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Outline

• Unimodular Conformal and Projective Relativity 
(UCPR)

• Compatibility of Causal and Dynamical Structures
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Space-Time Points

Standard Formulation of 
GR

Invariant under the diffeomorphisms group Diff(M) 
of all active point transformations.
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Space-Time Points Transformed Space-Time Points

Standard Formulation of 
GR

Invariant under the diffeomorphisms group Diff(M) 
of all active point transformations.
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Basis Vectors Transformed Basis Vectors

Standard Formulation of 
GR

Diff(M) induces general linear group GL(n,R) in the 
the tangent and co-tangent spaces at each point.
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Standard Formulation of 
GR

Metric does it all.
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First Order Formalism

It is the connection that represents the 
inertio-gravitational field. 
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Basis Vectors Transformed Basis Vectors

Unimodular Relativity

Invariant under the unimodular group, which induces a 
special linear group SL(n,R) in the tangent and co-

tangent spaces, which preserves the volume element
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Unimodular Conformal 
and Projective Relativity

Conformal 
Metric

4-Volume 
Element

Affine
One-Form

Projective
Connection
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Determines a null-cone at each point, and hence 

a causal structure on M.

Conformal Structure
g̃µν
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Determines a null-cone at each point, and hence 

a causal structure on M.

Conformal Structure
g̃µν

Tensor density in GR, 

but a tensor in UR
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It picks out space-like, time-like, and null-vectors 
in the tangent space at each point.

Conformal Structure
g̃µν
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Conformal Structure

Determines the propagation of zero 
rest-mass fields, including gravitation, and hence

determines null hypersurfaces.
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Conformal Structure
Conformal Christoffel symbols

Not a connection in GR, 

but it is in UR
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Conformal Structure
Conformal Christoffel symbols

Conformal Covariant Derivative
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Conformal Structure
Conformal Christoffel symbols

Conformal Covariant Derivative
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Four-volume element

A scalar quantity which weights the volume of a 4-D parallelepiped 
formed by a set of basis vectors at each point. 

Necessary for carrying out integration over volumes.

4th dimension suppressed. 

A classical limit of 

a quantum of volume? 
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Metric
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Πκ
µν

Describes the geometrically same unparametrized 
curves (paths).

Projective Structure
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u=0

Describes the geometrically same unparametrized 
curves (paths).

Projective Structure
Πκ

µν
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u=0

Describes the geometrically same unparametrized 
curves (paths).

u=.5

Projective Structure
Πκ

µν
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u=0

Describes the geometrically same unparametrized 
curves (paths).

u=.5

u=1

Projective Structure

Not a connection in GR, 

but it is in UR

Πκ
µν
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Projective Covariant Derivative

Projective Structure

Transforms as a Connection under SL(n,R)
Πκ

µν
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Projective Covariant Derivative

Projective-Connection Curvature Tensor

Projective Structure
Πκ

µν
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Projective Covariant Derivative

Projective Curvature Tensor

Projective-Connection Curvature Tensor

Projective Structure
Πκ

µν
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Affine One-Form

u=.5

u=1

u=0

Determines the preferred affine 
parameter along the paths defined by      ,     

which can later be interpreted as proper time.
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Affine Connection
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Field Equations in UCPR

g̃µν

Πκ
µν

!
Qσµν≡ −∇̄σ g̃µν,

Friday, October 19, 2012



Compatibility in UCPR

In UCPR we can approach the compatibility in 
steps:
1. Equi-affine condition
2. Weyl condition
3. Conformal-Projective compatibility
4. Metric-Affine compatibility
5. Intermediate compatibility
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Equi-Affine Condition
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Equi-Affine Condition
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Weyl Condition

One physical consequence of the Weyl condition 
is that the ticking rate of a clock depends on its history.
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Conformal-Projective Compatibility
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+

Metric-Affine Condition
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Compatibility of Causal and Dynamical 
Space-Time Structures

kp

q

k

Causal structure is determined by the conformal metric. 

Once a dynamical connection is introduced, in general 
the parallel transport with respect to the connection 
need not be compatible with the causal structure.
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Compatibility of Causal and Dynamical 
Space-Time Structures
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Causal structure is determined by the conformal metric. 

Once a dynamical connection is introduced, in general 
the parallel transport with respect to the connection 
need not be compatible with the causal structure.
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Compatibility of Causal and Dynamical 
Space-Time Structures

In UCPR, we can study the compatibility of the causal 
structure and the dynamical space-time structures by 
studying the compatibility of the conformal metric and 
the projective connection. 
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Null co-vectors and vectors

kµ = ∂µφNull Co-vector

kµ{

φ = C1

φ = C2

φ = C3
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Null co-vectors and vectors

kµ{

φ = C1

φ = C2

φ = C3

g̃µν∂µφ∂νφ = 0Huygen’s Principle! Eikonal Equation

kµ = ∂µφNull Co-vector
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Null co-vectors and vectors

kµ = g̃µνkν

kµ = ∂µφ

Null Vectors

kµ{

φ = C1

φ = C2

φ = C3

kµ

Picture in Space

g̃µν∂µφ∂νφ = 0Huygen’s Principle! Eikonal Equation

kµ = ∂µφNull Co-vector
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kµ∇̃µk
ν = 0kµ∇̃µk

ν = αkν

Null Geodesic Paths & Curves

k kp p

q q
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Null Auto-Parallel Paths & Curves

k kp p

q q

kµ∇̄µk
ν = βkν kµ∇̄µk

ν = 0
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Null Auto-Parallel Paths & Curves
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Null Auto-Parallel Paths & Curves

k k

"k
k

p p

q q

kµ∇̄µk
ν = βkν kµ∇̄µk

ν = 0
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kµ(∇̄µ − ∇̃µ)k
ν = (β − α)kν

Compatibility of Causal & Projective Structure

kp

q
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kµ(∇̄µ − ∇̃µ)k
ν = (β − α)kν

Compatibility of Causal & Projective Structure

kp

q ("-!)k
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!
Qσµν≡ −∇̄σ g̃µν

Conformal-Projective 
Non-Metricity Tensor

!
T

··σ

µν≡ Πσ
µν − {̃σµν} =

1

2
g̃σλ

(
!
Qµλν +

!
Qνµλ −

!
Qλνµ

)

kp

q ("-!)k
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Compatible Causal and Dynamical 
Structures

Conformal and projective structures are compatible if conformal 
null-geodesics are also geodesics of projective structure.  

A manifold with compatible conformal and projective structures is 
called a Weyl space. 

Ehlers, Pirani, and Schild
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Πσ
µν − {̃σµν} =

1

2

(
g̃σλg̃µν(2Yλ − Zλ) + δσνZµ + δσµZν

)

UCPR
Compatible Causal and Dynamical Structures

Weyl Space

Compatible Causal and Dynamical 
Structures
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Conclusions

UCPR
• Framework in terms of four irreducible fields
with clear physical and mathematical interpretations.

• Allows us to approach the “metric-affine” 
compatibility in steps

• It can be used to study the compatibility of causal 
and dynamical structures in a more general way than 
the metric-affine formalism

• It can be used to formulate a variety of theories 
with possible applications to cosmology, quantum 
gravity, etc.
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Let’s Play!
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Thank You.

Friday, October 19, 2012


