the Ritz separation technique to the

general Ax = ∏Bx is also obvious, except that in this case the right-hand 2× 2 matrix does

not include xTi xj but rather xTi Bxj .

Example. Consider

A =




1

1.99
2.01



 , x0 =




0.01
1
1



 , x1 =




0.01
1.99
2.01



 , x2 =




0.01
1.992

2.012



 (8.92)

for which we obtain

∏(x0) = 1.99995, ∏(x1) = 2.0000875, ∏(x2) = 2.0001969 (8.93)

24

where ∏(x) = xTAx/xTx. In trying to separate the highest eigenvalues by means of eq.

(8.86) we write β0x0 + β1x1 = −x2 and seek the least squares solution to it by forming
"
xT0 x0 xT0 x1

xT1 x0 xT1 x1

"
β0

β1

#

= −
"
xT0 x2

xT1 x2

#

(8.94)

which is numerically
∑
2.0001 4.0001
4.0001 8.0003

∏ ∑
β0

β1

∏
= −

∑
8.003

16.0013

∏
. (8.95)

We solve the 2× 2 system for β0 = 3.333365, β1 = −3.6666667, and obtain from ∏2 + β1∏+

β0 = 0 the two roots ∏1 = 1.66676 and ∏2 = 1.9999.

The Ritz separation produces the characteristic equation

0.0006∏2 − 0.0022001∏ + 0.002 = 0 (8.96)

from which we extract ∏1 = 1.6663 and ∏2 = 2.0004, implying the need for more power

iterations. After three more steps Ritz separates the eigenvalues into ∏1 = 1.9853 and

∏2 = 2.00699, and three additional steps produce ∏1 = 1.98993 and ∏2 = 2.00994.

8.7 Rayleigh quotient minimization

Instead of applying the Ritz method at the end of power iteration to separate close

eigenvalues we may apply it at each iterative step to improve convergence. In this section

we describe a combination of the Ritz method and the conjugate gradient algorithm applied

to the minimization of Rayleigh’s quotient.

In Chapter 7 we gave the conjugate gradient algorithm for the solution of the linear

systemAx = f with a positive definite and symmetric matrixA the variational interpretation

of minimizing the quadratic functional φ(x) = xT f− 1
2x

TAx. We shall see now how to adapt

the algorithm to find the minimum of

∏(x) =
xTAx

xTBx
(8.97)

with a symmetric A and a positive definite B.

One of the vectors involved in the conjugate gradient algorithm is the residual r = f−Ax,

which is the gradient of the quadratic functional φ(x). For the Rayleigh quotient

grad∏(x) = r =
2

xTBx
(Ax− ∏Bx) (8.98)

25

and having selected the initial guess x0 we set, as in the quadratic case,

p0 = r0 =
2

xT0 Bx0
(Ax0 − ∏0Bx0), ∏0 = ∏(x0). (8.99)

The first step of the conjugate gradient algorithm consists of writing x = x0+α0p0 and fixing

α0 by the condition that α0 minimizes φ(x). To do the same to ∏(x) we write x = α00x0+α0p0

and minimize ∏(x) with respect to α00 and α0. This leads to the 2× 2 eigenproblem

"
xT0 Ax0 xT0 Ap0

pT0 Ax0 pT0 Ap0

"
α00
α0

#

= ∏

"
xT0 Bx0 xT0 Bp0

pT0 Bx0 pT0 Bp0

"
α00
α0

#

(8.100)

from which we obtain, by setting α00 = 1 and eliminating ∏1,

α2
0

ØØØØ
xT0 Ap0 xT0 Bp0

pT0 Ap0 pT0 Bp0

ØØØØ+α0

ØØØØ
xT0 Ax0 xT0 Bx0

pT0 Ap0 pT0 Bp0

ØØØØ+
ØØØØ
xT0 Ax0 xT0 Bx0

pT0 Ax0 pT0 Bx0

ØØØØ= 0. (8.101)

The largest root of the quadratic equation corresponds to the maximization of ∏(x), and the

lowest root to the minimization of ∏(x).

With α0 secured we have the next approximation x1 = x0+α0p0 with which we compute

the new residual vector r1, and in complete analogy with the conjugate gradients minimiza-

tion algorithm for quadratic functions we choose the new search direction p1 = r1+β0p0 with

β0 = rT1 r1/r
T
0 r0, and repeat the minimization. Going through the iterative cycles we produce

better and better approximations to the lowest (highest) eigenvalue and its corresponding

eigenvector.

It is beyond us to do a theoretical study on the convergence behavior of the method just

proposed, but a numerical example should give us a fair indication of its worth.

Figure 8.3 shows the convergence of the first eigenvalue of diagonal matrix

Dii = 4 sin2 ºi

(n+ 1)
i = 1, 2, . . . , n = 19 (8.102)

for the initial guess x0 = [1/1 1/2 . . . 1/n]T , with computations done in single (u = 0.5 10−6)

precision and double (u = 10−16) precision.

The algorithm appears to be surprisingly effective, extremely easy to program, and does

not require the matrices in tabular form. The fact that the algorithm can be applied to

the general eigenproblem Ax = ∏Bx without factoring B or inverting it, is of considerable

26

Fig. 8.3

advantage in physical applications where the general problem rather than the special Ax =

∏x is the rule.

In the basic power method each multiplication xk+1 = Axk of the iterated vector by the

matrix strengthens the prominence of the vn component of xk at the expense of the other

eigenvectors. To the contrary, minimization methods that seek the lowest eigenvalue of A

work to suppress the eigenvectors corresponding to the high eigenvalues.

Let A by symmetric, and

x0 = α1v1 + α2v2 + . . .+ αnvn, x1 = Ax0 = α1∏1v1 + α2∏2v2 + . . .+ αn∏nvn

x2 = Ax1 = α1∏
2
1v1 + α2∏

2
2v2 + . . .+ αn∏

2
nvn (8.103)

so that

xk = β0x0 + β1x1 + β2x2 = α1(β0 + β1∏1 + β2∏
2
1)v1 + α2(β0 + β1∏2 + β2∏

2
2)v2

+ . . .+ αn(β0 + β1∏n + β2∏
2
n)vn. (8.104)

27

An iterative method that seeks to approach xk towards v1 in some way selects β0, β1, β2 to

diminish β0 + β1∏j + β2∏2
j for the higher eigenvalues.

Minimization of the Rayleigh quotient ∏(x) = xTAx/xTBx over β0, β1, β2 produces a

Krylov-Rayleigh-Ritz alternative to conjugate gradients. This leads to the solution of the,

here 3× 3, eigenproblem



xT0 Ax0 xT0 Ax1 xT0 Ax2

xT1 Ax0 xT1 Ax1 xT1 Ax2

xT2 Ax0 xT2 Ax1 xT2 Ax2








β0

β1

β2



 = ∏




xT0 Bx0 xT0 Bx1 xT0 Bx2

xT1 Bx0 xT1 Bx1 xT1 Bx2

xT2 Bx0 xT2 Bx1 xT2 Bx2








β0

β1

β2



 (8.105)

and the procedure is repeated with β0, β1, β2 that correspond to the least among the three

eigenvalues of eq. (8.105).

Figure 8.4 shows the convergence of the iterated ∏0k towards the correct ∏1 for the diagonal

matrix of eq. (8.102) and the same initial guess as for the conjugate gradients method. All

computations are done in double precision. Convergence is shown for a three-dimensional

search over the Krylov subspace x0, Ax0, A2x0, entailing the solution of a 3×3 eigenproblem

at each step, and a five-dimensional search over x0, Ax0, . . . , A4x0, entailing the solution of

a 5× 5 eigenproblem at each iterative step. In both cases convergence is evidently linear.

Fig. 8.4

28

The number of iterations in Fig. 8.4 is for the 3×3 scheme. Each step of the 5×5 scheme

is counted as 5/3 iterations to account for the extra number of matrix vector multiplications

at each step.

As iteration progresses, vectors x0, x1 = Ax0, . . . , xm−1 = Am−1x0 that form the Krylov

search subspace become nearly linearly dependent, and the right-hand matrix in eq. (8.104)

becomes nearly singular. Great care must be exercised and high accuracy employed in the

solution of the m×m generalized eigenproblem det(A0−∏B0) = 0, particularly with methods

that assumeB0 positive definite. Not stopping the iteration and proceeding with a practically

singular B0 causes loss of numerical stability and jumps between eigenvectors.

Use of large Krylov subspaces may also cause the right-hand matrix B0 to become nearly

singular with similar effects. In our example, 9 appears to be the highest possible number

of Krylov vectors. The method of conjugate gradients is optimal in the quadratic case and

appears to be nearly so here as well.

8.8 Higher eigenvalues

Suppose that the power method or the conjugate gradient algorithm has been applied

to Ax = ∏Bx to compute the lowest eigenvalue ∏1 with its corresponding eigenvector v1. A

second application of one of these algorithms with an initial guess x0 such that xT0 Bv1 = 0,

xT0 Bv2 =/ 0, should assure in principle convergence to the next eigenvector v2.

To clear an arbitrary x00 of its v1 component we write the projection matrix

P = I − v1v
T
1 B , vT1 Bv1 = 1 (8.106)

and have with it that for any x00

x0 = Px00 = x00 − (vT1 Bx
0
0)v1 (8.107)

is B-orthogonal to x0. Indeed,

vT1 Bx0 = vT1 Bx
0
0 − (vT1 Bv1)(v

T
1 Bx

0
0) = 0 (8.108)

since vT1 Bv1 = 1.

29

In reality v1 is known only approximately, and also round-off errors intervene to spoil

the orthogonality condition xTkBv1 = 0. It is advisable, therefore, to project xk periodically

during iteration.

Once v2 is also available, the search for the next eigenvector starts with x0 such that

xT0 Bv1 = xT0 Bv2 = 0, which is achieved with

x0 = x00 − (vT1 Bx
0
0)v1 − (vT2 Bx

0
0)v2, v

T
1 Bv1 = vT2 Bv2 = 1 (8.109)

and so on.

After the approximations v01, v
0
2, . . . , v

0
m to the first m eigenvectors are computed, a better

Ritz approximation to ∏1 is extracted from

x = α1v
0
1 + α2v

0
2 + · · · + αmv

0
m (8.110)

by the minimizing of ∏(x) = xTAx/xTBx over α1, α2, . . . , αm, a minimization that entails

the solution of an m×m eigenproblem.

The decisive advantage of iterative methods based on the minimization of Rayleigh’s

quotient is that neither A nor B are needed explicitly in these algorithms, an advantage

that can result in considerable space and overhead savings. These savings come, however,

at the expense of time and efficiency. Once ∏1 is computed all the information gained in the

computation is discarded, and computation of ∏2 starts with a clean slate.

exercises

8.8.1. Compute the second eigenvalue of

A =





1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 1




.

8.8.2. Let x01 = (1− 1
2≤

2)v1 + ≤v2, where |≤| << 1 and where v1 and v2 are two orthonormal

eigenvectors of A = AT . Show that if x02 = α1v1 + α2v2, α2
1 + α2

2 = 1, is orthogonal to x01,

then

∏02 = x0
T

2 Ax
0
2 = ∏2 + ≤2(∏1 − ∏2).

30

8.9 Hessenberg-Givens tridiagonalization

In the next three sections we shall discuss ways to bring a symmetric matrix in a finite

number of similarity transformations to tridiagonal form. Then we shall discuss eigenvalue

solution methods for such matrices.

Theorem 6.13 guarantees that any square matrix can be brought to an almost upper-

triangular, Hessenberg form in a finite sequence of elementary similarity transformations.

For a symmetric matrix, symmetric similarity operations reduce the matrix to tridiagonal

form.

Theorem (Hessenberg-Givens) 8.5. Any symmetric matrix can be brought to tridi-

agonal form by means of a finite sequence of elementary similarity transformations.

Proof. The orthogonal similarity transformation A0 = QAQT maintains symmetry.

Different choices of Q produce different tridiagonalization algorithms. In the Givens version,

Jacobi rotation matrix Q = Jkl is used to annul entry (k−1, l). Shown below is the sequence

of rotations designed to put zeros in the first row of matrix A





1 2 3 4 5

1 × × × × ×

2 × × × × ×

3 × × × × ×

4 × × × × ×

5 × × × × ×





→





2 3

× × 0 × ×

2 × × × × ×

3 0 × × × ×

× × × × ×

× × × × ×





→





2 4

× × 0 0 ×

2 × × × × ×

0 × × × ×

4 0 × × × ×

× × × × ×





→





2 5

× × 0 0 0

2 × × × × ×

0 × × × ×

0 × × × ×

5 0 × × × ×





. (8.111)

The first rotation replaces rows and columns 2 and 3 by their linear combination, and A13

is annulled by

cA13 − sA12 = 0, c2 + s2 = 1 (8.112)

31

or

c = A12(A
2
12 +A2

13)
−1

2 , s = A13(A
2
12 +A2

13)
−1

2 . (8.113)

Subsequent entries in the first row are annulled by moving the second column to the right

and the second row down. In this way the created zeros remain unaffected.

Having cleared the entries in the first row we descend to the row below it and set out to

annul entry (2,4) with a (3,4) rotation





1 2 3 4 5

1 × × 0 0 0

2 × × × × ×
3 0 × × × ×
4 0 × × × ×
5 0 × × × ×





→





3 4

× × 0 0 0

× × × 0 ×
3 0 × × × ×
4 0 0 × × ×

0 × × × ×





(8.114)

Because the new 3rd and 4th columns are linear combinations of the old 3rd and 4th columns,

the zeroes in the first row add up again to zero, and the similarity transformations continue

row by row to finally create a tridiagonal matrix. End of proof.

To estimate the work involved in the Givens tridiagonalization assume that A = A(n×n)

is large enough for n−1 to be confounded with n. Treatment of the first row requires about n

rotations, each requiring 4n operations, altogether 4n2 operations. The second row requires

only n− 1 rotations with 4(n− 1) operations per rotation, and so on, so that the total work

is nearly 4
3n

3 operations.

As in the Jacobi method, also here
X

A2
ij remains constant throughout the tridiago-

nalization process and consequently the size of all matrix elements remains bounded; the

method is stable.

It is worth noting that the Givens tridiagonalization method can be adapted to the

reduction of a band matrix with no creation of nonzero entries outside the band.

The adaptation is due to Rutishouser and is schematically described below on a 10× 10

32

matrix of bandwidth 7.





1 2 3 4 5 6 7 8 9 10

1 × × × 0

2 × × × × ×

{3} × × × × × × •

{4} 0 × × × × × ×

5 × × × × × × ×

6 × × × × × × ×

7 • × × × × × × ×

8 × × × × × ×

9 × × × × ×

10 × × × ×





→





1 2 3 4 5 6 7 8 9 10

1 × × ×

2 × × × × ×

3 × × × × × × 0

4 × × × × × ×

5 × × × × × × ×

{6} × × × × × × × •

{7} 0 × × × × × × ×

8 × × × × × ×

9 × × × × ×

10 • × × × ×





→

33





1 2 3 4 5 6 7 8 9 10

1 × × ×

2 × × × × ×

3 × × × × × ×

4 × × × × × ×

5 × × × × × × ×

6 × × × × × × × 0

7 × × × × × × ×

8 × × × × × ×

{9} × × × × ×

{10} 0 × × × ×





→





1 2 3 4 5 6 7 8 9 10

1 × × ×

2 × × × × 0

3 × × × × × ×

{4} × × × × × × •

{5} 0 × × × × × ×

6 × × × × × × ×

7 × × × × × × ×

8 • × × × × × ×

9 × × × × ×

10 × × × ×





. (8.115)

Entry (1,4) is the first targeted for annulment with a linear combination of rows and

columns 3 and 4. Removal of entry (1,4) creates, however, a new nonzero entry at (3,7),

which is in turn annulled by a linear combination of rows and columns 6 and 7. This

latest annulment creates a nonzero entry at (6,10) which is finally set to zero with a linear

combination of rows and columns 9 and 10. We return now up the diagonal to entry (2,5)

and chase it down as before.

For a matrix of dimension n and half bandwidth k, 2 < k < n, Rutishouser’s reduction

requires some 4n2(k − 2) arithmetical operations.

34

8.10 Householder tridiagonalization

Whereas in the Givens and Jacobi methods one entry is annulled at a time, the House-

holder method combines rotations to clear at once all the desired entries in one row. The

result is a more efficient algorithm for the tridiagonalization of a symmetric matrix in a finite

number of similarity transformations.

Householder’s similarity transformation is done with the symmetric orthogonal reflection

matrix

Q = I − 2uuT , uTu = 1 (8.116)

for which we verify that Q(u) = Q(−u), Q2 = I and Qu = −u.

As in Sec. 5.8, also here we are essentially given the two vectors a and b, a =/ b, with

aTa = bT b, and are required to find u in Q so that b is the reflection of a, b = Qa. To see

that unit vector

u =
1

ka− bk(a− b), ka− bk =
q

2(aTa− aT b) (8.117)

does it look at Fig. 8.5 and at

Qa = a− 2u(aTu) = a− 2
(aTa− aT b)

ka− bk2 (a− b)

= a− (a− b) = b.

(8.118)

Fig. 8.5

35

As a first step in the tridiagonalization we seek Q to achieve

Q





A11 A12 × ×
A12 × × ×
× × × ×
× × × ×



Q =





C11 C21 0 0
C21 × × ×
0 × × ×
0 × × ×



 (8.119)

with unit vector u having a zero first component, u = [0 u2 u3 . . . un]T . Because of the

first zero in u, matrix B = QA is with an unchanged first row, and matrix C = BQ with an

unchanged first column:

B = QA =




A11 A12 A13

B21 B22 B23

B31 B32 B33



 , C = BQ = QAQ =




A11 B21 B31

B21 B22 B32

B31 B32 B33



 (8.120)

since C is symmetric. Hence we need Q to perform the transformation

Q





A11

A12
...

A1n



 =





A11

B21

0
0



 (8.121)

for

A2
11 +A2

12 + . . .+A2
1n = A2

11 +B2
21 (8.122)

or

B21 = ±∞, ∞ = (A2
12 +A2

13 + . . .+A2
1n)

1/2. (8.123)

According to the opening arguments of this section

u = β





0
A12 −B21

A13
...

A1n




, β = ((A12 −B21)

2 +A2
13 + . . .+A2

1n)
−1/2 (8.124)

and we make the sign choice

B21 = −sign (A12)∞. (8.125)

Some algebra leads to

β =

√
2

2∞
(1 + |A12|/∞)−

1
2 (8.126)

36

and this is all we need to create

QTAQ =





× × oT

×
A0

o



 . (8.127)

To continue the tridiagonalization we write

Q =
∑
1 oT

o Q0

∏
(8.128)

and have that
∑
1 oT

o Q0

∏ "
A11 a0

T

1
a01 A0

∑
1 oT

o Q0

∏ "
A11 a0

T

1
a01 Q0A0Q0

#

(8.129)

since u0 in Q0 = I − 2u0u0
T

is orthogonal to a01 = [× 0 0 0]T by virtue of its null first

component. The procedure is now repeated on the smallerA0 and so on until tridiangulization

is completed.

The arithmetical work involved with the Householder method is about 2n3/3 operations,

better than with the Givens method.

8.11 Lanczos tridiagonalization

The Lanczos method can be thought of as the Ritz method with trial vectors being the

residuals generated by the conjugate gradient algorithm.

We recall from Chapter 7 that for a positive definite symmetric matrix A the conjugate

gradient algorithm produces the sequence of vectors r0, r1, . . . , rm−1 that satisfy the orthog-

onality and A-orthogonality conditions rTi rj = 0 if i =/ j, and rTi Arj = 0 if |i−j| ≥ 2. Hence

with the trial vector

x = ξ1r0 + ξ2r1 + · · · + ξmrm−1 (8.130)

the Ritz method results in the m×m eigenproblem





rT0 Ar0 rT0 Ar1
rT1 Ar0 rT1 Ar1 rT1 Ar2

rT2 Ar1 rT2 Ar2 rT2 Ar3
. . .

rTm−2Arm−3 rTm−2Arm−2 rTm−2Arm−1

rTm−1Arm−2 rTm−1Arm−1









ξ1
ξ2
ξ3

ξm−1

ξm





37

= ∏





rT0 r0
rT1 r1

rT3 r3
. . .
rTm−2rm−2

rTm−1rm−1









ξ1
ξ2
ξ3

ξm−1

ξm





. (8.131)

Using the conjugate gradient relationships

αj =
rTj rj

pTj Apj
, βj =

rTj+1rj+1

rTj rj
, pj = rj+βj−1pj−1, βj =

rTj+1rj+1

rTj rj
, pTi Apj = 0, i =/ j (8.132)

and the transformation ξj = (rTj−1rj−1)−
1
2ηj we reduce the eigenproblem to





1/α0 −β1/2
0 /α0

−β1/2
0 /α0 1/α1 + β0/α0 −β1/2

1 /α1

−β1/2
1 /α1 1/α2 + β1/α1 −β1/2

2 /α2

. . .









η1

η2

ηm





= ∏





η1

η2

ηm





. (8.133)

If r0 is confined to a subspace spanned by m eigenvectors of A, then the conjugate gradient

algorithm generates no more than m nonzero r vectors and the Lanczos method yields only

part of the spectrum of A. A random r0 raises the expectation for a complete tridiagonal

Lanczos eigenproblem including all eigenvalues of A but without their multiplicities.

The appeal of the Lanczos tridiagonalization method is considerable for the large sparse

eigenproblems of finite differences and finite elements since it does not require A itself but

only Apk. Unfortunately, what looks so promising theoretically is flawed in practice. The

algorithm is sensitive to round-off errors that spoil the orthogonality and A-orthogonality of

the r vectors. Matrices that are in theory tridiagonal and diagonal are not so in practice.

Each approximate eigenvalue of the tridiagonal matrix comes with the m components

ξ1, ξ2, . . . , ξm of the Lanczos-Ritz eigenvector and the approximate eigenvector may be recon-

structed from x = ξ1r0 + ξ2r1 + · · ·+ ξmrm−1. If storage of all r0, r1, . . . , rm−1 is undesirable,

then the eigenvector may be found by inverse iteration.

A numerical example should clearly reveal the ill effects of round-off errors. We undertake

to apply the Lanczos method to the computation of all eigenvalues of the diagonal matrix

Dii = i2, i = 1, 2, . . . , 20, with an initial r0 = [≤ 1 . . . 1]T for different ≤ values.

38

Table 8.1 below lists the result of this computation done in single (u = 0.5 10−6) precision.

The eigenvalues computed with ≤ = 1 are inaccurate and the highest eigenvalue ∏ = 400

seems to repeat. With ≤ = 0.1 the lowest computed eigenvalue is closer to 4 than to 1 and

the highest eigenvalue still repeats. It appears as though the algorithm cannot make up its

mind as to whether r0 is in a 19-or a 20-dimensional vector space. Matters are settled, in this

respect, with ≤ = 0.01. The smallest eigenvalue ∏ = 1 is out and the higher eigenvalues are

computed with greater accuracy than for ≤ = 1, except that the computed highest eigenvalue

repeats.

Table 8.1: Accuracy of eigenvalue computation, single precision, Lanczos method for the

20×20 diagonal Dii = i2 and r0 = [≤ 1 1 . . . 1]T .

≤ = 1 eigenvalues

computed exact
k rTk rk
1 0.2000E + 02 0.3999873E + 03 400
2 0.1509E + 02 0.3999834E + 03 361
3 0.1391E + 02 0.3609873E + 03 324
4 0.1286E + 02 0.3239895E + 03 289
5 0.1185E + 02 0.2889873E + 03 256
6 0.1086E + 02 0.2559999E + 03 225
7 0.9882E + 01 0.2250003E + 03 196
8 0.8925E + 01 0.1960012E + 03 169
9 0.7988E + 01 0.1690070E + 03 144
10 0.7077E + 01 0.1440390E + 03 121
11 0.6193E + 01 0.1211608E + 03 100
12 0.5340E + 01 0.1004460E + 03 81
13 0.4523E + 01 0.8173644E + 02 64
14 0.3746E + 01 0.6448241E + 02 49
15 0.3014E + 01 0.4838033E + 02 36
16 0.2350E + 01 0.3379993E + 02 25
17 0.2402E + 01 0.2135901E + 02 16
18 0.3017E + 01 0.1157512E + 02 9
19 0.1129E + 01 0.4785712E + 01 4
20 0.6548E + 00 0.1071318E + 01 1

39

≤ = 0.1 eigenvalues

computed exact
k rTk rk
1 0.1901E + 02 0.3999861E + 03 400
2 0.1272E + 02 0.3988076E + 03 361
3 0.1012E + 02 0.3609885E + 03 324
4 0.7972E + 01 0.3239873E + 03 289
5 0.6180E + 01 0.2889863E + 03 256
6 0.4709E + 01 0.2559994E + 03 225
7 0.3523E + 01 0.2249996E + 03 196
8 0.2585E + 01 0.1960012E + 03 169
9 0.1857E + 01 0.1690108E + 03 144
10 0.1303E + 01 0.1440694E + 03 121
11 0.8900E + 00 0.1213227E + 03 100
12 0.5894E + 00 0.1010604E + 03 81
13 0.3763E + 00 0.8319557E + 02 64
14 0.2300E + 00 0.6655870E + 02 49
15 0.1334E + 00 0.5050694E + 02 36
16 0.7271E − 01 0.3574448E + 02 25
17 0.3726E − 01 0.2313942E + 02 16
18 0.2890E − 01 0.1334122E + 02 9
19 0.2988E − 01 0.6970556E + 01 4
20 0.9669E − 02 0.3607424E + 01 1

40

≤ = 0.01 eigenvalues

computed exact
k rTk rk
1 0.1900E + 02 0.3999858E + 03 400
2 0.1269E + 02 0.3999766E + 03 361
3 0.1008E + 02 0.3609863E + 03 324
4 0.7929E + 01 0.3239858E + 03 289
5 0.6132E + 01 0.2889844E + 03 256
6 0.4658E + 01 0.2559991E + 03 225
7 0.3473E + 01 0.2249997E + 03 196
8 0.2537E + 01 0.1960002E + 03 169
9 0.1812E + 01 0.1690032E + 03 144
10 0.1262E + 01 0.1440241E + 03 121
11 0.8538E + 00 0.1211228E + 03 100
12 0.5578E + 00 0.1004622E + 03 81
13 0.3492E + 00 0.8225214E + 02 64
14 0.2072E + 00 0.6623778E + 02 49
15 0.1145E + 00 0.5153043E + 02 36
16 0.5768E − 01 0.3791283E + 02 25
17 0.3010E − 01 0.2599255E + 02 16
18 0.4244E − 01 0.1631502E + 02 9
19 0.7678E − 02 0.9040213E + 01 4
20 0.1657E − 02 0.3998635E + 01 1

41

Various suggestions have been made to ward-off the harm of round-off errors by repeated

reorthogonalizations during the conjugate gradient generation of the r vectors, but we shall

not deal with these highly technical issues here.

Increasing the accuracy of the computation to double (u = 10−16) precision dramatically

improves the accuracy of the computed eigenvalues as seen in Table 8.2 below. The table

shows also the convergence of the eigenvalues with more residuals and larger tridiagonal ma-

trices. Convergence of the lowest eigenvalue is at best linear and to have accurate eigenvalues

the Lanczos tridiagonalization must be carried out in high precision to completion.

Table 8.2: Accuracy and convergence of eigenvalue computation, double precision Lanczos

method for the 20× 20 diagonal matrix Dii = i2 and r0 = [1 1 . . . 1]T .

k rTk rk

1 0.2000D+02
2 0.1509D+02
3 0.1391D+02
4 0.1286D+02
5 0.1185D+02
6 0.1086D+02
7 0.9882D+01
8 0.8925D+01
9 0.7988D+01
10 0.7077D+01
11 0.6193D+01
12 0.5340D+01
13 0.4523D+01
14 0.3746D+01
15 0.3013D+01
16 0.2329D+01
17 0.1702D+01
18 0.1140D+01
19 0.6545D+00
20 0.2629D+00

42

eigenvalues eigenvalues

computed exact computed exact

k = 2 k = 7

0.31167138D+03 4 0.39912370D+03 49

0.51088020D+02 1 0.34783047D+03 36

k = 3 0.27582469D+03 25

0.36376036D+03 9 0.19071109D+03 16

0.18355971D+03 4 0.10767313D+03 9

0.25777375D+02 1 0.41996569D+02 4

k = 4 0.57614296D+01 1

0.38414872D+03 16 k = 8

0.26379530D+03 9 0.39976381D+03 64

0.11571509D+03 4 0.35546709D+03 49

0.15583254D+02 1 0.29769979D+03 36

k = 5 0.22690807D+03 25

0.39323176D+03 5 0.15215764D+03 16

0.30836236D+03 6 0.84079887D+02 9

0.19060881D+03 9 0.32424647D+02 4

0.78409809D+02 4 0.45445367D+01 1

0.10490873D+02 1 k = 9

k = 6 0.39995050D+03 81

0.39736734D+03 36 0.35909351D+03 64

0.33358566D+03 25 0.31121668D+03 49

0.24194824D+03 16 0.25243579D+03 36

0.14129117D+03 9 0.18727720D+03 25

0.56184482D+02 4 0.12301475D+03 16

0.75818773D+01 1 0.67009092D+02 9

0.25674683D+02 4

0.36895455D+01 1

43

k = 10 k = 14
0.39999212D+03 10 0.40000000D+03 196

0.36049685D+03 81 0.36099993D+03 169

0.31880956D+03 64 0.32399522D+03 144

0.26964229D+03 49 0.28889380D+03 121

0.21364657D+03 36 0.25502211D+03 100

0.15551041D+03 25 0.22067116D+03 81

0.10067814D+03 16 0.18467767D+03 64

0.54306165D+02 9 0.14777217D+03 49

0.20740451D+02 4 0.11168693D+03 36

0.30650171D+01 1 0.78288689D+02 25

k = 11 0.49294273D+02 16

0.39999906D+03 121 0.26171560D+02 9

0.36090388D+03 100 0.10072202D+02 4

0.32237989D+03 81 0.17138312D+01 1

0.28032651D+03 64 k = 15
0.23247770D+03 49 0.40000000D+03 225

0.18105909D+03 36 0.36100000D+03 196

0.12997995D+03 25 0.32399972D+03 169

0.83274046D+02 16 0.28899076D+03 144

0.44614759D+02 9 0.25586224D+03 121

0.17024657D+02 4 0.22400306D+03 100

0.25944401D+01 1 0.19212310D+03 81

k = 12 0.15948389D+03 64

0.39999992D+03 144 0.12673615D+03 49

0.36098713D+03 121 0.95249901D+02 36

0.32364396D+03 100 0.66479325D+02 25

0.28599766D+03 81 0.41744305D+02 16

0.24490462D+03 64 0.22158727D+02 9

0.20004542D+03 49 0.85846394D+01 4

0.15381235D+03 36 0.15267430D+01 1

0.10929081D+03 25 k = 16
0.69484427D+02 16 0.40000000D+03 256

0.37055771D+02 9 0.36100000D+03 225

0.14155463D+02 4 0.32399999D+03 196

0.22308079D+01 1 0.28899955D+03 169

k = 13 0.25598972D+03 144

0.39999999D+03 169 0.22487893D+03 121

0.36099881D+03 144 0.19522484D+03 100

0.32394839D+03 121 0.16612038D+03 81

0.28828388D+03 100 0.13700021D+03 64

44

0.25197292D+03 81 0.10830110D+03 49

0.21303963D+03 64 0.81059443D+02 36

0.17200238D+03 49 0.56406256D+02 25

0.13096955D+03 36 0.35366551D+02 16

0.92342460D+02 25 0.18796790D+02 9

0.58379433D+02 16 0.73497662D+01 4

0.31042375D+02 9 0.13731803D+01 1

0.11891875D+02 4

0.19439551D+01 1

k = 17 k = 19
0.40000000D+03 289 0.40000000D+03 361

0.36100000D+03 256 0.36100000D+03 324

0.32400000D+03 225 0.32400000D+03 289

0.28899999D+03 196 0.28900000D+03 256

0.25599962D+03 169 0.25600000D+03 225

0.22499320D+03 144 0.22500000D+03 196

0.19592917D+03 121 0.19599998D+03 169

0.16856042D+03 100 0.16899966D+03 144

0.14231867D+03 81 0.14399652D+03 121

0.11671349D+03 64 0.12097527D+03 100

0.91903912D+02 49 0.99876175D+02 81

0.68597380D+02 36 0.80559946D+02 64

0.47655146D+02 25 0.62866601D+02 49

0.29877015D+02 16 0.46791046D+02 36

0.15929131D+02 9 0.32568373D+02 25

0.63098053D+01 4 0.20573037D+02 16

0.12465586D+01 1 0.11177703D+02 9

k = 18 0.46555721D+01 4

0.10594370D+01 1

0.40000000D+03 324 k = 20
0.36100000D+03 289 0.40000000D+03 400

0.32400000D+03 256 0.36100000D+03 361

0.28900000D+03 225 0.32400000D+03 324

0.25599999D+03 196 0.28900000D+03 289

0.22499984D+03 169 0.25600000D+03 256

0.19599755D+03 144 0.22500000D+03 225

0.16897560D+03 121 0.19600000D+03 196

0.14384218D+03 100 0.16900000D+03 169

0.12033103D+03 81 0.14400000D+03 144

0.98075664D+02 64 0.12100000D+03 121

45

0.76974015D+02 49 0.10000000D+03 100

0.57369340D+02 36 0.81000000D+02 81

0.39852433D+02 25 0.64000000D+02 64

0.25032625D+02 16 0.49000000D+02 49

0.13429174D+02 9 0.36000000D+02 36

0.54220041D+01 4 0.25000000D+02 25

0.11425974D+01 1 0.16000000D+02 16

0.90000000D+01 9

0.40000000D+01 4

0.10000000D+01 1

Application of the Lanczos method to Ax = ∏Bx requires the LLT factorization, detracting

more from its appeal.

8.12 Sturm’s theory for tridiagonals

Givens, Householder and Lanczos make it amply clear how important the tridiagonal

eigenproblem is.

Let T = T (m×m) be a symmetric, irreducible tridiagonal matrix, and write

pm(∏) = det(T − ∏I) = det





a1 − ∏ b2
b2 a2 − ∏ b3

b3 a3 − ∏ b4
.

bm−1 am−1 − ∏ bm
bm am − ∏





. (8.134)

Symmetric elementary row and column operations reduce the computation of det(T − ∏I)

to that of

det





p1/p0

p2/p1

p3/p2
. . .

pm−1/pm−2 bm
bm am − ∏





, p0 = 1 (8.135)

from which we obtain the recursive formula

pm = (am − ∏)pm−1 − b2mpm−2, p0 = 1, p1 = a1 − ∏. (8.136)

46

Example. if

T =





2 −1
−1 2 −1

−1 2 −1
−1 2



 (8.137)

then

pm = (2− ∏)pm−1 − pm−2 (8.138)

and

p0 = 1, p1 = 2− ∏, p2 = (2− ∏)2 − 1, p3 = (2− ∏)
≥
(2− ∏)2 − 2

¥
(8.139)

p4 = (2− ∏)4 − 3(2− ∏)− 1.

Characteristic polynomials pm are important for the following interlace

Theorem 8.6. If symmetric tridiagonal T = T (n × n) is irreducible, b2j > 0 for all j,

then the roots of characteristic equation pn = 0 are distinct, and between any two roots of

pn there is a root of pn−1.

Proof. By induction. The first p1 = a1 − ∏ has a single root ∏ = a1. For p2 =

(a1 − ∏)(a2 − ∏)− b22 we have that p2(a1) = −b22 < 0, p2(−1) > 0, p2(+1) > 0, and hence

p2 = 0 has two distinct roots, with the root of p1 = 0 strictly between them as in figure 8.6.

Fig. 8.6

47

Next assume that pm−1 has m− 1 distinct roots, and that between each pair there is a

root of pm−2. Let ∏1 and ∏2 be two consecutive roots of pm−1. Then

pm(∏1) = −b2mpm−2(∏1), pm(∏2) = −b2mpm−2(∏2) (8.140)

and since pm−2 changes sign in the interval ∏1 ≤ ∏ ≤ ∏2, then so does pm, and between two

consecutive roots of pm−1 there is a root of pm. We verify that pm(−1) > 0 for any m,

and hence there is a real root of pm less than the smallest root of pm−1. A similar argument

shows that pm has one root larger than the last root of pm−1. See figure 8.7. By induction

the proof is done.

Fig. 8.7

The root stack of p0, p1, p2, p3, p4, p5 is shown in figure 8.8.

Polynomials p0, p0, . . . , pn are seen to possess the following three preponderant properties:

1. p0(∏) =/ 0,

2. when pm = 0, pm−1 and pm+1 are both nonzero and of opposite sign,

3. as ∏ crosses a zero of pm, the quotient pm/pm−1 changes from positive to negative.

A sequence of polynomials p0, p1, . . . , pn that possesses the three properties forms a Sturm

sequence.

48

Fig. 8.8

The following theorem provides a useful device for counting the eigenvalues of a tridiag-

onal matrix in an interval.

Theorem 8.7 Let p0, p1, . . . , pn be a Sturm sequence on the interval α < ∏ < β,

pn(α) =/ 0, pn(β) =/ 0, and let ∫(∏) be the number of sign changes in the ordered array p0(∏), p1(∏), . . . , pn(∏).

Then the number of zeroes of pn in the interval α < ∏ < β is ∫(β)− ∫(α).

Proof. We know that pm(−1) > 0 for any m so that for a sufficiently small ∏, ∫(∏) = 0.

As ∏ increases it crosses the first root of pn = 0 and ∫(∏) jumps from zero to one. Look now

at figure 8.9. Further change in the value of ∫(∏) can occur only if ∏ crosses a root of one of

the polynomials. But when pm(∏) = 0, pm−1 and pm+1 have opposite signs. The value of ∫

is not changed when a root of pm, m < n is crossed. Only when a root of pn = 0 is crossed

does ∫(∏) change. End of proof.

Example. For

T − ∏I =




2− ∏ −1
−1 2− ∏ −1

−1 2− ∏



 (8.141)

we have that if ∏ = 2, then p0(∏) = 1, p1(∏) = 0, p2(∏) = −1, p3(∏) = 0 and hence ∏ = 2

is an eigenvalue of T . Also, since ∫(2) = 1, ∫(−1) = 0, ∫(+1) = 3, we conclude that one

root of pn = 0 is less than 2, and two roots are larger or equal to 2. See figure 8.9.

Notice that for ∏ = 2, T − ∏I does not admit an LU factorization.

49

Fig. 8.9

Solution of pn(∏) = 0 to find the eigenvalues of the tridiagonal T can be done with any

procedure that accurately locates roots of polynomials. Bisection, or the Newton-Raphson

methods are good candidates. We recall that det(T) equals the product of all eigenvalues of

T , and hence it is conceivable that pn(∏) may become large to overflow or small to underflow.

The difficulty is avoided by replacing pm(∏) by the ratio

qm(∏) = pm(∏)/pm−1(∏) m = 1, 2, . . . , n (8.142)

so that ∫(∏) becomes the number of negative q’s. The recurrence formula becomes now

qm = am − ∏− b2m/qm−1 m = 2, 3, . . . , n, q1 = a1 − ∏ (8.143)

and if qm−1(∏) is zero it is replaced by a small number.

Sturm’s theory is particularly useful in the process of finding few eigenvalues of T in a

given interval.

exercises

8.12.1. Matrix

A =





1 −1
−1 4 −3

−3 8 −5
−5 12 −7

−7 16





50

gives rise to the Sturm sequence

p1 = 1

p1 = 1− ∏

p2 = (4− ∏)p1 − p0

p3 = (8− ∏)p2 − 9p1

p4 = (12− ∏)p3 − 25p2

p5 = (16− ∏)p4 − 49p3.

Use theorem 8.6 to determine that interval 0.39 < ∏ < 0.40 contains the lowest eigenvalue

of A only. Bisect the interval to get tighter enclosures on ∏1.

Use Sturm’s theory to locate all eigenvalues of A.

8.12.2. Prove that if ∏ is an eigenvalue of tridiagonal matrix T of multiplicity m, then at

least m− 1 subdiagonal entries of T are zero.

8.12.3. For matrix

A =





2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2





pn(∏) = (−∏)n + . . .− a3(n)∏3 + a2(n)∏2 − a1(n)∏ + a0(n). Show that

a0(n) = 2a0(n− 1)− a0(n− 2)

a1(n) = 2a1(n− 1) + a0(n− 1)− a1(n− 2)

a2(n) = 2a2(n− 1) + a1(n− 1)− a2(n− 2)

a3(n) = 2a3(n− 1) + a2(n− 1)− a3(n− 2).

Store

−a3(n)∏3 + a2(n)∏2 − a1(n)∏ + a0(n) = 0

for n > 3, and compare the smallest root of this equation with

∏1(n) = 4 sin2 º

2(n+ 1)
.

51

8.12.4. Show that if tridiagonal

T =





a1 b2
c2 a2 b3

c3 a3 b4
c4 a4





is such that bi/ci > 0, then real diagonal D exists so that D−1TD is symmetric and hence

with real eigenvalues.

8.12.5. Show that if A and B are symmetric and B is positive definite, then the zeroes of

det(Ak − ∏Bk) = 0 separate those of det (Ak+1− ∏Bk+1) = 0, where Ak and Bk are leading

principal submatrices of order k.

8.12.6. Write

A =





a1 b2
b2 a2 b3

b3 a3 b4
b4 a4



 , B =





a01 b02
b02 a02 b03

b03 a03 b04
b04 a04





and argue that the polynomials

p0(∏) = 1 , p1(∏) = a1 − ∏a01

pk(∏) = (ak − ∏0ka
0
k)pk−1(∏)− (bk − ∏b0k)

2pk−2(∏)

form a Sturm sequence.

Apply this to the location of all roots of

det(





2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2




− ∏





4 1
1 4 1

1 4 1
1 4 1

1 4




) = 0.

8.12.7. Find c and s, c2 + s2 = 1, so that




c s

1
−s c








2 −1 −1
−1 3 −2
−1 −2 3








c −s

1
s c





is tridiagonal.

52

8.12.8. Use Sturm’s theory to locate all eigenvalues of matrix

A =





3 1
1 2 1

1 1 1
1 0 1

1 1 1
1 2 1

1 3





.

Use inverse iteration to compute the corresponding eigenvectors.

8.13 The Francis-Kublanovskaya QR algorithm

The Francis-Kublanovskaya QR algorithm consists of simultaneous power iteration car-

ried to the extreme of n vectors iterated at once. Let matrix candidate A = A0 for the eigen-

value computations be symmetric. In the QR algorithm the matrix is factored as A0 = Q0R0

with an orthogonal Q0 and an upper-triangular R0, and the orthonormal columns of Q0 are

taken as the initial guess for the n eigenvectors of A. Then matrix A1 = QT
0 A0Q0 is formed

and QR factored to yield the next eigenvector approximation Q1, and the process is repeated

to make Ak approach diagonal form.

We shall write the QR algorithm as

QT
0 A0 = R0 , A1 = R0Q0 = QT

0 A0Q0 (8.144)

or in a lower-triangular version as

QT
0 A0 = L0 , A1 = L0Q0 = QT

0 A0 (8.145)

in which form it is called the QL algorithm.

What renders the QL and QR algorithms so attractive for band matrices is

Theorem 8.8. If in the QR algorithm A0 = AT
0 is a band matrix of half bandwidth k,

then so is A1 = QT
0 A0Q0.

53

Proof. Consider the schematic formation of A1





A0

× × ×
× × × ×
× × × × ×
× × × × ×
× × × × ×

× × × ×
× × ×









R−1
0

× × × × × × ×
× × × × × ×
× × × × ×

× × × ×
× × ×
× ×
×





=





Q0

× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × ×
× × × × ×

× × × ×
× × ×









R0

× × × × × × ×
× × × × × ×
× × × × ×

× × × ×
× × ×
× ×
×









Q0

× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × ×
× × × × ×

× × × ×
× × ×





=





A1

× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × ×
× × × × ×

× × × ×
× × ×





=





× × ×
× × × ×
× × × × ×
× × × × ×
× × × × ×
× × × ×
× × ×





(8.146)

Because A1 = AT
1 , A1 is again a band matrix of the same bandwidth as A0. End of proof.

Since a symmetric matrix can be tridiagonalized by elementary operations, we are greatly

interested in the application of the QR or QL algorithm to tridiagonal matrices. Factoriza-

tion to have QTA = L is done here by a succession of Jacobi rotations

J1J2 · · · Jn−1A = L (8.147)

54

with

Ji =





i i+ 1

1

i ci −si
i+ 1 si ci

1





(8.148)

that combine two neighboring rows as described below.





A

× ×
× × ×

× × ×
× × ×

× ×





→





J4A

× ×
× × ×

× × ×
× × 0

× × ×





→





J3J4A

× ×
× × ×

× × 0

× × ×
× × ×





→





J2J3J4A

× ×
× × 0

× × ×
× × ×

× × ×





→





J1J2J3J4A

× 0

× ×
× × ×

× × ×
× × ×





=





L

×
× ×
× × ×

× × ×
× × ×





(8.149)

In this way

J1J2 · · · Jn−1A0 = L0 , and A1 = L0J
T
n−1 · · · JT2 JT1 . (8.150)

It appears in the above factorization that an extra subdiagonal is added, but we know that

if A0 is tridiagonal then so is A1 and the second subdiagonal can be neglected.

For the tridiagonal matrix with diagonal elements a1, a2, . . . , an, and subdiagonal ele-

ments b2, b3, . . . , bn the pre-multiplication of A0 by QT
0 and the post-multiplication by Q0

55

can be combined into the following algorithm for a QL step:

pn = an , cn = 1 , sn = 0

ri+1 = (p2
i+1 + b2i+1)

1/2

gi+1 = ci+1 bi+1

hi+1 = ci+1pi+1

b0i+2 = si+1ri+1

ci = pi+1/ri+1

si = bi+1/ri+1

pi = ciai − sigi+1

a0i+1 = hi+1 + si(cigi+1 + siai)

b02 = s1p1, a01 = c1p1

i = n− 1, . . . , 1 (8.151)

in which a01, a
0
2, . . . , a

0
n, and b02, b

0
3, . . . , b

0
n are on the diagonal and super-diagonal of A1 =

QT
0 A0Q0.

If a super-diagonal entry b0i in the iterated matrix becomes small as in

A0 =





∏1 ≤
≤ × × ×

× × ×
× × ×



 (8.152)

then ∏1 is recorded as an eigenvalue and iteration continues on a smaller matrix.

Table 8.3 describes the convergence of the QL algorithm for all eigenvalues of tridiagonal

T = T (20× 20) with ai = 2 and bi = −1. Figure 8.10 is a drawing made from table 8.3 for

the first seven eigenvalues, and convergence is clearly seen to be no better than linear, as is

expected of a procedure that is essentially a power method. Careful analysis demonstrates

that quickness of convergence for ∏j depends on how isolated it is from the other eigenvalues,

and that b0i/bi is proportional to ∏i−1/∏i. Improvement in the rate of convergence is achieved

with an appropriate shift and an algorithm that assumes the form

Q0(A0 − ∏00I) = L0 A1 = L0Q
T
0 . (8.153)

Ways to determine a good universal shifting strategy are too technical for discussion here.

56

Table 8.3: Convergence of the QL algorithm for a symmetric 20×20 tridiagonal matrix with

ai = 2, bi = −1.

1 iteration

i ∏i ai bi

1 0.22338348D−01 0.14634146D+00 −0.36365191D+00

2 0.88854388D−01 0.20075047D+01 −0.99605263D+00

3 0.19806226D+00 0.20083160D+01 −0.99561403D+00

4 0.34752245D+00 0.20092664D+01 −0.99509803D+00

5 0.53389626D+00 0.20103896D+01 −0.99448528D+00

6 0.75302040D+00 0.20117302D+01 −0.99374998D+00

7 0.10000000D+01 0.20133482D+01 −0.99285711D+00

8 0.12693180D+01 0.20153257D+01 −0.99175819D+00

9 0.15549581D+01 0.20177778D+01 −0.99038454D+00

10 0.18505398D+01 0.20208696D+01 −0.98863624D+00

11 0.21494602D+01 0.20248447D+01 −0.98636342D+00

12 0.24450419D+01 0.20300752D+01 −0.98333294D+00

13 0.27306820D+01 0.20371517D+01 −0.97916590D+00

14 0.30000000D+01 0.20470588D+01 −0.97321265D+00

15 0.32469796D+01 0.20615385D+01 −0.96428180D+00

16 0.34661037D+01 0.20839161D+01 −0.94998913D+00

17 0.36524775D+01 0.21212121D+01 −0.92496246D+00

18 0.38019377D+01 0.21904762D+01 −0.87481777D+00

19 0.39111456D+01 0.23428571D+01 −0.74833148D+00

20 0.39776617D+01 0.28000000D+01

57

5 iterations

i ∏i ai bi

1 0.22338348D−01 0.22338610D−01 −0.13244722D−03

2 0.88854388D−01 0.89426143D−01 −0.81937862D−02

3 0.19806226D+00 0.22052880D+00 −0.73184130D−01

4 0.34752245D+00 0.62558654D+00 −0.42050819D+00

5 0.53389626D+00 0.17250467D+01 −0.90080118D+00

6 0.75302040D+00 0.21375860D+01 −0.92762972D+00

7 0.10000000D+01 0.21524602D+01 −0.91958808D+00

8 0.12693180D+01 0.21698842D+01 −0.91012710D+00

9 0.15549581D+01 0.21904762D+01 −0.89889184D+00

10 0.18505398D+01 0.22150538D+01 −0.88540895D+00

11 0.21494602D+01 0.22447164D+01 −0.86903589D+00

12 0.24450419D+01 0.22809706D+01 −0.84888265D+00

13 0.27306820D+01 0.23259259D+01 −0.82368777D+00

14 0.30000000D+01 0.23826087D+01 −0.79161485D+00

15 0.32469796D+01 0.24554865D+01 −0.74990551D+00

16 0.34661037D+01 0.25513784D+01 −0.69425821D+00

17 0.36524775D+01 0.26811146D+01 −0.61764706D+00

18 0.38019377D+01 0.28627451D+01 −0.50787450D+00

19 0.39111456D+01 0.31282051D+01 −0.34154440D+00

20 0.39776617D+01 0.35384615D+01

58

10 iterations

i ∏i ai bi

1 0.22338348D−01 0.22338348D−01 −0.13267844D−06

2 0.88854388D−01 0.88854569D−01 −0.14025979D−03

3 0.19806226D+00 0.19812562D+00 −0.30896518D−02

4 0.34752245D+00 0.34938567D+00 −0.19289789D−01

5 0.53389626D+00 0.55131250D+00 −0.69434478D−01

6 0.75302040D+00 0.84269651D+00 −0.19262441D+00

7 0.10000000D+01 0.13224174D+01 −0.44666285D+00

8 0.12693180D+01 0.19998549D+01 −0.71338520D+00

9 0.15549581D+01 0.23930413D+01 −0.76943939D+00

10 0.18505398D+01 0.24758756D+01 −0.74996425D+00

11 0.21494602D+01 0.25253283D+01 −0.72364953D+00

12 0.24450419D+01 0.25821206D+01 −0.69293278D+00

13 0.27306820D+01 0.26486486D+01 −0.65678958D+00

14 0.30000000D+01 0.27272727D+01 −0.61385914D+00

15 0.32469796D+01 0.28211144D+01 −0.56232293D+00

16 0.34661037D+01 0.29343715D+01 −0.49970265D+00

17 0.36524775D+01 0.30727969D+01 −0.42253699D+00

18 0.38019377D+01 0.32444444D+01 −0.32581259D+00

19 0.39111456D+01 0.34608696D+01 −0.20160040D+00

20 0.39776617D+01 0.37391304D+01

59

20 iterations

i ∏i ai bi

1 0.22338348D−01 0.22338348D−01 −0.13382018D−12

2 0.88854388D−01 0.88854388D−01 −0.46303437D−07

3 0.19806226D+00 0.19806227D+00 −0.11119173D−04

4 0.34752245D+00 0.34752280D+00 −0.25515758D−03

5 0.53389626D+00 0.53391397D+00 −0.19900317D−02

6 0.75302040D+00 0.75329823D+00 −0.85635598D−02

7 0.10000000D+01 0.10021026D+01 −0.25587013D−01

8 0.12693180D+01 0.12791546D+01 −0.60238450D−01

9 0.15549581D+01 0.15880060D+01 −0.12057984D+00

10 0.18505398D+01 0.19378197D+01 −0.21439573D+00

11 0.21494602D+01 0.23358227D+01 −0.33809229D+00

12 0.24450419D+01 0.27356368D+01 −0.43726852D+00

13 0.27306820D+01 0.29992152D+01 −0.45053972D+00

14 0.30000000D+01 0.31217432D+01 −0.41549665D+00

15 0.32469796D+01 0.32133728D+01 −0.36901848D+00

16 0.34661037D+01 0.33125241D+01 −0.31635942D+00

17 0.36524775D+01 0.34242293D+01 −0.25676050D+00

18 0.38019377D+01 0.35508274D+01 −0.18886693D+00

19 0.39111456D+01 0.36950904D+01 −0.11064579D+00

20 0.39776617D+01 0.38604651D+01

60

40 iterations

i ∏i ai bi

1 0.22338348D−01 0.22338348D−01 −0.13613345D−24

2 0.88854388D−01 0.88854388D−01 −0.50484270D−14

3 0.19806226D+00 0.19806226D+00 −0.14536155D−09

4 0.34752245D+00 0.34752245D+00 −0.47567598D−07

5 0.53389626D+00 0.53389626D+00 −0.20494549D−05

6 0.75302040D+00 0.75302040D+00 −0.29333865D−04

7 0.10000000D+01 0.10000002D+01 −0.21431910D−03

8 0.12693180D+01 0.12693213D+01 −0.10030325D−02

9 0.15549581D+01 0.15549944D+01 −0.34287830D−02

10 0.18505398D+01 0.18507880D+01 −0.92851379D−02

11 0.21494602D+01 0.21506569D+01 −0.21006103D−01

12 0.24450419D+01 0.24494064D+01 −0.41184220D−01

13 0.27306820D+01 0.27433266D+01 −0.71784877D−01

14 0.30000000D+01 0.30298355D+01 −0.11255362D−01

15 0.32469796D+01 0.33017893D+01 −0.15401729D+00

16 0.34661037D+01 0.35260234D+01 −0.16727419D+00

17 0.36524775D+01 0.36634213D+01 −0.14224835D+00

18 0.38019377D+01 0.37520436D+01 −0.10241765D+00

19 0.39111456D+01 0.38369881D+01 −0.58138692D−01

20 0.39776617D+01 0.39277108D+01

61

60 iterations

i ∏i ai bi

1 0.22338348D−01 0.22338348D−01 −0.13848870D−36

2 0.88854388D−01 0.88854388D−01 −0.55042599D−21

3 0.19806226D+00 0.19806226D+00 −0.19003211D−14

4 0.34752245D+00 0.34752245D+00 −0.88681095D−11

5 0.53389626D+00 0.53389626D+00 −0.21117431D−08

6 0.75302040D+00 0.75302040D+00 −0.10081008D−06

7 0.10000000D+01 0.10000000D+01 −0.18182350D−05

8 0.12693180D+01 0.12693180D+01 −0.17311133D−04

9 0.15549581D+01 0.15549582D+01 −0.10553403D−03

10 0.18505398D+01 0.18505405D+01 −0.46395444D−03

11 0.21494602D+01 0.21494680D+01 −0.15878264D−02

12 0.24450419D+01 0.24451026D+01 −0.44500619D−02

13 0.27306820D+01 0.27310264D+01 −0.10566173D−01

14 0.30000000D+01 0.30014861D+01 −0.21745719D−01

15 0.32469796D+01 0.32519918D+01 −0.39333400D−01

16 0.34661037D+01 0.34791695D+01 −0.62110999D−01

17 0.36524775D+01 0.36743285D+01 −0.78328629D−01

18 0.38019377D+01 0.38100301D+01 −0.67904389D−01

19 0.39111456D+01 0.38876780D+01 −0.39368515D−01

20 0.39776617D+01 0.39512083D+01

Having secured an approximate eigenvalue ∏0 the corresponding approximate eigenvector

x0 is best computed by inverse iteration of A − ∏0I. It may appear that solution of (A −

∏0I)x0 = o is a more attractive proposition for a tridiagonal A, but this is not the case

on practical grounds. As is so often the case in numerical methods, what appears to be

62

Fig. 8.10

theoretically perfect may be mortally tainted by imperfections. Consider




2− ∏ −1
−1 2− ∏ −1

−1 2− ∏ −1
−1 2− ∏ −1

−1 1− ∏









x1

x2

x3

x4

x5




= o, (A− ∏I)x = o, (8.154)

for eigenvalue ∏ and chose x1 so as to get the components

x2 =(2− ∏)

x3 =(2− ∏)2 − 1

x4 =(2− ∏)3 − 2(2− ∏)

x5 =(2− ∏)4 − 3(2− ∏)2 + 1

(8.155)

with −x4 + (1− ∏)x5 = 0. If ∏ is an eigenvalue of matrix A, x2, x3, x4, x5 are correct, but

for ∏ not truly an eigenvalue of A, x2, x3, x4, x5 computed from eq.(8.155) can be in serious

63

error. Theoretically, ∏1 = 4sin2(º/22) = 0.08 for which x1 = 1, x2 = 1.919, x3 = 2.683, x4 =

3.229, x5 = 3.513. For ∏ = 0 eq.(8.155) yields x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5, not an

appealing approximation.

exercises

8.13.1. For matrices

A =




1 ≤
≤ 1 ≤

≤ 1



 , A0 =




1 ≤
≤ 4 ≤

≤ 9



 , |≤| << 1

show that the eigenvalues of A are ∏1 = 1 −
√

2≤, ∏2 = 1, ∏3 = 1 +
√

2≤, and that those

of A0 are in the intervals 1 ± ≤2, 4 ± 2≤2, 9 ± ≤2. For the latter use Gerschgorin’s theorem

preceded by a similarity transformation D−1A0D with a diagonal D.

8.13.2. Use the elementary similarity transformations of Sec. 6.7 to reduce

A =





2 1 1
1 2 1

1 2
1 2





to tridiagonal form. Interchange rows and columns to have a nonzero (1,2) pivot entry in A.

8.13.3. Find the sequence of elementary similarity transformations that affect




1 −1
−1 2 −1

−1 2



→




−1

1/3 −1
5/3 3



 .

8.13.4. Write out all eigenvalues of the n× n matrix

A =





1 1
1 1

1
≤



 .

8.13.5. For matrices

A =




1 2 3
2 2 3
3 3 3



 , B =




4 1 1
1 4 1
1 1 4





64

fix α and β in the elementary matrix

E =




1 α

1 β
1



 , E−1 =




1 −α

1 −β
1





so that both A013 = 0 and B013 = 0, A0 = E−1AE,B0 = E−1AE.

8.13.6. Consider the linear system Ax = f with positive definite and symmetric A. Write

A = L+D + LT





A
× × ×
× × ×
× × ×



 =





L
0
× 0
× × 0



+





D
×

×
×



+





LT

0 × ×
0 ×

0





so that Dii = Aii, and prove that

|∏(G)| < 1, G = −(D + L)−1LT .

Hint: Use

G0 = D1/2GD−1/2 = −(I + L0)L0
−1
, L0 = D−1/2LD−1/2.

Prove that the iterative scheme

(D + L)x1 = −LTx0 + f

x1 = x0 + (D + L)−1r0, r0 = f −Ax0

converges for any initial guess x0.

Apply the Gauss-Seidel iteration to the solution of





1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2




x =





1
0
0
0
0





and study its convergence to x0 = [5 4 3 2 1]T .

8.13.7. Successive Over-Relaxation is a refinement of the Gauss-Seidel method whereby

M(ω)x1 = N(ω)x0 + ωf

65

for the relaxation parameter ω in

M(ω) = D + ωL and N(ω) = (1− ω)D − ωLT .

Finding the best ω is no simple matter, but program the algorithm for the system in the

previous exercise and study the effect of 0 < ω < 2 on convergence.

8.13.8. Consider matrix A and its inverse

A =





1 −1
−1 2 −1

−1 2 −1
−1 2



 , A−1 =





4 3 2 1
3 3 2 1
2 2 2 1
1 1 1 1



 .

Looking for a sparse approximate M to A−1 such that

kMA− Ik ≤ ρ < 1

we propose the three candidates

M1 =





1
1/2

1/2
1/2



 , M2 =





4
3

2
1



 , and M3 =





4 3
3 3 2

2 2 1
1 1



 .

Compute the spectral radius of MiA− I for i = 1, 2, 3, and determine the best choice.

66

