
9. Elastic equilibrium-finite elements
9.1 Perspectives

What makes linear algebra such a winning, vigorous chapter of applied mathematics

is that it combines the purely theoretical with the very concrete. Most large scale linear

algebraic computations and the theoretical questions they give rise to center on the solution

and analysis of the discrete equilibrium and evolution equations of mathematical physics and

theoretical engineering. A large part of what is on the agenda of applied linear algebra is

mandated by the exigencies of practical computations and computer qualities and limitations.

In essence, discretization consists of the approximate replacement of a continuous physi-

cal behavior by a discrete one at many points in space and time. The result of such discretiza-

tion is, as we have already seen in Chapter 3, vast systems of linear algebraic equations that

are typically sparse, symmetric and positive semidefinite. Elastic equilibrium is the com-

monest computational problem that creates such large systems and we shall give this chapter

a deliberate mechanical slant, first exploring the physical notion of force vectors.

In this book we shall not go so far as to actually discretize an elastic solid, a process

which, if given full consideration, would carry us ever deeper into analysis. Instead we

shall concentrate on a large scale, highly practical, elastic problem that is already discrete—

that of the truss. A typical truss such as an antenna tower consists of thousands of rods

interconnected at thousands of nodes, and its various states of elastic equilibrium under

a variety of external loads are correspondingly described by thousands of equations with

thousands of unknown node movements. The truss problem presents us with the perfect

setting in which to accomplish the principal objective of this chapter, that of describing the
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finite element method for writing the system of equilibrium equations.

The second section of this chapter is devoted to rigid body kinematics as a preliminary to

rigid body statics that is discussed in the following section. Section 4 introduces elasticity on

a one degree of freedom rod problem, and section 5 extends the elastic equilibrium analysis to

nonlinear behavior. We then pass from the one rod to the many, discuss some mathematical

aspects of the truss, and culminate the chapter with the description of linear and nonlinear

finite element methods.

9.2 Kinematics

Force is the cause of change in body velocity, and it is therefore important that we put

the discussion of rigid body kinematics before that of equilibrium. Recall that rigid body

movement is an isometry excluding reflection. During such motion the distance between any

two points of the body remains unchanged.

We look first at the rigid motion of the plane.

Theorem 9.1 The position of a plane rigid body is fixed by two distinct points on it, and

that of a rigid space body by three noncolinear points on it.

Proof. By contradiction. If A and B are two distinct points of the plane, and C any

third point not on line AB, then the only distinct image of point C under isometry is point

C 0 such that AC = AC 0 and BC = BC 0. See Fig.9.1. But the isometry is the forbidden

reflection and hence point C 0 must be point C.

Fig. 9.1
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In space we consider triangle ABC and fourth point D not in the plane of the triangle.

The only distinct point image D0 of point D under isometry is a reflection in a plane mirror

through points A,B,C, and hence point D must be point D0. End of proof.

We remain in the plane.

Theorem 9.2 Plane rigid body motion consists of a translation followed by rotation around

an arbitrary point of the plane by an angle that is independent of the point of rotation, or

conversely.

Proof. Two points fix the plane and it is enough that we consider the movement of

two distinct arbitrary points A and B of the plane. Rigid body movement brings point A

to point A0, and point B to point B0 so that distance A0B0 remains equal to distance AB.

Isometry is a nonsingular mapping and to every pair of points A,B there corresponds only

one image pair of points A0, B0 and vice versa.

The movement may be resolved into a rotation around point A to make AB
00

parallel to

A0B0, followed by translation ~AA0 to bring point A upon point A0 and point B
00

upon point

B0 as in Fig.9.2(a). Otherwise, the same rigid body motion is accomplished by translation

~AA0 followed by a rotation around point A0 to bring point B
00

to point B0 as in Fig.9.2(b).

(a) Fig 9.2 (b)

Thus rigid body motion is accomplished by a translation followed by a rotation, or

conversely.
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We continue in a linear algebraic manner. Plane rigid body motion that sends arbitrary

point P into point P 0 consists of rotation around some point C of the plane, that sends point

P into point P
00
, followed by a translation to bring point P

00
upon point P 0. See Fig.9.3.

With rotation matrix Q we write ~CP 00 = Q ~CP , and have from ~OP + ~PP 00 + ~P 00P 0 = ~OP 0

and ~PP 00 = ~CP 00 − ~CP that

p0 = Qp+ (I −Q)c+ a = Qp+ b, Q =
∑
cos θ − sin θ
sin θ cos θ

∏
(9.1)

where p and p0 are the position vectors of points P and P 0, respectively, where c is the

position vector of center point C, and where a = ~P 00P 0.

Fig. 9.3

For a different center of rotation C 0 we have p0 = Q0p+ (I −Q0)c0 + a0. Taking p = o we

establish that (I−Q0)c0+a0 = (I−Q)c+a, and by subtraction, that p0−p0 = o = (Q−Q0)p.

Since this is true for arbitrary p of the plane it must happen that Q−Q0 = O, Q = Q0, and

cos θ = cos θ0, sin θ = sin θ0 and θ = θ0, so that a0 = a+ (I −Q)(c− c0). End of proof.

Pure rotation around point C turns point P into point P 0 so that ~CP 0 = Q ~CP ,

p0 = Qp+ (I −Q)c, det(I −Q) = 2(1− cos θ) (9.2)

and I − Q is nonsingular for any θ =/ 0. Comparing this with the general plane rigid body

mapping p0 = Qp+ b we see that c = (I −Q)−1b exists for any given b and Q =/ I. In other
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words, every rigid body movement of the plane can be performed as one rotation around some

displacement–dependent point C of the plane.

Let p be the position vector of point P (x, y) and p0 the position vector of its image

point P 0(x0, y0) under rigid body movement. According to Theorem 9.2 the motion can be

described as an angle θ rotation around the origin followed by a translation of the origin, or

∑
x0

y0

∏
=
∑
cos θ − sin θ
sin θ cosθ

∏ ∑
x
y

∏
+
∑
u
v

∏
, p0 = Qp+ a (9.3)

and the change of position of point P of the plane resulting from the rigid body motion is

given by

p0 − p = (Q− I)p+ a. (9.4)

Both in statics and dynamics we are often interested only in differential, or linearized, rigid

body movements caused by the differential rotation dθ and differential translation da =

[du dv]T . We write in this case p0−p = [dx dy]T and have with cos(dθ) = 1 and sin(dθ) = dθ,

that
∑
dx
dy

∏
= dθ

∑−y
x

∏
+ du

∑
1
0

∏
+ dv

∑
0
1

∏
. (9.5)

Considering the motion to be a continuous function of a parameter, say time t, we divide

the above vector equation by dt and get

∑
ẋ
ẏ

∏
= θ̇

∑−y
x

∏
+ u̇

∑
1
0

∏
+ v̇

∑
0
1

∏
(9.6)

where ẋ = dx/dt, ẏ = dy/dt, θ̇ = dθ/dt, u̇ = du/dt and v̇ = dv/dt. Function θ̇ = θ̇(t) is the

momentary angular velocity of the plane, while u̇ and v̇ are rectilinear velocities parallel to

the x and y coordinates, respectively.

If u̇ = v̇ = 0, that is, if the origin is fixed, then velocity vector ṗ = [ẋ ẏ]T = θ̇[−y x]T

of point P (x, y) is orthogonal to position vector p = [x y]T and is of magnitude kṗk =

|θ̇|(x2 + y2)1/2. The plane rotates then as a whole around the origin.

Let P1(x1, y1), P2(x2, y2), . . . , Pn(xn, yn) be n distinct points on the rigidly moving plane.

Their velocity ṗ = [ṗT1 ṗT2 . . . ṗTn ]T , ṗi = [ẋi ẏi]T is given by

ṗ = θ̇r1 + u̇r2 + v̇r3 (9.7)
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in which

r1 =





−y1

x1

−y2

x2
...
−yn
xn





, r2 =





1
0
1
0
...
1
0





, r3 =





0
1
0
1
...
0
1





(9.8)

are the three rigid body modes of the n point system.

To prove that for a system of two points or more, rigid body modes r1, r2, r3 are linearly

independent we write α1r1 + α2r2 + α3r3 = o and have from it that (x2 − x1)α1 = 0 and

(y2− y1)α1 = 0. Points A1(x1, y1) and A2(x2, y2) being distinct, x2− x1 and y2− y1 cannot

vanish at once and α1 = 0. Consequently α2 = 0 and α3 = 0.

For one point
∑
0
0

∏
= dθ

∑−y1

x1

∏
+ du

∑
1
0

∏
+ dv

∑
0
1

∏
(9.9)

and a nontrivial rigid body motion exists, namely rotation around A1(x1, y1), that leaves

the point unmoved. Not so for two points. No infinitesimal plane rigid body movement

consisting of dθ, du, dv exists that leaves two distinct points of the plane at rest. Allowing

for large or finite movements, a full turn around one of the two points does return the second

point back to its original position.

In case of pure rotation around point C(x0, y0)

p0 − p = (Q− I)(p− c) (9.10)

and
∑
ẋ
ẏ

∏
= θ̇

∑−(y − y0)
x− x0

∏
(9.11)

or
∑
ẋ
ẏ

∏
= θ̇

∑−y
x

∏
+ y0θ̇

∑
1
0

∏
− x0θ̇

∑
0
1

∏
(9.12)

implying rotation around the origin followed by the instantaneous θ̇[y0 − x0]T .

Any column elementary operation on the three rigid body mode vectors r1, r2, r3 produces

another set of three linearly independent modes. Write R = [r1 r2 r3], and let T = T (3× 3)
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be a nonsingular matrix. Then [r01 r
0
2 r

0
3] = RT contains a new set of three rigid body modes.

If C(x0, y0), C 0(x00, y
0
0), C

00
(x

00
0, y

00
0 ) are three noncolinear points of the plane, then

T =




1

1
−1








1 1 1
y0 y00 y

00
0

x0 x00 x
00
0



 (9.13)

is nonsingular (Prove!) and

[r01 r
0
2 r

0
3] =





−y1 1 0
x1 0 1
−y2 1 0
x2 0 1








1 1 1
y0 y00 y

00
0

−x0 −x00 −x00
0



 (9.14)

contains a set of three rigid body modes. Each mode is an instantaneous rotation around

one of the points C,C 0, C
00

and hence any infinitesimal rigid body movement of the plane can

be carried out as three infinitesimal rotations around three noncolinear, arbitrary, motion

independent, points of the plane.

The reader should have no difficulty showing that the general finite rigid body movement

of the plane cannot be carried out as three rotations around three arbitrary points of the

plane.

From the plane we move on to space.

Theorem 9.3 Any rigid body motion of space consists of a translation followed by a

unique rotation around an axis through an arbitrary point of space, or conversely.

Proof. Since three noncolinear points fix a rigid body it is enough that we consider

arbitrary, nondegenerate triangle ABC in space with its congruent image A0B0C 0 under rigid

body motion, as in Fig 9.4. The motion is reversible and for any arbitrary point A there

corresponds one image point A0 and conversely. Translation brings point A upon point A0,

and there is obviously a rotation around an axis through point A0 that subsequently sends

point C to point C 0, and a following rotation around A0C 0 that finally brings point B to

point B0. We know from Chapter 4 that the results of two (finite) rotations around axes

through a common point is a rotation around an axis through the same point. Hence any

rigid body motion can be carried out by a translation followed by a rotation around an axis

through any point of space. The reader should easily prove the converse.
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Fig. 9.4

From Section 4.9 we recall that the space rotation matrix for an angle θ turn around

axis n = [n1 n2 n3]T is

Q = I cos θ + (1− cos θ)nnT +N sin θ, N =




0 −n3 n2

n3 0 −n1

−n2 n1 0



 (9.15)

and as for the plane, also here, space rigid body motion that sends arbitrary point P (x, y, z)

into point P 0(x0, y0, z0) is always written as p0 = Qp + b, b = (I − Q)c + a, where c is the

position vector of point C on the axis of rotation, and where a = [u v w]T is a translation.

For another choice of point C and axis n, p0 = Q0p+b0, and choosing p = o we get that b = b0,

and by subtraction that p0−p0 = o = (Q−Q0)p. Since this happens for arbitrary p it results

that Q = Q0. Space rotation matrix Q is not changed if θ is replaced by −θ and n by −n, and

we discount this possibility. Otherwise, from Q = Q0 and Qn = n we have that Q0n = n and

the axis of rotation for Q0 is colinear with that of Q0. From Q11+Q22+Q33 = Q0
11+Q0

22+Q0
33

we obtain that cos θ = cos θ0, and from N sin θ = N sin θ0, that sin θ = sin θ0. Hence θ = θ0.

End of proof.

For a differential dθ,Q = I + Ndθ, and for an infinitesimal movement, dp = p0 − p =

dθN(p− c)+da. Small pure rotation causes the small movement dp = dθN(p− c), and since

N(p − c) is orthogonal to both p − c and n, movement dp due to rotation dθ is on a plane

orthogonal to n and in direction orthogonal to p− c.
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Let c = o so that dp = dθNp+ da. After division by dt we get



ẋ
ẏ
ż



 = θ̇n1




0
−z
y



+ θ̇n2




z
0
−x



+ θ̇n3




−y
x
0



+ u̇




1
0
0



+ v̇




0
1
0



+ ẇ




0
0
1



 (9.16)

which means that the arbitrary instantaneous rigid body movement of space resolves into

the sequence of three independent rotations θ̇1 = θ̇n1, θ̇2 = θ̇n2, θ̇3 = θ̇n3, θ̇2
1 + θ̇2

2 + θ̇2
3 = θ̇2,

around the x, y, z axes followed by the three independent slidings u̇, v̇, ẇ along the same axes.

The rigid plane has three degrees of freedom—a rotation and two translations—while rigid

space has six degrees of freedom—three rotations and three translations.

A system of n points on a rigid body has six rigid body modes, which for n = 3 are the

six columns of

[r1 r2 r3 r4 r5 r6] =





0 z1 −y1 1 0 0
−z1 0 x1 0 1 0
y1 −x1 0 0 0 1
0 z2 −y2 1 0 0
−z2 0 x2 0 1 0
y2 −x2 0 0 0 1
0 z3 −y3 1 0 0
−z3 0 x3 0 1 0
y3 −x3 0 0 0 1





. (9.17)

The six rigid body modes of a system of n points of which at least three are noncolinear

are linearly independent. Rotation around an axis passing through two points leaves the

points immovable. But no infinitesimal space rigid body movement exists that leaves three

noncolinear points fixed.

Theorem 9.4 The six space rigid body modes r1, r2, r3, r4, r5, r6 are linearly independent.

Proof. We write α1r1 + α2r2 + α3r3 + α4r4 + α5r5 + α6r6 = o and have after some

elementary row operations that




z1 −y1 1
−z1 x1 1
y1 −x1 1

z2 − z1 −y2 + y1

−z2 + z1 x2 − x1

y2 − y1 −x2 + x1

z3 − z1 −y3 + y1

−z3 + z1 x3 − x1

y3 − y1 −x3 + x1









α1

α2

α3

α4

α5

α6



 = o (9.18)
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from which we pick out the three systems
∑
z2 − z1 −y2 + y1

z3 − z1 −y3 + y1

∏ ∑
α2

α3

∏
= o,

∑−z2 + z1 x2 − x1

−z3 + z1 x3 − x1

∏ ∑
α1

α3

∏
= o,

∑
y2 − y1 −x2 + x1

y3 − y1 −x3 + x1

∏ ∑
α1

α2

∏
= o. (9.19)

The determinants of the three 2× 2 systems are

δ1 =

ØØØØØØØ

1 1 1
y1 y2 y3

z1 z2 z3

ØØØØØØØ
, δ2 = −

ØØØØØØØ

1 1 1
z1 z2 z3
x1 x2 x3

ØØØØØØØ
, δ3 =

ØØØØØØØ

1 1 1
x1 x2 x3

y1 y2 y3

ØØØØØØØ
(9.20)

respectively, recognized to be proportional to the projected areas of triangle P1(x1, y1, z1),

P2(x2, y2, z2), P3(x3, y3, z3) upon the yz plane, the xz plane, and the xy plane, respectively.

For a nondegenerate triangle at least one projected area is not zero. Assume δ1 =/ 0. Then

the first of the three systems is nonsingular possessing the trivial solution α2 = α3 = 0 only.

The two remaining equations leave us with

(−z2 + z1)α1 = 0, (−z3 + z1)α1 = 0, (y2 − y1)α1 = 0, (y3 − y1)α1 = 0 (9.21)

and since points P1, P2, P3 are noncolinear at least one of the coefficients must be different

from zero, and α1 = 0. Consequently α4 = α5 = α6 = 0. End of proof.

Movement of a rigid body may not be entirely free, but restricted or constrained. Equality

constraints that fix some points of the solid or that limit its movement to a curve or surface

are bilateral constraints. Typical bilateral constraints are rotation around an axis, and

sliding on a smooth frictionless table. Inequality constraints are unilateral. Typical to these

constraints are wall limits on rectilinear movements and angle stops on rotations.

We are interested here in bilateral or equality constraints only, and as we are dealing

with small motions mainly we assume the constraints linear, of the form

qT1 dp = 0, qT2 dp = 0, . . . , qTmdp = 0 (9.22)

for m given q vectors.

For instance, if a plane rigid body with the two distinct points P1(x1, y1), P2(x2, y2) on

it is restricted to rotation around the origin, then

q1 =





x1

y1

0
0



 , q2 =





0
0
x2

y2



 , dp = dθ





−y1

x1

−y2

x2



+ du





1
0
1
0



+ dv





0
1
0
1



 (9.23)
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and the conditions qT1 dp = qT2 dp = 0 amount to

∑
x1 y1

x2 y2

∏ ∑
du
dv

∏
=
∑
0
0

∏
(9.24)

and du = dv = 0 if x1y2 − x2y1 = 0.

exercises

9.2.1. Rigid body motion of the plane affects A(0, 0) → A0(4, 0), B(3, 4) → B0(9, 0). Find

point C around which the plane may be rotated to achieve this transformation. What is the

angle of rotation?

9.2.2. What is the resultant instantaneous motion of a plane moving with angular speeds

θ̇1, θ̇2, θ̇3 around points P1(0, 0), P2(1, 0), P3(0, 1), respectively?

9.2.3. Show that every space rigid body motion is the composition of two rotations.

9.2.4. A twist consists of a translation followed by rotation around an axis parallel to the

translation. Prove that any space rigid body motion consists of a unique twist.

9.2.5. Take the three plane rigid body modes r1, r2, r3 of eq.(9.8) and replace r1 by r01 =

r1 + α2r2 + α3r3 so that r01 is orthogonal to r2 and r3. Give r03 a geometrical interpretation.

Do the same to r1, r2, r3 of the six space rigid body modes r1, r2, r3, r4, r5, r6 of eq.(9.17).

9.3 Statics

Consider rigid body B with n points P1, P2, . . . , Pn of it at which the n forces F1, F2, . . . ,

Fn act. To accommodate the notational tradition of classical mechanics we shall use capital

Roman letters to mark the directed segments that represent force, but shall follow the linear

algebraic custom in using lower case letters to denote the force when written out in terms

of its three components. So, referring to the Cartesian coordinate system we describe the

ith force as fi = [Xi Yi Zi]T . This is how the xyz components of the force appear in the

classical literature.

Force Fi is geometrically represented by a directed segment, but it is not entirely free.

For reasons soon to become clear the force may not be freely translated in space from point
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to point, except for sliding along its axis through point Pi. We call the axis of a force the

line colinear with it through the point of application. Corresponding to point numbering

system 1, 2, . . . , n we write the total load vector f = [fT1 fT2 . . . fTn ]T .

Vector f need not be constant. Movement of point Pi resulting from slight changes of

position of body B may induce variations in the forces acting on it. The forces may well be

position dependent so that

Xi = Xi(x, y, z), Yi = Yi(x, y, z), Zi = Zi(x, y, z) (9.25)

with dependence on x, y, z that can be gradual or abrupt. In the case of a force due to a

stretched spring attached to point Pi a small movement of the point that further extends the

spring only slightly causes only a slight change in the force. On the other hand, if the force

is due to a force transmitting contact with another rigid body, then any movement, however

small, that breaks the contact causes the force to suddenly disappear. Friction forces that

spring to life at an attempt to slide one rough body over another are also of the sudden kind.

Position dependent forces are the rule in applied mechanics and we shall accept them

provided that they change continuously with position and have partial derivatives that also

change continuously with position so as to admit the linearizations

Xi(x, y, z) = Xi(xi, yi, zi) + (
@X

@x
)idx+ (

@X

@y
)idy + (

@X

@z
)idz

Yi(x, y, z) = Yi(xi, yi, zi) + (
@Y

@x
)idx+ (

@Y

@y
)idy + (

@Y

@z
)idz

Zi(x, y, z) = Zi(xi, yi, zi) + (
@Z

@x
)idx+ (

@Z

@y
)idy + (

@Z

@z
)idz

(9.26)

around their point of application.

Now that we know with what forces we have to deal and what differential displacements

are, we are ready to introduce the

Definition. Let f = [fT1 fT2 . . . fTn ]T be the total load vector of the forces acting at

points P1, P2, . . . , Pn of rigid body B. Load vector f is allowed to have position dependent

components as long as they are continuous and have continuous first derivatives at their

points of application. Let also dp = [dpT1 dpT2 . . . dp
T
n ]T be an arbitrary, constraint abiding,
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differential movement of body B, with the n forced points on it. Then, scalar differential

fTdp is the virtual work of the n forces resulting from virtual movement dp.

Because of the high degree of continuity requirements on the forces and because of the

small, differential, or virtual, nature of the displacements, the virtual work is of unchanged

forces at their original point of application. The cardinal law of statics stipulates that a rigid

body is in equilibrium if and only if the virtual work of the forces acting on it is zero for

any admissible, constraint obliging, differential rigid body movement. In other words, the

system of forces is in equilibrium if and only if load vector f is orthogonal to any differential

displacement dp. If the load vector does happen to have a nonzero component in the direction

of some dp, then motion will be initiated by the forces in that direction. No motion is possible

that violates the geometrical constraints imposed on the body.

In case of free plane motion, dp = dθr1 + dur2 + dvr3, where r1, r2, r3 are the three rigid

body modes of the n point system; and fTdp = 0 can happen for any dθ, du, dv, only if

fT r1 = 0, fT r2 = 0, fT r3 = 0. Plane rigid body is in equilibrium if and only if load vector

f is orthogonal to any of its three linearly independent rigid body modes.

Orthogonality conditions fT r1 = 0, fT r2 = 0, fT r3 = 0 produce, for the three modes in

eq. (9.8), the three equations of equilibrium

M1 +M2 + . . .+Mn = 0 X1 +X2 + . . .+Xn = 0 Y1 + Y2 + . . .+ Yn = 0 (9.27)

where

Mi = −yiXi + xiYi (9.28)

is the moment about the origin of force fi = [Xi Yi]T acting at point Pi(xi, yi). To better

see the geometrical meaning of the moment look at Fig.9.5. Writing the force and position

vectors as

fi = kfik [cosα sinα]T and pi = kpik [cosβ sinβ]T (9.29)

we arrive at

Mi = kfik kpik sin(α− β) (9.30)
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and notice that δ = kpik sin |α− β| is the distance of the axis of force fi from the origin. If

α > β, if the force tends to rotate the plane counterclockwise, then Mi > 0, but if α < β,

if the force tends to rotate the plane clockwise, then Mi < 0. We actually want to consider

the moment of plane force Fi around any point C of the plane as vector mi = Mi[0 0 1]T ,

with |Mi| being the product of the force magnitude by the distance of its axis from point C,

and a sign convention as for the origin.

Fig 9.5

The second and third equations of equilibrium require that the vector sum of the forces,

considered free in the plane, be zero. These two equations are indifferent as to where the

forces act. The first equation of equilibrium asks that the moment vector sum of all the

forces about the origin be zero. For this equation, sense, magnitude and axis distance from

the origin are important, but not where the force is found along its axis.

Plane rigid body motion that led to the three equations of equilibrium was specifically

written as a rotation around the origin followed by sliding along the coordinate axes. It could

as well have been expressed as a rotation around any other single point of the plane followed

by two slidings along any noncolinear axes of the plane. Indeed, if rotation is around point

C(x0, y0), then dp = dθ[−y + y0 x− x0]T + db,

Mi = −(yi − y0)Xi + (xi − x0)Yi (9.31)
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and the moments are taken now about point C. Generally, the three equations of equilibrium

of the body confined to plane movement are the vanishing of the moment sum of all forces

around any arbitrary point of the plane, and zero sums for all force components along any

two noncolinear axes of the plane.

In space the situation is entirely analogous. An arbitrary differential free rigid body

movement is given here by dp = dθ1r1 + dθ2r2 + dθ3r3 + dur4 + dvr5 + dwr6 for independent

differentials dθ1, dθ2, dθ3, du, dv, dw. Virtual work fTdp is zero for any dp if and only if

load vector f is orthogonal to all six rigid body modes r1, r2, r3, r4, r5, r6 of the body with

the n ≥ 3 points on it. From the six modes of eq. (9.17) we obtain the six equations of

equilibrium

M 0
1 +M 0

2 + . . .+M 0
n = 0 M

00
1 +M

00
2 + . . .+M

00
n = 0 M

000
1 +M

000
2 + . . .+M

000
n = 0

X1 +X2 + . . .+Xn = 0 Y1 + Y2 + . . .+ Yn = 0 Z1 + Z2 + . . .+ Zn = 0 (9.32)

where

mi =




M 0

i

M
00
i

M
000
i



 =




0 −zi yi
zi 0 −xi
−yi xi 0








Xi

Yi
Zi



 , mi = Nifi (9.33)

is the moment about the origin of force fi = [Xi Yi Zi]T acting at a point with position

vector pi = [xi yi zi]T .

Vectormi is readily seen to be orthogonal to both pi and fi. Writing fi = kfiku, uTu = 1,

we obtain that

kmik = δkfik, δ = (uT NT
i Ni u)1/2, NT

i Ni =




z2
i + y2

i −xiyi −xizi
−yixi x2

i + z2
i −yizi

−zixi −ziyi y2
i + x2

i



 (9.34)

and ascertain through comparison with δ =
q
pTp− (uTp)2 that δ is the distance from the

origin of the axis of force fi acting at the point with position vector p.

The first three equations of equilibrium for the free rigid body in space require that

the vector sum of the moments about the origin of all forces be zero, while the last three

equations demand that the vector sum of all forces be zero. For the last three equations the

forces may be considered free, while for the first three, the forces may only slide along their

axes.
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Differential rigid body motion carried out with rotation around an axis through point C

of space is written as dp = dθN(p− c) + da and the first three equations of equilibrium for

the moment components obtained from fTdp = 0 with this dp are for moments about point

C rather than about the origin.

In sum:

A free rigid body with n forces applied to n of its points is in equilibrium if and only if the

virtual work of the applied total load vector f is zero for any differential rigid body movement;

or if and only if the total load vector f of the forces acting on the body is orthogonal to any

six linearly independent rigid body modes of the n point system; or if and only if the vector

sum of the moments of all acting forces about any one point of space is zero, and the vector

sum of all forces acting on the body is zero. The latter is equivalent to the condition that the

component sum of all forces along three noncoplanar lines vanish.

exercises

9.3.1. Show that if a system of three forces is in equilibrium, then the forces are on one plane

and have concurrent axes. Consider also intersection at infinity.

9.3.2. Show that a necessary and sufficient condition that a system of forces acting on a rigid

body be in equilibrium is that the moments of these forces about three noncolinear points

vanish.

9.3.3. Suppose that a system of forces f1, f2, . . . , fn acts on a rigid body to produce moments

m1,m2, . . . ,mn about some point of space. Show that

(f1 + f2 + . . .+ fn)
T (m1 +m2 + . . .+mn)

is independent of the point about which the moments were taken.

9.4 Elastic systems of one degree of freedom

We open discussion on the equilibrium and stability of discrete elastic systems by first

considering the simplest, yet most basic, component of such systems–that of the thin rod

under axial forces. What we call rod, or bar, is an ideally slender cylindrical piece of elastic
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solid structurally used to transmit axial forces, both tensile and compressive. Ropes and

strings can transmit tensile forces but buckle under compressive forces. Being made of an

elastic material the rod shortens and elongates by the action of the axial force, but the

change in length is realistically so small that we may assume at first approximation that the

size of the rod is practically unchanged by the load.

Fig 9.6

Consider the rod in Fig.9.6, fixed to a wall at end point A and acted upon by a perfectly

axial force F at other end point B. Application of the force causes the rod to extend and as a

result point B moves distance u to point B0, at which point the elastic restoring force equals

that of the applied load. Experiments suggest that for common elastic (those returning to

their original shape upon removal of the applied loads) materials, and loads well below the

rupture level, the elastic displacement u is symmetrically proportional to the applied force

so that at equilibrium F = ku, where k is a typical constant independent of u. This linear

constitutive relationship between the elastic elongation and the applied load that causes it

is the cornerstone of linear elasticity and is known as Hook’s law.

To remove the size effect from Hook’s law we replace force by stress, σ = F/A; by force

per unit cross section area, and displacement by strain, ≤ = u/L, to have the law written

in the form σ = E≤, E = kL/A, where E is the elastic modulus of the material. Capital

E is the letter universally reserved for the elastic modulus. For steel, E = 2 · 106Kg/cm2
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foretelling the smallness of the elastic deformations. A steel rod of length L = 100cm and

cross section area A = 1cm2 pulled or pushed by an end force F = 100kg extends or shortens

by u = 0.005cm only.

The general elastic problem consists of computing the displacements and internal forces

in a held solid caused by a system of applied loads. In many instances movement of the

elastic solid that is otherwise prevented from executing rigid body motion is so minute that

the body may be considered stationary.

Returning to the mathematics of a rod under axial force F we introduce for variable

displacement u, the force imbalance function

g(u) = ku− F, k > 0 (9.35)

the roots of which are the equilibrium states of the rod. Solution of the linear stiffness

equation g(u) = 0 for the one root u0 = F/k is simple here to the point of being unremarkable,

but for more complex nonlinear elastic systems, even of one degree of freedom, solution of

the single nonlinear equation can become a serious matter.

With root u0 we may write the force imbalance function as g(u) = k(u−u0) and see that

if u < u0, then g(u) < 0, and if u > u0, then g(u) > 0. The forces near u = u0 are restoring

and equilibrium state u = u0 is stable. Perturbing point B from equilibrium gives rise to

forces that act to restore state u = u0.

Virtual work g(u)du can be integrated to yield the total potential energy

º(u) =
Z u

0
g(u)du =

1

2
ku2 − Fu (9.36)

of the tip-loaded rod. It consists of the sum of the elastic energy E(u) = 1
2ku

2 stored in the

rod extended by amount u and potential P(u) = −Fu of the applied load.

By virtue of k being strictly positive, E(u) > 0 if u =/ 0, and E(u) = 0 only when u = 0.

At equilibrium º(u0) = −E(u0) = −1
2ku

02. Obviously º0(u) = dº/du = g(u) = ku− F , and

the equilibrium point u = u0, at which g(u0) = 0, is an extremal point of º(u). Moreover,

º
00
(u) = g0(u) = E 00

(u) = k > 0, where prime stands for differentiation with respect to u,

and the extremal point is actually a minimum point of º(u). This is also readily deduced
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from

º(u) = º(u0) +
1

2
k(u− u0)2 = º(u0) + E(u− u0) (9.37)

which implies that º(u) ≥ º(u0), with equality holding for u = u0 only. This inequality

embodies the principle of minimum potential energy for the tip-loaded elastic rod.

We have now two equivalent ways of stating the condition of equilibrium for the rod,

one operational requiring that the force sum of applied force F and elastic restoring force ku

at tip point B be zero, and the other variational ensuing from the principle of virtual work,

requiring that the total potential energy of the forced elastic rod be extremal. A minimum

of º(u) signifies stable equilibrium due to restoring forces, and a maximum of º(u) signifies

unstable equilibrium due to dispersing forces.

Admittedly, it does not appear to be much of a gain to integrate g(u)du and then differ-

entiate º(u) to produce the equation of equilibrium, but we shall see that for complex elastic

systems the variational formulation holds certain surprising advantages over the operational.

Before moving on to the subject of nonlinear one degree of freedom elastic systems we

briefly consider a case of displacement dependent loads appearing in the rotating rod with

an end mass as shown in Fig.9.6. Here

E(u) =
1

2
ku2,P(u) = −mω2(Ru+

1

2
u2), º(u) = E(u) + P(u) (9.38)

and

º0 = g(u) = ku−mω2(R + u), º
00

= g0 = k −mω2 (9.39)

so that

u0 = R/(
k

mω2 − 1). (9.40)

Equilibrium of the rotating rod with end mass m is stable when k−mω2 > 0, and unstable

when k−mω2 < 0. A critical limiting angular velocity ω =
q
k/m exists for which u0 =1.

9.5 Material and geometry nonlinearities

Nonlinearities complicate matters suddenly. For some materials and in the presence

of very large strains Hook’s linear stress-strain relationship is an oversimplification, and
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a nonlinear stress-strain law may be required for a better description of the rod’s elastic

behavior. Displacement dependent elastic coefficients such as

k = k(u) = k0(1 + αu2), k0 > 0 (9.41)

in which k0 and α are constants, manifest what we term material nonlinearity. A nonlinear

material for which α > 0 is said to be hardening with u, and this is usually the case, while a

negative α means that the material softens with u. We shall assume throughout that α > 0.

For the nonlinear rod

g(u) = k0(u+ αu3)− F, E(u) =
1

2
k0(u

2 +
1

2
αu4) (9.42)

and º(u) = E(u) − Fu is quartic rather than quadratic as in the linear case. It quickly

becomes apparent how computationally difficult matters get in even the most conceptually

simple nonlinear problems when we set out to solve the now cubic stiffness equilibrium

equation

g(u) = k0(u+ αu3)− F = 0 (9.43)

for specified F .

The ease with which we solved the linear equation of equilibrium is gone, and the im-

mediate price we pay for the more realistic modeling of the rod material is a decidedly more

difficult and expensive solution of the equations of equilibrium. For the problem at hand

matters are mitigated by the fact that for any given F, g(u) = 0 has only one root by virtue

of the fact that dg/du = k0(1 + 3αu2) is monotonically increasing. We shall soon encounter

more examples of elastic systems that have multiple states of equilibrium, some stable, some

not.

At equilibrium

º
00
(u0) = E

00
(u0) = k0(1 + 3αu0

2
) (9.44)

and since both k0 > 0 and α > 0, it results that º
00
(u0) > 0, implying that all equilibrium

states of the nonlinear rod, whatever F , are stable. That º(u) is minimal at u = u0 could

also be deduced from the expression

º(u) = º(u0) +
1

2!
(u− u0)2º

00
(u0) +

1

3!
(u− u0)3º

000
(u0) +

1

4!
(u− u0)4º

0000
(u0) (9.45)
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which with

º0(u0) = 0, º
00
(u0) = k0(1 + 3αu0

2
), º

000
(u0) = 6k0αu

0, º
0000

(u0) = 6k0α (9.46)

becomes

º(u) = º(u0) +
1

2
k0(u− u0)2(1 +

1

2
α(u+ u0)2 + αu0

2
) (9.47)

and º(u) ≥ º(u0), with equality holding only at u = u0. Near the solution u = u0

º(u) = º(u0) +
1

2
k0(1 + 3αu0

2
)(u− u0)2 (9.48)

meaning that close to u0, º(u) is quadratic in u− u0.

A nonlinear equation, algebraic or transcendental, is best solved numerically. Solution

procedures of this kind are invariably based on successive linearizations that constitute an

iterative scheme to improve an initial guess for u0. A cubic equation can still be solved

algebraically in terms of radicals, but the solution is cumbersome and we also have in mind

the generally more involved case and, most importantly, systems of nonlinear equations that

cannot be solved but iteratively.

The Newton-Raphson method for the solution of the nonlinear equation is simple, ex-

tendable to systems of nonlinear equations, and generally fast-converging. Seeking to solve

nonlinear g(u) = 0 we start with an initial guess u0 for which usually g(u0) =/ 0, and obtain

the differential correction du in u1 = u0 + du from the linearization

g(u0 + du) = g(u0) + g0(u0)du = g0 + g00du = 0 (9.49)

as du = −g0/g00 or

u1 = u0 − g0/g
0
0, g

0(u0) = (dg/du)0, (9.50)

which establishes the iterative cycle.

In our case

g(u) = k0(u− u0) + k0α(u3 − u0
3
), g0(u) = k0(1 + 3αu2) (9.51)

and

u1 − u0 = α(u0 − u0)2
2u0 + u0

1 + 3αu2
0

(9.52)
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or close enough to u0

u1 − u0 = (u0 − u0)2
3αu0

1 + 3αu02
(9.53)

which is

u1 − u0 =
1

2
(u0 − u0)2

g
00
(u0)

g0(u0)
. (9.54)

If g0(u0) = º
00
(u0) =/ 0, then near the solution the error in the kth step of the Newton-Raphson

method is nearly proportional to the square of the error in the (k − 1)th step. Figure 9.7

shows the convergence progress of the Newton Raphson method applied to the solution of

g(u) = 0 with a given F .

(a) Fig 9.7 (b)

Equilibrium at which not only g(u0) = 0 but also g0(u0) = º
00
(u0) = 0 is said to be indif-

ferent. It is an equilibrium state that is not stable but also not unstable. The convergence

rate of the Newton- Raphson method to such a point, as in Fig.9.7(b), drops from quadratic

to linear.

In the example of the extended rod nonlinearity is not purely material since dependence

on u in k = k0(1 +αu2) is manifested only if u is large enough for αu2 to become noticeable

relative to one. If not, then the elastic constant reverts to k = k0. As u diminishes the nonlin-

ear solution approaches the linear. See Fig.9.8. We count this problem among the materially

nonlinear because the configuration of the problem remains essentially unchanged under de-

formation. It is finite rotation that introduces the truly geometric nonlinearities where large
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movements compel us to compute the elastic equilibrium on the unknown deformed geom-

etry, even if the elastic extensions, or strains, remain small. Such large deformation may

consist of large rigid body movements with small elastic stretches superposed on them.

Fig. 9.8

To keep the analysis simple we discount non-axial forces that bend the rod out of its

straight shape. Rotation of the rod is allowed through attachment of one rod to another or

to an anchored support by means of frictionless pin joints. Such joints offer no resistance to

rotation around them and cannot transmit moments. Consider Fig.9.9. Since pin joint A

cannot react to a moment the forces at point B must add up to resultant F that is coaxial

with rod AB if equilibrium is to be maintained.

Fig. 9.9
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A simple instructive example exposing some of the basic computational issues associated

with geometric nonlinearity is provided by the linkage in Fig.9.10, consisting of two equal

rods pin-jointed to each other at point B, and each to an immovable support at points S

and S0.

Fig. 9.10

Force 2F grips at point B orthogonally to axis SS0. By virtue of geometrical symmetry

and the fact that the two rods are elastically identical the problem is symmetric and we may

conveniently consider only one rod, say the left hand side one, allowed to rotate around point

S but restricted to have its other end on perpendicular BB0. External force F pulls the rod

up, while force R, the reaction of the other rod, prevents point B0 from deviating sideways.

The problem is thus of only one degree of freedom-vertical movement u of tip point B. We

also assume that the two-rod system is under initial tension p0 created through an initial

stretch, and that the rods are both made of a linear elastic material of constant k.

Due to movement u the rod extends from length L to length L0. Calling v the stretch of

the rod we obtain it in terms of u as

L0 − L = v =
q
L2 + u2 − L (9.55)

with which we write the increased tension of the rod

p = kv + p0. (9.56)
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The vertical component of the tension is pu/L0, and at point B0

g(u) =
pu

L0 − F. (9.57)

But (u/L0)du = dv, and

g(u)du = pdv − Fdu (9.58)

is an exact differential yielding, upon integration, the total potential energy

º(u) =
1

2
kv2 + p0v − Fu, v =

q
L2 + u2 − L (9.59)

of the rotated rod.

We ignored reaction R in the virtual work since u is always orthogonal to it. The reaction

at support S adds nothing to the virtual work since it is fixed, and the moment at the pin

joint is zero.

In terms of angle θ between SB and SB0

g(θ) = kL(tan θ − sin θ) + p0 sin θ − F (9.60)

and g(θ) = 0 requires the solution of a transcendental equation.

In case of small displacements, that is in case u/L << 1, v = 1
2L(u/L)2, and the total

potential energy of the rod reduces to

º(u) =
1

8
kL2(

u

L
)4 +

1

2
p0L(

u

L
)2 − Fu (9.61)

or

º(u) =
1

2
p0L(

u

L
)2(1 +

kL

4p0

u2

L2 )− Fu. (9.62)

If the initial tension is positive and sufficiently large so that ku2/4p0L << 1, then the total

potential energy of the rod reduces to the quadratic

º(u) =
1

2
p0L

u2

L2 − Fu (9.63)

and the equation of equilibrium becomes linear. But if p0 = 0, then

º(u) =
1

8
k
u4

L2 − Fu, º0(u) =
1

2
k
u3

L2 − F, º
00
(u) =

3

2
k
u2

L2 (9.64)
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and the equation of equilibrium does not admit a linearization. In the absence of an initial

tension a very small F causes relatively large vertical movement of midpoint B in the sense

that ku0/F = (2k2L2/F 2)1/3 →1 as F → 0.

An initial compression p0 < 0 imposed on the two-rod system raises the possibility of

three distinct equilibrium configurations even for zero F. They are the three real roots

u0 = 0, u0 = ±p0

k
(1− 2

Lk

p0
)1/2 (9.65)

of equilibrium equation pu/L0 = 0, corresponding to u = 0 and p = 0.

To decide the stability of the equilibrium we insert u = 0 and p = 0 into º
00
(u) and

obtain

º
00
(u = 0) =

p0

L
< 0 and º

00
(p = 0) =

ku02

L2 + u02
> 0 (9.66)

leading us to the conclusion that u0 = 0 is an unstable equilibrium configuration, while the

other two configurations are stable. One easily imagines the compressed linkage snapping

from a straight position to one of the other two stable equilibrium configurations if given a

slight push. To which of the two equilibrium states the rod will jump depends on the bias

in the perturbation. Notice that in the absence of initial tension, when p0 = 0, º
00
(0) = 0,

and this trivial equilibrium state is indifferent.

Figure 9.11 shows the total potential energy of the rod for zero load, F = 0, as given by

º(u) =
1

2
kv2 + p0v − Fu, v = L(

r
1 + (

u

L
)2 − 1) (9.67)

for different values of the initial tension (compression) p0. For p0 > 0, º(u) is essentially

parabolic, for p0 = 0, º(u) is quartic near u = 0; and for p0 < 0, º(u) possesses a relative

maximum at u = 0, and two minima symmetrically situated with respect to u = 0.

Say the rods are made such that kL = 1. Newton-Raphson solution of equilibrium

equation g(θ) = tan θ + (p0 − 1) sin θ − F = 0 for given F confronts us with the fact that

convergence of the method can occasionally be slow, erratic or even entirely absent. Figure

9.12 describes F versus θ for p0 = −0.5. As θ is increased above zero a negative F is needed

first to restrain the rod from being pushed out by the negative initial tension. At θ = 29.123o

the force dips maximally to F = −0.1729, then it decreases in magnitude to become zero at
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Fig. 9.11

θ = 48.186o, and keeps thereafter ever increasing with θ. Starting with θ0 = 0 and a positive

F below F = 0.173 the Newton-Raphson method converges to a negative θ of eight digits

accuracy in no more than three steps. Close to peak value F = 0.173 convergence slows

considerably for theoretical reasons clear to us. Raising F slightly above F = 0.173 we lose

convergence altogether, but for higher values of the applied load, say F = 0.18, the iterative

procedure wanders around for some 16 iterations, then happens to fall upon an equilibrium

point.

Fig. 9.12

9.6 Rod systems—the truss

Having become acquainted with the linear and nonlinear behavior of the one rod we
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move on to examine the highly practical question of the equilibrium and stability of elastic

systems consisting of a large number of end connected rods—what we call a truss.

A truss (frame, lattice-work) is a lightweight web of rods designed to transmit structural

loads to anchored supports. A two-dimensional Fink roof spacer calculated to carry the

weight of a roof to the wall pillars is shown in Fig.9.13. In practice the rods are interconnected

by welds, nails, bolts, or rivets but we shall follow the common practice of simplifying the

model, without greatly denying reality, of assuming pin joints (ball joints in space) such as

found in bicycle chains. By adding to this the restriction of external forces applied to joints

only we limit the reaction forces in the rods to axial.

Fig. 9.13

As a result of the application of external loads, as say when a train passes over a bridge,

the truss deforms slightly, changes its configuration, causing some rods to extend and some

to contract giving rise thereby to tensional and compressive reactions in the rods. The

purpose of our elastic equilibrium analysis is to compute the truss movement as given by

the movement of its joints or nodes and the internal forces in each rod. In this, the rods are

assumed utterly resistant to bending and remain straight. At first we shall assume the truss

movement under the action of the external loads so small as to practically leave the truss in

its original geometry.

A structural truss has to behave like a rigid body; it must not include mechanisms that

allow a continuous change of configuration that leave the length of its rods unchanged. Some

mechanisms allow a finite relative movement of the nodes and some only infinitesimal. The

two-rod system of Fig.9.10 includes an infinitesimal mechanism, point B offering no incipient

resistance to differential movement du at u = 0. The change of length L0 − L of rod SB
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resulting from small vertical movement u of point B is only quadratic, or second-order, in

u, (L0 − L)/L = u2/(2L2), if u << 1. However, as u increases the two-rod system stiffens

and the mechanism disappears. At a finite rise of point B, dL0 = (u/L0)du.

A mechanism-devoid truss, a truss whose configuration can be infinitesimally changed

by a first-order infinitesimal lengthening or shortening of its rods only, is said to be stiff.

A triangular truss is stiff, while a rectangular truss is not. Not only infinitesimal, but

also finite, continuous, changes of configuration exist for the rectangular truss that are ac-

complished without straining its four rods. A rectangular truss with one diagonal is stiff, but

it can, nonetheless, have isolated configurations of zero strain. Forcing one triangular part

into another creates another, noncongruent, quadrilateral with rods of the same length as

the original. See Fig.9.14. In mechanics the violent passage of one unstrained configuration

into another is called snap-through.

Fig 9.14

A load bearing truss needs to be stiff, but we readily imagine instances of folding frame-

works with a variety of deliberate mechanisms and linkages, possibly including intended

slight snap-throughs designed to click lock the structure into position.

Theorem 9.5 The number of rods sufficient to stiffen a pin-jointed plane truss of k

nodes is 2k − 3, k > 2. The number of rods sufficient to stiffen a space truss is 3k − 6.

Proof. A two-rod system with one joint is not stiff. An additional rod completing a

nontrivial triangle denies the mechanism. Each additional node calls for two connecting
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rods. Thus 3 nodes require 3 rods, 4 nodes require 3 + 2 rods, 5 nodes require 3 + 2 · 2 rods,

6 nodes require 3 + 2 · 2 · 2 · 2 rods, and k nodes require 3 + 2(k − 3) = 2k − 3 rods.

In space, each additional node requires 3 connecting rods to complete a triangle to a

nontrivial tetrahedron, and 3 + 3(k − 3) = 3k − 6 rods suffice to stiffen a truss of k nodes.

End of proof.

The proper number of rods does not guarantee stiffness unless the connections are done

purposefully. A rod taken out from a vital connection and put where it is not needed can

leave part of the truss a mechanism and part overstiff. Figure 9.15 shows a truss with the

right number of nodes and rods that is partly overstiff and partly understiff. Rod P1P2

placed at P1P3 restores overall stiffness. Placement of the rods is important and we shall

give it a linear algebraic consideration in the next section. How to achieve certain structural

objectives with the minimal number of rods arranged in some optimal configuration is a

fascinating question that is too complex to be touched upon here.

Fig 9.15

A polyhedron is a surface extending in space and consisting of polygonal faces. A tetra-

hedron is a polyhedron consisting of four triangular faces neatly fitting at six straight edges.

A polyhedron is not a skeletal space truss consisting of bar edges, but is rather a solid. A

convex polyhedron has only outwardly protruding vertices all of which may be touched by

planes that are entirely outside the solid. All tetrahedra are convex.

Theorem (Cauchy) 9.6. A convex polyhedron is stiff.

We shall not attempt to prove this important theorem but remark that it refers to
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surfaces of solid flat faces that are by themselves absolutely rigid. we may think of the

polyhedron of Cauchy’s theorem as consisting of rigid laminae hinged together along their

common edges. A mechanism in such a structure happens when its faces become able to

swing relative to each other around the edges without change of form, the way a door swings

on its hinges. A cube made of six rigid faces is, according to Caucy’s theorem, rigid since

no relative movement of the faces is possible that does not alter their square shape into a

parallelogram. A cubical truss made of twelve bars hinged at eight vertices is, on the other

hand,collapsible.

Cauchy’s theorem has, nevertheless, an obvious corollary of important bearings to space

frames.

Corollary 9.7. A convex polyhedral space truss of triangular cell faces is stiff.

A truss with the minimum number of rods to avoid a mechanism is said to be properly

stiff. It may well happen that for some rod configuration the internal forces in all rods can

be computed from statics alone, with no recourse to elastic deformations; that is, from the

equilibrium conditions for the nodes, knowing that all reaction forces are parallel to the

rods. A truss for which this is possible is said to be determinate. A triangle in equilibrium is

determinate. A truss for which the internal reaction forces in its members can be computed

only with knowledge of the elastic deformation is said to be indeterminate.

Theorem 9.8 A properly stiff truss is determinate.

Proof. Removal of typical rod P1P2 creates a mechanism that allows joints P1 and P2

to come closer or move further apart. Reaction F in rod P1P2 is put as external forces at

nodes P1 and P2 parallel to P1P2. A virtual displacement given to the mechanism provides

the zero virtual work equation to determine F . End of proof.

The method of finite elements to be discussed in the next section makes no distinction

between a determinate and an indeterminate truss and calculates the reactions in the rods

solely from elastic extensions.

Figure 9.16 shows a determinate four nodes, five rods truss, and an indeterminate four

nodes, six rods truss. With geometric and elastic symmetry the external and reaction forces
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(a) Fig 9.16 (b)

at the four nodes are as shown in Fig.9.17. For the truss of Fig.9.16(a) we obtain from

equilibrium at point 1 (or equally well point 4) that F1 =
√

2/F , and from equilibrium at

point 2 (or equally well point 3) that F2 = F , and all unknown internal forces are thus

determined for truss 9.16(a). Truss 9.16(b) includes the extra unknown F3, exerted on nodes

1 and 4 by rod 6, but there are only two equations of equilibrium, and the three F1, F2, F3

cannot be determined.

(a) Fig 9.17 (b)

Let P1P2 in Fig.9.18 be a typical rod member of a two-dimensional truss restricted to

movements in its plane. Deformation of the truss under the action of external loads in

equilibrium causes the rod to move to position P 0
1P

0
2. Part of the motion consists of rigid
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body translation and rotation, and part of elastic stretch. If the original end points of the

rod are P1(x1, y2), P2(x2, y2), and the new ones P 0
1(x

0
1, y

0
1), P2(x02, y

0
2), then

L =
q

(x2 − x1)2 + (y2 − y1)2 and L0 =
q

(x02 − x01)
2 + (y02 − y01)

2 (9.68)

are the original and extended lengths of the rod, respectively. From the strain ≤ = (L0−L)/L,

and assuming linear elastic behavior, we obtain the stress σ = E≤ , where E is the elastic

modulus of the material the rod is made of.

Fig 9.18

We may find it convenient to work with the relative movements of the rod’s end points

rather than their coordinates, and we write

x01 = x1 + u1

y01 = y1 + v1

x02 = x2 + u2

y02 = y2 + v2

(9.69)

to have
L02 = L2 + (u2 − u1)

2 + (v2 − v1)
2 + 2(u2 − u1)(x2 − x1)

+ 2(v2 − v1)(y2 − y1).
(9.70)

In case of small displacements, when |u2− u1|/L << 1 and |v2− v1|/L << 1, new length L0

reduces to

L0 = L

s

1 + 2
u2 − u1

L

x2 − x1

L
+ 2

v2 − v1

L

y2 − y1

L
(9.71)
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or

L0 = L(1 +
u2 − u1

L
cosα +

v2 − v1

L
sinα) (9.72)

which is a linear function of the end displacements, and the small strain experienced by the

rod becomes

≤ =
L0 − L

L
=
u2 − u1

L
cosα +

v2 − v1

L
sinα. (9.73)

Notice that if α = 0, then the strain becomes due to the horizontal difference u2 − u1 only;

a small vertical difference v2 − v1 in the nodes movement adds nothing to the strain of the

horizontal rod.

In space, rod P1(x1, y1, z1), P2(x2, y2, z2) displaces to P 0
1(x

0
1, y

0
1, z

0
1), P2(x02, y

0
2, z

0
2) where

x01 = x1 + u1

y01 = y1 + v1

z01 = z1 + w1

x02 = x2 + u2

y02 = y2 + v2

z02 = z2 + w2

(9.74)

and if |u2−u1|, |v2− v1|, |w2−w1| are very small compared with the original length L of the

rod, then the extended length L0 of the rod becomes a linear function of the displacements,

L0 = L(1 + c1
u2 − u1

L
+ c2

v2 − v1

L
+ c3

w2 − w1

L
) (9.75)

where

c1 =
x2 − x1

L
, c2 =

y2 − y1

L
, c3 =

z2 − z1
L

(9.76)

are the direction cosines of the rod.

We are ready now to write down the system of equations that express the global equi-

librium of the truss. Obviously, the truss is in equilibrium if and only if all its nodes are

in equilibrium. Consider typical joint j of Fig.9.19 connected by three rods to neighboring

joints k, l,m, and with force Fj applied to it. Relative movement of nodes j, k, l,m strains

the three rods causing stresses σ1, σ2, σ3 to appear in them. Reaction forces F 0
1 = A1σ1, F 0

2 =

A2σ2, F 0
3 = A3σ3 in the rods are parallel to the rods and the two equations of equilibrium

for node j are
F 0

1 cosα1 + F 0
2 cosα2 + F 0

3 cosα3 +Xj = 0

F 0
1 sinα1 + F 0

2 sinα2 + F 0
3 sinα3 + Yj = 0.

(9.77)
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Fig 9.19

Fig 9.20

See Fig.9.20.

We recall that the strain in rod P1P2 due to small movement u1, v1 of node P1 and small

movement u2, v2 of node P2 is

≤ =
1

L
((v2 − v1) sinα + (u2 − u1) cosα) (9.78)

where L is the length of the rod and α its inclination. Assuming linear elasticity, σ = E≤,
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the stresses in the three rods become

σ1 =
E

L1
((uk − uj) cosα1 + (vk − vj) sinα1)

σ2 =
E

L2
((ul − uj) cosα2 + (vl − vj) sinα2)

σ3 =
E

L3
((um − uj) cosα3 + (vm − vj) sinα3) .

(9.79)

Substitution of the three stresses into the two equations of equilibrium writes them in terms

of node displacements uj , vj ;uk, vk;ul, vl;um, vm.

In this way 2k equations of equilibrium with 2k unknown displacements are written for

the k-nodes truss. A well designed truss does not include mechanisms, but the system of

equilibrium equations is still singular due to the existence of rigid body modes. Correct

anchoring removes the singularity and the system is made to yield a unique displacement

solution.

9.7 Linear finite elements

The elastic energy stored in an elastically linear rod of length L, cross section area A,

and elastic modulus E is obtained from the integration of dE = Aσd(L≤) as

E = E(x01, x
0
2, y

0
1, y

0
2) =

1

2
V E≤2, V = AL (9.80)

where ≤ = (L0−L)/L is the strain. No assumption about smallness of displacement is made

in the derivation of the above expression for E , only that the material follows the linear

stress-strain constitutive relationship σ = E≤.

Partial differentiation of elastic energy E of a typical rod yields

@E
@x01

=
@E
@u1

= V E≤
@≤

@x01
@E
@y01

=
@E
@v1

= V E≤
@≤

@y01

@E
@x02

=
@E
@u2

= V E≤
@≤

@x02
@E
@y02

=
@E
@v2

= V E≤
@≤

@y02
.

(9.81)

But
@≤

@x01
=

1

L

@L0

@x01
= −x

0
2 − x01
LL0

@≤

@y01
=

1

L

@L0

@y01
= −y

0
2 − y01
LL0

@≤

@x02
=

1

L

@L0

@x02
=
x02 − x01
LL0

@≤

@y02
=

1

L

@L0

@y02
=
y02 − y01
LL0

(9.82)
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and

x02 − x01
L0 = cosα0,

y02 − y01
L0 = sinα0 (9.83)

so that finally, with V E≤ = LF , F being the axial force that stretches the rod,

@E
@x01

=
@E
@u1

= −F cosα0

@E
@x02

=
@E
@u2

= F cosα0

@E
@y01

=
@E
@v1

= −F sinα0

@E
@y02

=
@E
@v2

= F sinα0.
(9.84)

The same is true for rods allowed to move in space. Elongation of a rod strains it

by ≤ = (L0 − L)/L and causes, assuming linear elasticity, stress σ = E≤ to appear in the

rod. A positive σ means that the end forces F exerted on the rod by the joints are tension

causing, and a negative σ implies compression. The elastic energy stored in the rod is again

E = 1
2V E≤

2, in which V denotes the volume of the rod and E the elastic modulus. We

readily verify that differentiation of the elastic energy with respect to the end displacements

is here
@E
@x01

=
@E
@u1

= X1
@E
@y01

=
@E
@v1

= Y1
@E
@z01

=
@E
@w1

= Z1

@E
@x02

=
@E
@u2

= X2
@E
@y02

=
@E
@v2

= Y2
@E
@z02

=
@E
@w2

= Z2

(9.85)

giving the component of end force F in the direction of the respective displacement.

This result is of sufficient importance to deserve a formal statement.

Theorem 9.9. Let rod P1P2 of length L and cross section A move by finite displacements

to position P 0
1P

0
2 with new length L0 and cross section remaining A. The energy stored in

the rod by the elastic deformation equals E = 1
2ALE≤

2, ≤ = (L0−L)/L, where E denotes the

elastic modulus. Partial differentiation of E with respect to an end displacement produces the

component of the end straining force in the direction of that displacement.

In case of small plane displacements, when |u2 − u1| << L and |v2 − v1| << L, angle α0

is indistinguishable from α, and

L0 = L
µ
1 +

u2 − u1

L
cosα +

v2 − v1

L
sinα

∂
. (9.86)
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Extended length L0 of the rod becomes a linear function of its end displacements, and so

does strain

≤ =
L0 − L

L
=

1

L
((u2 − u1) cosα + (v2 − v1) sinα) (9.87)

experienced by the rod. Referring to the typical eth element and returning to linear algebraic

notations we write the strain as

≤ =
1

L
qTe ue (9.88)

where qe = [−c − s c s]T , c = cosα, s = sinα, and where ue = [u1 v1 u2 v2]T is the

displacement nodal values vector of the eth rod. To stress the fact that we are dealing with

one single typical rod we subscript E by e and write the elastic energy as

Ee =
1

2

AE

L
uTe qeq

T
e ue =

1

2
uTe keue (9.89)

with

ke =
AE

L
qeq

T
e =

AE

L





c2 cs −c2 −cs
cs s2 −cs −s2
−c2 −cs c2 cs
−cs −s2 cs s2



 (9.90)

being the element stiffness matrix of the typical eth rod element of a plane truss.

Element stiffness matrix ke is obviously symmetric, positive semidefinite and of rank

one, with three rigid body modes

r1 =





1
0
1
0



 , r2 =





0
1
0
1



 , r3 = c





0
−1
0
1



 + s





1
0
−1
0



 (9.91)

that are three orthogonal eigenvectors corresponding to the three zero eigenvalues of ke—

they span the nullspace of the element matrix. Vector qe = [−c − s c s]T is the fourth

eigenvector corresponding to the only nonzero eigenvalue ∏ = 2AE/L of element stiffness

matrix ke. Quadratic form uTe keue is zero for any choice of ue that does not elongate or

shorten the rod.

In space, if |u2 − u1| << L, |v2 − v1| << L, |w2 − w1| << L, then

L0 = L(1 + c1
u2 − u1

L
+ c2

v2 − v1

L
+ c3

w2 − w1

L
) (9.92)
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where

c1 =
x2 − x1

L
, c2 =

y2 − y1

L
, c3 =

z2 − z1
L

(9.93)

are the direction cosines of the rod. Here

≤ =
L0 − L

L
= [−c1 − c2 − c3 c1 c2 c3][u1 v1 w1 u2 v2 w2]

T (9.94)

or in short ≤ = qTe ue, and the elastic energy Ee of the typical rod becomes

Ee =
1

2

AE

L
uTe qeq

T
e ue =

1

2
uTe keue (9.95)

with

ke = ke(6× 6) =
EA

L
qeq

T
e , qe = [−c1 − c2 − c3 c1 c2 c3]

T (9.96)

being the element stiffness matrix of the eth space rod. Element stiffness matrix ke is

once more symmetric positive semidefinite and of rank one. Every vector orthogonal to qe

represents a rigid body mode and is an eigenvector of ke corresponding to one of its five zero

eigenvalues. Vector qe itself is the eigenvector corresponding to the sole nonzero eigenvalue

of ke. Every choice of ue that represents a rigid body movement of the rod renders uTe keue

zero. The only choice of ue that yields a nonzero uTe keue is that which leads to a stretching

of the rod.

Let node numbered j be the meeting point of, say, three rods of the truss, as in Fig.9.19.

Elastic energies E1, E2, E3 of the three rods are functions of the end displacements of the three

rods only. Node movements uj and vj appear in E1, E2, E3, and in the elastic energy of no

other rod. Hence

@E1

@uj
+

@E2

@uj
+

@E3

@uj
=

@

@uj
(E1 + E2 + E3) =

@

@uj

n0
X

e=1

Ej =
@E
@uj

(9.97)

@E1

@vj
+

@E2

@vj
+

@E3

@vj
=

@

@vj
(E1 + E2 + E3) =

@

@vj

n0
X

e=1

Ej =
@E
@vj

where E denotes the total elastic energy of the whole truss summed over all n0 rods. Let

Xj and Yj be the components of force Fj externally applied at node j. The total potential

energy of the k nodes, n0 elements truss, is

º =
n0
X

e=1

Ee −
kX

j=1

(Xjuj + Yjvj) (9.98)
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and according to Theorem 9.9 the two equations of equilibrium of joint j are

@º

@uj
= 0 and

@º

@vj
= 0. (9.99)

Generally, if we denote the global vector of nodal displacements by u so that º = º(u), then

the n = 2k equations of equilibrium of the k node truss are concisely written as

g = grad º(u) = o. (9.100)

This is the variational formulation of equilibrium for the truss used in the finite element

method.

Clearly, the same variational formulation that holds for the plane truss holds for the

space truss.

The finite element method is a procedure to write out the system of equilibrium equations

for the truss through addition of all the contributions to the system by the individual rods

with their two end points rather than by completing one equation at a time. The procedure

is most suitable for automatic computation, and the advent of the large computer gave the

finite element method its prominence, making it the standard procedure for the large scale

computations of realistic structures.

Fig 9.21

We shall give a detailed description of the finite element method on the four nodes, five

rods plane truss of figure 9.21. At first we label all the nodes, here from 1 to 4. This is
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the global numbering system of the truss nodes. Next we label all rods, here from 1 to 5.

There are two displacement unknowns at each node of the truss and hence a total of eight

unknowns for the whole truss. We list them in the global displacement vector

u = [u1 v1 u2 v2 . . . uj vj . . . u4 v4]
T . (9.101)

The two nodes of each individual rod are numbered 1 and 2, which is the element

numbering system of the rod, so that always

ue = [u1 v1 u2 v2]
T (9.102)

whatever e. To each local node number there corresponds a global node number and we

formally write this correspondence in terms of connectivity matrices Ae as

ue = Aeu e = 1, 2, . . . , n0. (9.103)

For a plane truss of k nodes, Ae = Ae(4× 2k), and in our example, where k = 4 and n0 = 5

A1 =





1 1 2 2 3 3 4 4

1

1

1

1





, A2 =





1 1 2 2 3 3 4 4

1

1

1

1





A3 =





1 1 2 2 3 3 4 4

1

1

1

1





, A4 =





1 1 2 2 3 3 4 4

1

1

1

1





A5 =





1 1 2 2 3 3 4 4

1

1

1

1





. (9.104)
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Every row of Ae contains only one single 1 and it would be inexcusably wasteful to actu-

ally store the matrix. It is a mere linear algebraic notational convention to describe the

connectivity of the nodes.

To have the elastic energy of the complete structure written out in terms of the global

displacement vector u we perform the transformations and summations

E =
n0
X

e=1

Ee =
1

2

n0
X

e=1

uTe keue =
1

2

n0
X

e=1

uT (AT
e keAe)u

=
1

2
uT




n0
X

e=1

AT
e keAe



u

=
1

2
uTKu

(9.105)

in which, for n0 = 5

K = K1 +K2 + . . .+K5 , Ke = AT
e keAe (9.106)

is the global stiffness matrix of the whole truss.

Transformation Ke = AT
e keAe inflates ke from a 4 × 4 matrix (6 × 6 in space) into a

2k× 2k (3k× 3k in space) matrix referring to the global numbering system of the nodes. In

this, entry (ke)ij is sent to (Ke)i0j0 , where local i, j correspond to global i0, j0. Schematically

K1 =





1 1 2 2 3 3 4 4

1 × × × ×

1 × × × ×

2 × × × ×

2 × × × ×

3

3

4

4





, K2 =





1 1 2 2 3 3 4 4

1 × × × ×

1 × × × ×

2

2

3 × × × ×

3 × × × ×

4

4





42



K3 =





1 1 2 2 3 3 4 4

1 × × × ×

1 × × × ×

2

2

3

3

4 × × × ×

4 × × × ×





, K4 =





1 1 2 2 3 3 4 4

1

1

2 × × × ×

2 × × × ×

3

3

4 × × × ×

4 × × × ×





K5 =





1 1 2 2 3 3 4 4

1

1

2

2

3 × × × ×

3 × × × ×

4 × × × ×

4 × × × ×





(9.107)

and

K = K1 +K2 +K3 +K4 +K5 =





1 1 2 2 3 3 4 4

1 × × × × × × × ×

1 × × × × × × × ×

2 × × × × × ×

2 × × × × × ×

3 × × × × × ×

3 × × × × × ×

4 × × × × × × × ×

4 × × × × × × × ×





(9.108)
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with the blanks indicating that nodes 2 and 3 are not connected. The larger the truss the

larger K, and it is sparse, but not of a strict band form. If node j is connected by rods to,

say, nodes k, l,m, then the two (three in space) equations of equilibrium for node j include

the unknown displacements at nodes j, k, l,m only.

Global stiffness matrix K is symmetric and at least positive semidefinite. If the truss

does not include a mechanism, then matrix K is of rank 2k− 3 in the plane and rank 3k− 6

in space. Every rigid body movement of the truss is an eigenvector of K corresponding to a

zero eigenvalue of K. Anchoring the truss to avoid rigid body movements renders K positive

definite.

We collect the external loads at the joints in vector

f = [X1 Y1 X2 Y2 . . . Xj Yj . . . Xn Yn]
T (9.109)

and write the total potential energy of the truss as

º(u) =
1

2
uTKu− uT f. (9.110)

Now grad º(u) = o becomes

Ku = f (9.111)

which is the global system of equilibrium equations.

Fig. 9.22
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How to incorporate into the system of equilibrium equations restrictions on joint move-

ments is considered next. Say that our truss is tied to its abutments in the manner shown in

Fig.9.22. Node 1 is fixed so that u1 = v1 = 0, and node 2 is permitted to slide horizontally

only, so that v2 = 0. This excludes any rigid body motion of the truss. Since u1, v1 and v2

are fixed, @º/@u1 = @º/@v1 = @º/@v2 = 0, and equations 1,2 and 4 of system Ku = f are

deleted. Substitution of u1 = v1 = v2 = 0 into the remaining equations amounts effectively

to deletion of columns 1,2 and 4 of stiffness matrix K as well. The smaller system left is

positive definite and is solved for the unique elastic displacement of the truss.

Computationally it is often more convenient to leave the system in its original size and

introduce the restrictions on the displacements through changes in the coefficients and right-

hand side of Ku = f . Let’s be more general and assume that some displacements have

prescribed, zero or nonzero, values. For the purpose of simple discussion we assume that

global displacement vector u is partitioned as u = [uT1 uT2 ]T with subvector u1 containing

the prescribed values. Partitioned Ku = f now has the form

∑
K11 K12

KT
12 K22

∏ ∑
u1

u2

∏
=
∑
f1

f2

∏
(9.112)

and after deletion,
∑

I O
KT

12 K22

∏
u =

∑
u1

f2

∏
. (9.113)

Solution of the corrected system reproduces the prescribed values within u. Otherwise the

system is compressed into

K22u2 = f2 −KT
12u1 (9.114)

with a positive definite and symmetric K22, and is solved for unknown vector u2.

Oblique sliding node conditions are accounted for by describing the node displacements

in terms of the tangential and normal displacements u0 and v0, respectively, and setting

v0 = 0.

Assume that system Ku = f is for a fixed truss so that K is positive definite and

symmetric. To distinguish between variable u in º(u) = 1
2u

TKu−uT f and u at equilibrium

we shall write the latter as u0 = K−1f . We readily verify that º(u0) = −1
2u

0TKu0. Because
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K is positive definite

E(u− u0) =
1

2
(u− u0)TK(u− u0) ≥ 0 (9.115)

with equality holding only when u = u0. It results from this that

E(u− u0) = º(u)− º(u0) ≥ 0 (9.116)

and hence that

º(u0) ≥ º(u) (9.117)

with equality holding only when u = u0. This is the principle of minimum potential energy

for the complete structure.

Theorem 9.10 A stiff, anchored truss that does not include a mechanism is always in

stable equilibrium.

Proof. Let 0 < ∏1 ≤ ∏2 ≤ . . . ≤ ∏n be the positive eigenvalues of positive definite

stiffness matrix K, with corresponding eigenvectors x1, x2, . . . , xn. Let u be an arbitrary

displacement given to the truss nodes. According to Theorem 9.9 Ku is the vector of forces

that the nodes exert on the rods as a result of the elastic deformation. Since Kxj = ∏jxj ,

and since ∏j > 0, the forces on the rods due to u = xj are always in the direction of the

displacements. The reaction in the rods is therefore always restoring, tending to bring the

truss back to its original position. Every arbitrary u consists of a linear combination of the

eigenvectors and the forces are restoring for any u. End of proof.

Iterative methods for the solution of the global stiffness equation Ku = f set up with

finite elements are most attractive here by virtue of the fact that such methods do not

require K in tabular form but only the repeated vector matrix product Ku for variable u.

This makes such iterative methods independent of the sparseness pattern of K, avoids the

complexity of sparse algorithms, and leads to considerable storage savings. Indeed, we may

write

Ku =
n0
X

e=1

(AT
e keAe)u =

n0
X

e=1

AT
e (keue) (9.118)

perform keue, expand it to the global level, and sum the contribution of each rod over the

n0 elements of the structure. All we need to do this is to store for each rod element its three

direction cosines, its stiffness coefficient, and two integers for its global node numbers.
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9.8 Suppression of rigid body movements

Imagine a free truss in space acted upon by a system of external forces in equilibrium.

Linear system Ku = f has a singular positive semidefinite stiffness matrix, but the system is

consistent. For the sake of simplicity assume that stiffness matrix K possesses only three zero

eigenvalues, with three corresponding orthogonal rigid body modes r1, r2, r3. SystemKu = f

describing the equilibrium of the truss is soluble only if the load vector f is orthogonal to

the three rigid body modes, if fT r1 = 0, fT r2 = 0, fT r3 = 0,that is if f is orthogonal to the

nullspace of K, implying that the system of applied loads is in equilibrium.

Displacement vector u of the truss may be decomposed into

u = u0 + α1r1 + α2r2 + α3r3 (9.119)

where α1, α2, α3 are arbitrary, and where vector u0 is unique if orthogonal to r1, r2, r3. We

may obtain displacement vector u from the solution of singular system Ku = f , but handling

a system of equations with a nonunique solution is cumbersome and we wish to avoid this

difficulty by restraining the truss so as to compel the linear system to yield either u0 or any

other unique u for some α1, α2, α3.

We may proceed in various ways to include the constraint through modification of K.

The first possibility consists of prescribing some node displacements in order to fix α1, α2, α3,

but we need to be careful about the choice of the nodal constraints. Consider for example a

free rod in the plane with u = [u1 v1 u2 v2]T and u0 = [u01 v
0
1 u

0
2 v

0
2] so that





u1

v1

u2

v2



 =





u01
v01
u02
v02



+ α1





1
0
1
0



+ α2





0
1
0
1



+ α3





s
−c
−s
c



 , s = sinα, c = cosα (9.120)

for arbitrary α1, α2, α3. Is it possible to fix α1, α2, α3 by setting u1 = v1 = u2 = 0 to have

Ku = f yield a unique solution? Setting in the above equation u1 = v1 = u2 = 0 we obtain

α1 = −1

2
(u01 + u02)

α3 = − 1

2s
(u01 − u02)

α2 = −v01 + α3c

(9.121)
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Fig. 9.23

and the answer is yes provided that s =/ 0. In case of a horizontal rod, when s = 0 and c = 1,

we choose instead u1 = v1 = v2 = 0 to have α1 = −u01, α2 = −(v01 + v02)/2, α3 = (v01 − v02)/2.

See Fig.9.23.

The second possibility consists of considering the constrained minimization of the total

potential energy

º(u) =
1

2
uTKu− uT f, uT r1 = uT r2 = uT r3 = 0 (9.122)

with Lagrange multipliers. Writing

º0(u) =
1

2
uTKu− uT f − ∏1u

T r1 − ∏2u
T r2 − ∏3u

T r3 (9.123)

we obtain from grad º = o and @º0/@∏1 = @º0/@∏2 = @º0/@∏3 = 0 the system

Ku− f − ∏1r1 − ∏2r2 − ∏3r3 = 0, rT1 u = rT2 u = rT3 u = 0. (9.124)

Premultiplication of the first of the above equations successively by rT1 , r
T
2 , r

T
3 yields ∏1 =

∏2 = ∏3 = 0, and the three constraints are added as





K
rT1
rT2
rT3









u
∏1

∏2

∏3



 =





f
0
0
0



 (9.125)

increasing the linear system by three redundant equations.
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The third possibility consists of replacing matrix K by

K 0 = K + ∏1r1r
T
1 + ∏2r2r

T
2 + ∏3r3r

T
3 (9.126)

for any ∏1 > 0, ∏2 > 0, ∏3 > 0. Matrix K 0 becomes thereby positive definite, with eigen-

values equal to those of K except for the three zero eigenvalues that become ∏1, ∏2, ∏3.

Premultiplying system K 0u = f ,with K 0 in eq.(9.126), by rT1 , r
T
2 , r

T
3 , while recalling that

rTj Ku = uTKrj = 0 for j = 1, 2, 3, we verify that unique solution u of K 0u = f is such that

uT r1 = uT r2 = uT r3 = 0.

Matrix ∏1r1rT1 + ∏2r2rT2 + ∏3r3rT3 spoils the sparseness of K 0, but if the method of

conjugate gradients is used to solve system K 0u = f , then for any u, K 0u = Ku+∏1(rT1 u)r1+

∏2(rT2 u)r2 + ∏3(rT3 u)r3, and at each iteration we merely need add to original Ku the three

vectors that are proportional to r1, r2, r3.

One of the first things done with global stiffness matrix K for a designed frame is the

computation of

min
u

E(u) = min
u

1

2
uTKu, uTu = 1 (9.127)

which is equivalent to the computation of the lowest eigenvalue of K. A zero eigenvalue

for an otherwise anchored truss means the existence of a hidden mechanism. A small first

eigenvalue means that the structure includes a near-latent mechanism and a corresponding

normalized deformation mode that stores little energy. If stiffness is important various truss

configurations are evaluated and the one with the highest first eigenvalue is selected.

Figure 9.24 shows a tall truss as a naive representation of a high rise building. As the

structure increases in height it becomes easier to swing it with the expenditure of little

energy. High structures tend to become unstable, which imposes practical limitations on

their height-to-width ratio. Winds and minor earthquakes may cause uncomfortable, if not

dangerous, movements of the top stories of very high buildings. For slender structures of

such high flexibility, their elastic instability implies very high ratios between the highest and

lowest eigenvalues of stiffness matrix K, implying, in turn, the numerical instability of the

equilibrium system of equations. A structure that is elastically unstable is also numerically

unstable.
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(a) Fig 9.24 (b)

exercises

9.8.1. Write the finite element program to assemble global stiffness matrix K for the truss

tower of Fig.9.24. Use the Rayleigh quotient minimization (maximization) algorithm of Sec.

8.7 to compute the extremal eigenvalues of K. Evaluate the spectral condition number of K

as it varies with height.

9.8.2. Write an efficient conjugate gradient program, as described in Sec. 7.3, to solve the

finite element stiffness equation for the tower in Fig.9.24(b). Study the convergence behavior

of the iterative solution for a tower of increasing height.

9.8.3. Write a Gauss band solver for the stiffness equation of the truss tower in Fig.9.24.

9.9 Nonlinear finite elements

We shall have to deal here with nonquadratic elastic energies and their differentiation.

Let φ = φ(ξ) be a scalar function of quadratic form ξ = xTAx for variable vector x. To be

specific we limit discussion to A = A(2× 2) for which

ξ = A11x
2
1 + 2A12x1x2 +A22x

2
2 (9.128)
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and have upon differentiation that

@φ

@x1
= 2φ̇(A11x1 +A12x2)

(9.129)

@φ

@x2
= 2φ̇(A12x1 +A22x2)

or in short
@φ

@x
= 2φ̇Ax (9.130)

where φ̇ = dφ/dξ. Derivative @φ/@x of scalar function φ with respect to variable vector x is

a vector. Further differentiation yields

@2φ

@xi@xj
= 2φ̇Aij + 4φ̈rTi rj (9.131)

where ri = Ai1x1 +Ai2x2, or in short

@2φ

@x2 = 2φ̇A+ 4φ̈(Ax)(Ax)T . (9.132)

Second-order differentiation of scalar function φ with respect to variable vector x produces

a symmetric matrix that is possibly a function of x.

We persist in assuming linear elasticity so that the elastic energy of the rod remains

Ee =
1

2
AEL≤2, ≤ = (L0 − L)/L (9.133)

even under large displacements. A typical rod with end points P1(x1, y1), P2(x2, y2) moves

to position P 0
1(x

0
1, y

0
1), P

0
2(x

0
2, y

0
2) and we write xe = [x01 y

0
1 x

0
2 y

0
2] since we want to describe

the deformed state of the rod not by the displacements of its nodes but rather by their new

positions. Element nodal vector xe allows us to write the new length of the rod as

L0 =
q
xTe Nxe, N =





1 −1
1 −1

−1 1
−1 1



 (9.134)

and the total potential energy

º(x) = E(x)−P(x) (9.135)
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of the complete truss becomes a function of vector x that contains the displaced coordinates

of all nodes. Potential P(x) of the applied forces is usually a linear function of x,P(x) = xT f ,

and

g(x) = grad º =
@E
@x
− @P

@x
=

@E
@x
− f = o (9.136)

is the system of equilibrium equations for the largely deformed truss. It is a nonlinear system

and needs be solved iteratively.

Let x0 be an initial guess for the equilibrium position of the truss. Usually g(x0) =/ o

and following the Newton-Raphson method we seek a differential correction dx to x0 from

the linearization

g(x0 + dx) = g0 + (
@g

@x
)0dx = o (9.137)

in which g0 = g(x0). Expression (@g/@x)0, the derivative of vector g with respect to vector

x at x = x0, is a square symmetric matrix depending on x0, that we call K0, so that with

dx = x1 − x1

g0 +K0(x1 − x0) = o (9.138)

and the Newton-Raphson method for the solution of the nonlinear system @º/@x = o is

described by the iterative process

x1 = x0 −K−1
0 g0. (9.139)

We shall next describe how to carry it out with finite elements.

With the assumption that @P/@x is constant vector f and with the notation g0e =

@Ee/@xe we have that

g0 =
@E
@x

=
n0
X

e=1

@Ee
@x

=
n0
X

e=1

AT
e
@Ee
@xe

=
n0
X

e=1

AT
e g

0
e (9.140)

with

g0e =
@Ee
@xe

= AEL≤
@≤

@xe
=
AE

L0 ≤Nxe (9.141)

where, we recall, ≤ = L0/L− 1, L0 =
q
xTe Nxe. Now

g =
@º

@x
= g0 − f =

n0
X

e=1

AT
e g

0
e − f. (9.142)
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Gradient vector g0 = g(x0) = (2º/@x)0 is computed thus: Vector x0 is guessed, and

for the rods, one after another, element vector xe is picked out for them from the global

according to the global node numbers of the element. Quadratic form xTe Nxe gives L0, with

which ≤ = L0/L− 1 and g0e = (AE/L)≤Nxe are computed. Expansion AT
e g

0
e and summation

over all n0 rod elements of the truss yields g0 and then gradient g(x0).

Computation of global stiffness matrix K0 = K(x0) is similar,

@g

@x
=

n0
X

e=1

@g0e
@x

=
n0
X

e=1

@2Ee
@x2 =

n0
X

e=1

AT
e
@2Ee
@x2

e
Ae (9.143)

and

ke =
@2Ee
@x2

e
= AEL

√

≤
@2≤

@x2
e

+ (
@≤

@xe
)(

@≤

@xe
)T
!

(9.144)

is the nonlinear element stiffness matrix of the typical eth element. But

@≤

@xe
=

1

L

@L0

@xe
=

1

LL0Nxe (9.145)

and
@2≤

@x2
e

=
1

LL0 (N −
1

L02 (Nxe)(Nxe)
T ) (9.146)

so that finally

ke =
AE

L0 (≤N +
1

L02 (Nxe)(Nxe)
T ) (9.147)

where A,E,L0 and ≤ are all for that element. Element vector xe and extended length L0

are available from the computation of ge, and matrix ke = ke(4 × 4) is readily set up.

Summation of AT
e keAe over all n0 rods produces the here x-dependent global stiffness matrix

K0. Vector g0 and matrix K0 are entered into the Newton-Raphson algorithm and a better

approximation x1 is computed. If kg1k is sufficiently reduced the iterative procedure is

stopped, if not, it is continued to hopeful convergence.

After some m steps practically gm = o, and xm holds the equilibrium configuration of

the greatly deformed truss. At this point the lowest eigenvalue of Km = K(xm) is computed

to determine the stability of the equilibrium. A negative eigenvalue indicates, according to

the reasoning of Theorem 9.10, that the equilibrium state of the truss is unstable and that a

perturbation mode exists for which some of the created reactions are dispersing rather than

restoring.
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One of the basic aspects of a nonlinear structural investigation consists of tracing the

deformation as a function of the load intensity. We shall assume that the acting forces are

all proportional to one scalar parameter ∏ so that lack of load is implied by ∏ = 0. Before we

undertake discussion of the displacement-against-force tracing for structures of many degrees

of freedoms we shall look first at the more easily described case of a one degree of freedom

structure whose single equation of equilibrium we write as g(x, ∏) = 0.

Figure 9.25 shows a section of the equilibrium curve. To trace it we shall need points on

the curve close enough for a plotter to join for a good curvilinear representation.

Fig 9.25

Suppose that point E(x, ∏) is found to be on equilibrium curve g(x, ∏) = 0. We want

now to move ahead and select a new initial guess to restart the Newton-Raphson iterative

procedure to eventually land us on the next equilibrium point E0. One possibility is to start

from point I of Fig.9.25, with the same x as at point E but with ∏ increased to ∏ + d∏.

Another, more reasonable possibility consists of moving distance ds along the tangent line

to g(x, ∏) = 0 at point E to reach point I 0 of Fig.9.25. Fixing point I 0 is the predictor stage

of the nonlinear solution procedure. Admittedly, the one degree of freedom problem may be

too simple for such involved prediction and solution mechanism since we may vary x and

simply solve g(x, ∏) = 0 for ∏; but we have the larger case in mind.

Since at point E, g(x, ∏) = 0, linearization of g(x + dx, ∏ + d∏) = 0 yields the tangent

line equation

g0dx+ ġd∏ = 0 (9.148)
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where g0 = dg/dx, ġ = dg/d∏, and where the derivatives are evaluated at point E. Addition

of the condition

dx2 + d∏2 = ds2 (9.149)

leads to

d∏ = ±


 g0
2

g02 + ġ2




1/2

ds, dx = ±
√

ġ2

g02 + ġ2

!1/2

ds (9.150)

with sign choice that correspond to movement up or down the tangent line.

The next solution stage is that of correction, consisting of repeated solutions of the

linearized equation of equilibrium. We are at initial point I(x0, ∏0) at which g(x0, ∏0) =/ 0,

and seek to reach some point E0 on the equilibrium curve near previous point E but slightly

away from it. If we prefer to carry out the Newton-Raphson iterations under constant load,

then we write g(x0 + dx, ∏0) = 0, linearize the equation as g(x0, ∏0)+ g0(x0, ∏0)dx = 0, solve

it for dx, correct x0 to x1 + dx, and do it over. Point N 0 of Fig.9.26 is where this first step

of the Newton-Raphson method lands us, and if the equilibrium curve were linear, point N 0

would be on it. But g = 0 is not linear and iterations continues with the same ∏0.

Fig 9.26

As we have seen in Section 9.5 and as is obvious from g0 +g00dx = 0, near a critical point

at which g0 = 0, application of the Newton-Raphson method under constant load becomes

difficult and we may want to vary not only x but also ∏. Linearization of g(x0+dx, ∏0+d∏) =

0 becomes

g0 + g00dx+ ġ0d∏ = 0 (9.151)
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or

dx = −g0

g00
− ġ0

g00
d∏ (9.152)

and we choose d∏ by the condition that

dx2 + d∏2 = (
g0

g00
)2 + 2(

g0ġ0

g0
2

0

)d∏ + (
ġ0

g00
)2d∏2 + d∏2 (9.153)

be minimal. This readily leads to

d∏ = − g0ġ0

ġ2
0 + g0

2

0

, dx = − g0g00
ġ2
0 + g0

2

0

(9.154)

and corrected point N in Fig.9.26.

The general case where x is a vector and g(x, ∏) = o stands for a system of nonlinear

equations is similar. To predict a starting point we linearize g(x+ dx, ∏ + d∏) = o as

(
@g

@x
)dx+ (

@g

@∏
)d∏ = o (9.155)

where K = @g/@x is the global stiffness matrix of the structure, and where @g/@∏ = f is

the vector of applied loads. Solution of the linearized equation for dx yields

dx = −d∏K−1f = −d∏q, q = K−1f. (9.156)

Restriction

dxTdx+ d∏2 = d∏2(qT q + 1) = ds2 (9.157)

yields

d∏ =
ds

q
qT q + 1

, dx = −d∏q (9.158)

and prediction is done.

Linearized correction under changing load is obtained from g(x0 + dx, ∏0 + d∏) = o as

g0 +K0dx+ d∏f = o (9.159)

so that

dx = −K−1
0 g0 − d∏K−1

0 f = −p0 − d∏q0 (9.160)
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where p0 = K−1
0 g0 and where q0 = K−1

0 f . Here

dxTdx+ d∏2 = pT0 p0 + 2p0q
T
0 d∏ + (qT0 q0 + 1)d∏2 (9.161)

and the condition that dxTdx+ d∏2 be minimum with respect to d∏ yields

d∏ = − pT0 q0
1 + qT0 q0

, dx = −p0 − d∏q0. (9.162)

Initial guess x0, ∏0 is corrected to x1 = x0 + dx, ∏1 = ∏0 + d∏ and the correction procedure

is repeated until kg(xm, ∏m)k is satisfactorily small.

exercises

9.9.1. Write a nonlinear finite element program to compute the large bending of the tower

in Fig.9.24(b). Use the Gauss band solver of the previous exercise in your Newton Raphson

iterative scheme. Trace the displacement of the attacked node vs. the magnitude of the force

pushing it.

9.9.2. Determine the stiffness, or lack of it, of the 9-rod symmetric and asymmetric, trusses

of Fig.9.27, in plane and in space.

Fig 9.27

9.9.3. Determine the stiffness of a pyramidal truss with a rectangular base and triangular

sides. It is 5—node, 8—bar structure.
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