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Abstract 

 
A definition of contagion between financial markets based on local correlation was introduced in Bradley and 

Taqqu (2004) and a test for contagion was proposed. For the test to be implemented, local correlation must be 

estimated. This paper describes an estimation procedure based on nonparametric local polynomial regression. 

The procedure is illustrated on the US and French equity market data. 
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1. INTRODUCTION 

There is no universally accepted definition of contagion in the financial literature. Typical definitions 

involve an increase in the cross-market linkages after a market shock. The linkage between markets is usually 

measured by a conditional correlation coefficient, and the conditioning event involves a short post-shock or 

crisis time period. Contagion is said to have occurred if there is a significant increase in the correlation 

coefficient during the crisis period. This phenomenon is also referred to as correlation breakdown. Statistically, 

correlation breakdown corresponds to a change in structure of the underlying probability distribution governing 

the behavior of the return series. Most tests for contagion attempt to test for such a change in structure, but these 

tests may be problematic. One difficulty was pointed out by Boyer, Gibson and Loretan (1999) who showed that 

the choice of conditioning event may lead to spurious conclusions. The reader is referred to Bradley and Taqqu 

(2004) for an extensive discussion. We proposed in that paper to use local correlation in order to measure 

contagion. The goal of the present article is to develop the statistical methodology behind such an approach. 

Applications can be found in (Bradley and Taqqu, 2005). 

Suppose that X  and Y  represent the returns in two different markets. The local correlation provides a 

measure of dependence for the model  

 ,)()( εσ XXmY +=  (1) 

where ε  is mean zero, unit variance and is independent of X . Thus X  affects Y  in two ways: through the 

mean level )(Xm  and through the standard deviation )(Xσ  associated with the noise ε . If )(Xm  is linear and 

)(Xσ  equals the constant σ , one recovers the standard linear regression model  

 ,σεβα ++= XY  (2) 

where the correlation is  
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This last formula motivates the following definition of local correlation for the non-linear model (1). 

Definition 1.1. Let X  and Y  be two random variables with finite variance. The local correlation between 

Y  and X  at xX =  is given by  
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where Xσ  denotes the standard deviation of X , )()( xmx ′=β  is the slope of the regression function 

)|()( xXYxm == �  and )|(Var )(2 xXYx ==σ  is the nonparametric residual variance. 

The local correlation )(xρ  was introduced by Bjerve and Doksum (1993). Since it  measures the strength 

of dependence between X  and Y  at different points of the distribution of X , we can use it do define (spatial) 

contagion. 

Definition 1.2. Suppose that X  and Y  stand for the returns,  over some fixed time horizon, of markets X  

and Y  respectively. We say that there is contagion from market X  to market Y   if  

 )()( ML xx ρρ >  (5) 

where )5.0(1−= XM Fx  is the median of the distribution }{)( xXxFX ≤= �  of X  and Lx  is a low quantile of 

that distribution. 

See Bradley and Taqqu (2004) for a detailed discussion of this definition and of the choice of Lx . Our goal 

here is to present the theory behind the estimation of )( 0xρ  at a target point 0x . We shall use nonparametric 

curve estimation techniques to estimate )( 0xρ . The procedure is illustrated on the US and French equity market 

data. Applications to contagion in financial markets and to flight of quality from the US equity market to the US 

government bond market can be found in the companion paper Bradley and Taqqu (2005). We make the 

software written in support of this work freely available and describe its use in the appendix of Bradley and 

Taqqu (2005). 

 

2. ESTIMATION PROCEDURE 

In order to estimate the local correlation measure )( 0xρ  at a target point 0x  we assume that our 

observations niYX ii �,1),,( = , are an independent sample from a population ),( YX
1
 and we apply a method 

similar to those set forth in Bjerve and Doksum (1993) and Mathur (1998). The method consists of estimating 

the functions )( 0xm , )( 0xβ  and )( 0xσ  through consecutive local polynomial regressions of degrees 1p  and 

2p  at 0x . To obtain )(x� 0ˆ . Bjerve and Doksum (1993) first use a local linear regression to estimate β  with a 

bandwidth equal to the standard deviation Xσ  which has no asymptotically optimal properties), then perform a 

local linear regression with a bandwidth selection based again on Xσ  on the squared residuals to obtain an 

estimate of )( 0
2 xσ . In contrast, we follow a suggestion of Mathur (1998): 

(a) we apply a local quadratic regression to estimate )( 0xβ  using an estimate of the asymptotically optimal 

bandwidth for that regression (this reduces the bias), 

(b) apply a local linear regression on the squared residuals to estimate )( 0
2 xσ  using again an estimate of 

the asymptotically optimal bandwidth appropriate for this regression (by using techniques developed by Ruppert 

et al. (1997), 

(c) obtain )(x� 0ˆ  and show that it is asymptotically normal. 

                                                           
1 When dealing with practical applications, one can first  filter the data for heteroscedasticity by assuming iiXi XX

~
,σ=  

and iiYi YY
~

,σ=  and perform the local correlation estimation procedure on ( )ii YX
~

,
~

. 
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See the monograph of Fan and Gijbels (1996) for details on local polynomial regression. Step (a) is 

developed in Section 3 and step (b) in Section 4. These steps require the specification of a bandwidth, which is 

done in Section 5. Step (c) is then presented in Section 5.1. We illustrate the estimation procedure for local 

correlation using the US and French equity market data in Section 7. 

 

3. LOCAL POLYNOMIAL REGRESSION 

Let niYX ii ,,1),,( �=  be the return data for the US and French equity markets respectively. Let )( 0xX p  

be any target point at which we would like to know the local correlation )( 0xρ . For our definition of contagion 

we will use the target points Lx  and Mx  from Definition 1.2 for 0x . We therefore require estimates of the local 

slope )( 0xβ  and local residual variance )( 0
2 xσ . To that end, assume the regression function )(xm  is 1+p  

times differentiable. Using a Taylor series expansion of the regression function about the target point 0x  we 

know that 
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This polynomial estimate of the regression function is fit locally at 0x  using weighted least squares 

regression. That is, the terms 
( )

!/)( 0 kxm k , pk ,,0�=  are estimated as the coefficients of the weighted least 

squares problem  
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which yield the estimators  
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The weights of the regression at 0x  are given by a kernel function  
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We will defer discussion of the choice of kernel function K  and bandwidth h  for the time being. The 

regression problem (7) may be rewritten in matrix notation. Let 
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be the )1( +× pn  design matrix for the grid point 0x . Let  
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be the response and regression parameter vectors respectively. The local polynomial regression problem may 

then be written as  

 , ))()(min 00000
0

x)�(xX)(y(xW)x)�(xX(y ph
T

p
)�(x

−−  (9) 

where , h))(x w, h), ...,(x(w ) (xW nh 0010   diag= . The solution to (9) is known to be given by  
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Notice that the estimated value of the regression function at target point 0x  may be written as  

 ) y(x W) (x X))(x)X(xW) (x(Xe ) (x�e  ) (xm h
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where Te )0,...,0,1(1 = . Because the observations are },,1),,{( niYX ii �=  and we need to obtain the residuals, 

��r i � Yi �
�
Yi � Yi � m�X i�, i � 1,�n� , we will need m

�
 evaluated at the observation points nXX ,,1 � . 

Letting n
1  ))(ˆ  ..., , )(ˆ(ˆ �∈= T

nXmXmm  be the vector of estimated values of the regression function at the 

observed values ( )nXX ,,1 �=X  we see that  

 yHm hp,=
�

 (11) 

for the smoother matrix 
nxn

hpH � , ∈ . Its thji ),(  entry is given by  

 , )()())()()(()(
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where T
i ), ... , , , , ... , (e 00100=  is a unit vector for the thi  position of the appropriate dimension. In (12), 

)( ip XX denotes the matrix )( 0xX p with iXx =0 . The following result will be used in the sequel and is 

proved in Section 6. 

 

Proposition 3.1. The smoother matrix hpH ,  preserves constant vectors in the sense that  .11, =hpH  

Local polynomial regression, aside from being easy to implement, has two additional benefits for our 

problem. First, the local correlation )( 0xρ  is a function of the local slope )()( 00 xmx ′=β  of the regression 

function )( 0xm . By choosing the degree 1≥p  of the polynomial fit in (6), local polynomial regression gives us 

an immediate estimate of the local slope  

 )(ˆ)(ˆ
010 xxm β=′  (13) 

in the regression equation (9). The second benefit of locally polynomial regression is a reduction in the bias of 

the estimated regression function and its derivatives at the boundaries of the support of the distribution of the 

covariate x . In classical kernel-based nonparametric regression methods, also called locally constant 

regression, the regression function  )|()( xXYxm == �  is approximated by )( 0xm  for x  close to 0x , ( 0=p  

in (6)) and )( 0xm  is estimated by  
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that is, by a weighted average about the target point 0x . If the target point 0x  is near the boundary of the 

support X  the weighted average may be strongly biased, even when the kernel has compact support, since more 

interior points than exterior points may be used in computing the local average. This bias may be reduced by 

fitting locally a polynomial in 0x  instead of a constant. 

Using the local polynomial regression above, Fan and Gijbels (1996) show
2
 that under certain non-

restrictive regularity conditions the asymptotic conditional bias and variance of the local derivative estimator 

                                                           
2 See Theorem 3.1 of Fan and Gijbels (1996) or Theorem 4.2 of Ruppert and Wand (1994). Its proof may be found in 

Ruppert and Wand (1994) or Fan and Gijbels (1996). The regularity conditions require that 0)( 0 >xf X  and that )(⋅Xf , 

( )
)(1 ⋅+pm  and )(2 ⋅σ  are continuous in a neighborhood of 0x . Additionally, we require that ∞→n , 0→h   such that 

∞→nh . 
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pxm ≤υυ , )(ˆ
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Equation (14) for the conditional bias is valid for the case ν−p  odd and has a slightly different form 

otherwise. For our purposes, we will use 2=p  and  1=ν  and so we concentrate on this case. The vectors and 

matrices in the expressions for the bias and variance above are either constants or functions of the kernel 

function. To define them, let duuKu
j

j )(�=µ  and duuKu
j

j )(
2

�=υ  be moments of K  and 2
K  

respectively. Then the vector 
)(pT

ppp ), ... , �(�c
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121   
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++ ∈= �  and the matrices )1()1(  ++∈ pxpS �  and 

)1()1(*   ++∈ pxpS �  are given by pljljS ≤≤+= ,0)(µ  and . )( ,0
*

pljljS ≤≤+= υ  

 Figure  Consistent with Bjerve and Doksum (1993), we choose the Epanechnikov kernel  
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Figure 1. The Epanechnikov kernel +−= )1(
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The kernel is plotted in Figure 1. This choice of kernel is typical in local polynomial modelling. In fact, for 

local polynomial estimators it may be shown that the Epanechnikov kernel is optimal in the sense that for all 

choices of p  and ν  it minimizes the asymptotic mean squared error. See Theorem 3.4 of Fan and Gijbels 

(1996) for a more detailed discussion of this point
3
. 

The choice of the degree of the polynomial is typically taken to be 1+=νp . This choice gives a first order 

reduction in the bias of )(ˆ υm  without substantially increasing its variance. Since we are primarily concerned 

with reducing the bias of the local slope estimate we choose 1=ν , 2=p  and the Epanechnikov kernel. This 

                                                           
3The proof may be found in Fan et al. (1997). The minimization is over all non-negative, symmetric and Lipschitz 

continuous functions. 
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and Tc )0 ,35/3 ,0(2 = . For our problem, we are interested in the local slope,  )(ˆ)(ˆ)(ˆ
0100 xxmx ββ =′≡ , (see 

Definition1.1 and (8)). Applying (14) and (15), we obtain that the asymptotic conditional bias and variance of 

the local slope are given by  
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In fact, Fan and Gijbels (1996) show that under certain non-restrictive regularity conditions, as the number 

of data points ∞→n , the bandwidth 0→h  and ∞→nh , conditional on �, the above estimator of the local 

slope is asymptotically normal. Applying their Theorem 5.2, one gets 

 

Theorem 3.1. Suppose β̂  is the estimator described above
4
. Suppose also that the following regularity 

conditions hold: )(xfX , 
( )

)(3 xm  and )()/( 2 xdxd σ  are continuous, the residual variance )(2 xσ  is positive 

and finite and )|( 4 xXY =�  is bounded. Then for 0)( 0 >xf X , we have  
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as ∞→n , 0→h  and ∞→nh . 

 

Observe that (18) involves the leading terms of the variance in (17) and of the bias in (16). Relationship 

(18) implies that if ( )7/1−= noh  , then  
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and )(ˆ
0xβ  is asymptotically unbiased. Observe that asymptotic unbiasedness is not necessarily optimal because 

the asymptotic variance may be large. In section 5 we will choose a bandwidth 1h  for which )( 7/1
1

−= nOh  but 

which optimizes the bias-variance tradeoff. 

 

4. RESIDUAL VARIANCE ESTIMATION 

Our estimate of the local correlation in (4) still requires an estimate of the local residual variance )( 0
2 xσ . 

The estimation procedure is similar to the one used above. It was first introduced by Mathur (1995) and its 

asymptotic properties were established by Ruppert et al. (1997). Let 1p  and 1h  denote the degree of the 

polynomial and bandwidth for the smooth of the y vector used above, namely the values of p  and h  used to get 

                                                           

4 β̂ is the local slope estimator of a local quadratic regression using the Epanechnikov kernel. 
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m̂  (see (11)). Let T
nn XmYXmYr ))(ˆ, ... , )(ˆ(ˆ

11 −−=  be the vector of estimated residuals from the above 

estimation of the regression function. Note that yHIr hp ),(ˆ
11

−=  for the smoother matrix 
11

,hpH  in (11). 

Following Fan and Yao (1998) and Ruppert et al. (1997) we propose to estimate )( 0
2 xσ  in a manner analogous 

to a second smooth of the estimated squared residuals 2
r̂  by 

2ˆ,
22

rH hp . The matrix 
22

,hpH  here is as above 

with elements given by (12), but the values for the degree of the polynomial 2pp =  and bandwidth 2hh =  may 

be different from the values 1p  and 1h   used for m̂ . 

A natural requirement is that the estimator )(ˆ 2 xσ  be unbiased in the case of homoscedastic regression error 

22 )( σσ =x . As shown in Section 6, this implies the following proposition. 

 

Proposition 4.1. Let 
n

 ),(ˆ
11

�∈−= yHIr hp  be the vector of residuals from an initial smooth  
11

,hpH  of 

the data and let   ���
nxn

hpH  ,
22
∈ be a second smoother  matrix. If the residual variance )(2 xσ  is constant,  

that is 
22 )( σσ =x , then  
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where )  ˆ( )  ˆ( Bias �� rm �=  and  
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T
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2 diag −=∆  (21) 

is the vector of diagonal elements of the matrix. 

 

Recall from Proposition 3.1. that 11, =hpH  for all polynomial smoothers  hpH , . If m̂  is unbiased for m 

then , ) ,1()  ˆ,(
2222

22 ∆+= hphp HrH σ��  which suggests the following estimator for the residual variance:  
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where multiplication and division are taken componentwise. The estimator is unbiased at each of the 

observation points iX , that is 22 )  )(ˆ( σσ =�iX� . 

Even though our estimator m̂  is biased (see (14)), the estimator of the residual variance at the observation 

points  nXX ,,1 �  given by (22) and the structure of the smoother matrix given by (12) motivate the following 

residual variance estimator at target point 0x :  
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Recall the vectors r̂  and ∆  are functions of the degree 1p  of the initial polynomial fit with bandwidth 1h . 

The asymptotic properties of the estimator (23) are established in Theorem 2 of Ruppert et al. (1997). They 

show, under certain regularity conditions and for 2p  odd, that if  
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A similar result hold for 2p  even. We will use this result in Section 5.1, along with the asymptotic 

normality result (18) from above, to show asymptotic normality of our estimator of local correlation. When 

estimating the residual variance we take 12 =p . 
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5. CHOICE OF BANDWIDTH 

In order to carry out the local regressions of degrees 21 =p  and 12 =p  described above we need to choose 

the appropriate bandwidths 1h  and 2h . The choice of bandwidth is crucial to local polynomial modelling. A 

bandwidth too small results in our under-smoothing the data. Since in this case only data points iX  close to the 

target point 0x  are used in the fit, the resulting estimator has a small bias but large variance. When the 

bandwidth is too large, we have an over-smoothing of the data and an estimator with small variance but large 

bias. This is the typical bias versus variance tradeoff in statistics. We will use a data-driven bandwidth selection 

rule from Section 4.2 of Fan and Gijbels (1996) which, as we will see, is asymptotically optimal in the sense that 

it minimizes the weighted Mean Integrated Squared Error (MISE)  

 dxxwxmxm )(~))](ˆ(Var  ))(ˆ(Bias[
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2
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for some non-negative weight function )(~ xw . Equations (14) and (15) give the asymptotic conditional bias and 

variance of )(ˆ υm  respectively as a function of bandwidth h . Expressing (26) as MISE(h), we get 
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 for some constants a  and b . This implies that 

the optimal choice of bandwidth is 
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The constant )(, KC pν  is a function of the kernel K , the degree of fit p  and the order of the derivative ν . It is 

given by  
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where )() , ... , ,1()( 1
1

* tKttSetK
TpT −

+= υυ  (see Section 3.2.2 of Fan and Gijbels, 1996). ∗
νK  is called the 

equivalent kernel. 

The optimal bandwidth opth in (27) depends on unknown quantities and must be estimated. In fact, one 

must do this before going through the steps described above in Sections 3 and 4. In order to estimate opth , we 

start with a preliminary and rough estimators )(xm
�

 for )(xm  and )(2 xσ
�

 for )(2 xσ . This is because our goal 

here is not to estimate the parameters )(xm  and )(2 xσ , but only to obtain an estimate of the optimal 

bandwidth. We obtain )(xm
�

 by fitting a polynomial of order 3+p  to )(xm
5
. This is done using a global least 

squares, that is, by choosing the 3,,0, += pkk �α  which minimize ( )23
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The residuals )( ii XmY
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−  of this fit are used to obtain the usual global sample variance estimator 

2
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σ  for 2σ . Now let )(0 xw  be some specified weight function. After the change of 

variables )()()(~
0 xfxwxw X=  and assuming a constant residual variance 2σ

�
 the optimal bandwidth (27) may 

be written  

                                                           
5 We use a 3+p  degree fit in order to obtain a quadratic fit for the 1+p st order derivative of m . 
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The denominator of (28) may be estimated by 
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 which yields the estimator  
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We choose 0w  to give equal weight to all data points in the central %95  of the empirical distribution of X . 

 

5.1. Asymptotic Normality of the Local Correlation Estimator 

The estimation procedure outlined above results in an estimator of the local correlation of the form  

 .
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The estimator 
2

11
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)( XXs i
n

inX −= � =−
 is the sample estimator of variance 2

Xσ . Recall that the estimator 

)(ˆ
0xβ  is the result of the local quadratic regression using a bandwidth 

( )( )32/1
1

1+−= p
nOh  (see (27)) with 

21 =p , that is ( )7/1
1

−= nOh . The estimator )(ˆ
0

2 xσ  is given in (23) and is the result of a local linear 

regression ( 12 =p ) with bandwidth  
( )( ) ( )5/132/1

2
2 −+− == nOnOh

p
. Notice that in this case Relation (24) holds 

and therefore so does (25). In fact, the following result holds. 

 

Theorem 5.1. Suppose that (i) 0x  is an interior point of the support of )(xfX  , (ii) )(xm  has 4 continuous 

derivatives in a neighborhood of 0x , (ii) )(2 xσ  has 3 continuous derivatives in a neighborhood of 0x , (iii)  

Xf (x) and )(4 xσ  are differentiable in a neighborhood of 0x  where the innovations ε  in (1) have finite fourth 

moment, (iv) the local regressions are performed with 21 =p  and 12 =p  and (v) 01 →h , 02 →h , ∞→1nh , 

∞→2nh  such that )( 7/1
1

−= noh  and )( 5/1
2

−= noh . Then for the estimators described in (30) above, we 

have  
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The proof is given in Section 6. 

 

Equations (31) and (18) relate the conditional asymptotic variance of the estimator )(ˆ
0xρ to that of )(ˆ

0xβ :  
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Let σ ρˆ 2
)(ˆ

0x
and σ

β
ˆ 2

)(ˆ
0x

denote estimators of the conditional variance of )(ˆ
0xρ  and )(ˆ

0xβ  respectively. 

Relation (10) gives )(ˆ
0xβ  and implies that its conditional covariance matrix is given by  
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where the dependence of 
1pX  and 
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10

2
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ni ,,1�= . Since )(2
iXσ  is unknown, instead of estimating it as in (23), it is sufficient in this context to 
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The vectors e2 pick off the second diagonal element of the covariance matrix of )(ˆ
0xβ  since this is the term 

related to the local slope )( 0xβ  of the local regression. In view of (32) this gives the following estimator of the 

conditional variance of )(ˆ
0xρ :  

 [ ]32
0

0
2

2
2

)(ˆ
2

)(ˆ
)(ˆ1

)(ˆ
ˆˆ

00
x

x

s X

xx
ρ

σ
σσ

βρ
−=  

 = ( ) ( ) [ ] , )(ˆ1
32

0
2

2

121

2 111111111 xseXWXXWXXWXe Xph
T
pph

T
pph

T
p

T ρ−
−−

 (35) 

which does not involve )(ˆ 0
2 xσ  anymore. 

 

6. PROOFS 

Proof of Proposition 3.1. The form of the thji,  element of the smoother matrix Hp,h is 
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and on the other, 
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which concludes the proof. � 

 

Proof of Proposition 4.1. Assume all vector multiplications, including powers, are taken component-wise. 

Let ( ) ( ) ( )TT

nhp
T

n XXyHmXmXmm n1
22

1
22

,1  ,  ... ,  ,1)(,  ....  ),(   ,ˆ  ,)( ,  ...  ),(
11

εεεσσσσ =====  and let 

( )22 ˆˆ myr −= . Then 

 ( ) [ ]( ) my r ��   ˆ     ˆ  
22 −= ��  

 = [ ]( ) mm �  ˆ    
2

−+ εσ�  

 = [ ]( ) mmmm �   ˆ  2  2 ˆ   222 εσεσεσ −++−�  

 = ( ) ( )  ��m H m hp ��          21   ˆ  MSE
22

,
2

11
+−+ εσσ �  

since 0)(     1,)(  2 == εε �� and ) (ˆ
1111 ,, εσ+== mHyHm hphp . hence 

( ) ( ) ( ) . ))(diag21(   ˆ Var    ˆ  Bias   ˆ  
11,

222
hpH m m r −++= σ����  

Now, note that ( ) ( )( ) ( )( ) ( )HHH yH m m T
hphp

T
hphp 11111111 ,,

2
,,   diag   , Cov  diag    ˆ  Cov diag   ˆ Var σ=== ���  

since, by assumption, ( ) nI y 2   , Cov σ=� . Letting  ( ) 2  diag
111111 ,,, hp

T
hphp HHH −=∆ , we get 

( ) ( ) )1(   ˆ  Bias  ˆ  222 ∆++= σ m r ���  

and the result follows. � 

 

Proof of Theorem 5.1. First note that the regularity conditions of Theorem 5.1 are those of Theorem 3.1  

and of Theorem 2 of Ruppert et al. (1997). We have 
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and so 
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only term II contributes to the asymptotics. Indeed, )( 7/1
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0 = . For term I we 
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The remainder term R is handled in the usual way. Note that 
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By the differentiability of g  at θ  we know that ( ).)( 00 θθθθ −=− npn oR  Now, since ))(( 00 θθ −nn xr  

converges in distribution, it is uniformly tight (Prohorov's theorem). Multiplying both sides of (39) by )( 0xrn , 

this implies that ( )θθθθ −=− nnpnn xroRxr )()()( 00 . The tightness of ))(( 0 θθ −nn xr  implies that 

( )1)( 0 pnn Oxr =−θθ  and since ( ) )1()1( ppp oOo = , the theorem follows. �  

 

 

7. ILLUSTRATION 

Figure 2 illustrates the procedure for French equity returns Y  as a function of the US equity returns X . 

The data are described in Bradley and Taqqu (2005). The procedure is applied to 101 equidistant target points 

0x  located in the central 95% of the empirical distribution of the US equity returns. The correlation curve plot 

shows a clear increase in the local correlation between the French and US equity markets as the US market does 

poorly. That is, when the US market is doing badly (negative 0x ), the corresponding local correlation is high. 

Additionally, the plots indicate an increase in both the local slope )(ˆ
0xβ  and local residual standard deviation 

)(ˆ 0xσ . In this case, the increase in the local residual standard deviation is not sufficient to overcome the 

increase in the local slope and the local correlation increases as a result. Had the model been ε+= )(XmY  

instead of (1), then the residual standard deviation )(ˆ xσ  would be assumed constant and the large increase in 

the local slope )(ˆ xβ  would have contributed (recall the definition of local correlation in (4)) to a large increase 

in the local correlation )(ˆ xρ . That increase, which would not have been mitigated by the increase in )(ˆ xσ  (now 

assumed constant), would have been dramatic and spurious. However, in accordance with our intuition, we see 

that the residual variance )(ˆ xσ  is roughly an increasing function of || x , the absolute value of the returns of the 

US equity market. That is, conditional upon large (absolute value) returns x in the US market, the variance of 

the French market increases as || x  increases. 
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Figure 2. The correlation curve, local mean, slope, and residual standard deviation for the French equity 

market as a function of the (log) returns, expressed as a percent, of the US equity market. 

95% confidence levels are attached using normality of the estimator and equation (35). 
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