
Appendix:
Ray class characters of bounded order and bounded conductor
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We introduce a partial order on the set of formal Dirichlet series with non-

negative real coefficients. Given two such series A(s) =
∑
q>1 a(q)q−s and B(s) =∑

q>1 b(q)q
−s, write A(s) 4 B(s) to mean that a(q) 6 b(q) for all q > 1. It is readily

verified that if A(s) 4 B(s) and C(s) 4 D(s) then A(s)C(s) 4 B(s)D(s). Further-
more the implication holds at the level of Euler products: if A(s) =

∏
pAp(s) and

B(s) =
∏
pBp(s) with Ap(s) 4 Bp(s) for all p then A(s) 4 B(s).

By way of illustration, let M be a number field, OM its ring of integers, and
ζM (s) the associated Dedekind zeta function. Then it is a standard remark that

ζM (s) 4 ζ(s)m,(1)

where m = [M : Q]. Indeed let p be a rational prime and p a prime ideal of OM
above p, say of residue class degree f . The Euler factor of ζM (s) at p satisfies

(1− (Np)−s)−1 =
∑
ν>0

p−νfs 4
∑
ν>0

p−νs = (1− p−s)−1.

Hence if there are exactly r prime ideals p above p then∏
p|p

(1− (Np)−s)−1 4 (1− p−s)−r 4 (1− p−s)−m.

Passing to Euler products we obtain (1).
It follows from the definitions that if A(s) 4 B(s) then the associated summatory

functions ϑA(x) =
∑
n6x a(n) and ϑB(x) =

∑
n6x b(n) satisfy ϑA(x) 6 ϑB(x) for

all x. For example, let A(s) and B(s) be the two sides of (1): Using Theorem 7.7
on p. 154 of [1] to estimate the summatory function of ζ(s)m, we obtain∑

Nq6x

1� x(log x)m−1 (x > 2),(2)

where q denotes a nonzero ideal of OM and the implicit constant depends only on
m, not on M .

To illustrate the use of (2), let us deduce a standard bound for the class number
hM of M . Let r1 and r2 be the number of real embeddings and half the number
of complex embeddings of M , so that r1 + 2r2 = m. Thus the Minkowski constant
(4/π)r2m!/mm is bounded above by

µ = (4/π)m/2
m!
mm

,

and therefore Minkowski’s theorem gives

hM 6
∑

Nq6µ
√
dM

1,(3)

where dM is the absolute value of the discriminant of M (cf. [2], pp. 119-120).
Combining (3) with (2), we recover the well-known bound

hM �
√
dM (log dM )m−1 (µ

√
dM > 2),(4)

where the implicit constant depends only on m. We shall regard m as a fixed
integer > 2, and thus the condition µ

√
dM > 2 is satisfied for all but finitely many
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dM with [M : Q] = m. Furthermore, since m > 2, we have dM > 2. Therefore
we can remove the condition µ

√
dM > 2 from (4) and still assert that the implicit

constant in (4) depends only on m. Actually it is more useful to state (4) for hnar
M ,

the narrow ray class number of M . Since hnar
M 6 2r1hM , we have

hnar
M �

√
dM (log dM )m−1,(5)

where the implicit constant depends only on m.
It is convenient to refine the relation 4 slightly. Suppose that A(s) and B(s)

are Dirichlet series over M in the sense that they are presented to us in the form
A(s) =

∑
q a(q)(Nq)−s and B(s) =

∑
q b(q)(Nq)−s, where q denotes as before a

nonzero ideal of OM . We write A(s) 4M B(s) to mean that a(q) 6 b(q) for all q.
Thus 4 coincides with 4Q. Of course every Dirichlet series is a Dirichlet series over
Q, and one readily verifies that if A(s) 4M B(s) then A(s) 4 B(s).

Given a rational integer c > 2, let

RM,c(s) =
∑

q

h∗M,c(q)(Nq)−s

where h∗M,c(q) is the number of idele class characters χ of M of conductor q such
that χc = 1. Also put

EM,c(s) =
∏
p|c

∏
p|p

( e(p)(vp(c)+1)∑
ν=0

(Np)ν(1−s)),
where e(p) is the ramification index of p over p and vp(c) the p-adic valuation of c.

Proposition 1. RM,c(s) 4M hnar
M · (ζM (s)/ζM (2s))c−1 · EM,c(s).

Define

Em,c =
∏
p|c

m∏
e=1

m∏
f=1

( e(vp(c)+1)∑
ν=0

pfν(1−s))m,
The following variant of Proposition 1 is weaker but actually more useful:

Proposition 2. RM,c(s) 4 hnar
M · ζ(s)m(c−1) · Em,c(s).

Proof. By inspection, EM,c(s) 4 Em,c(s). Also

ζM (s)/ζM (2s) =
∏
p

(1 + (Np)−s) 4
∏
p

(
∑
ν>0

p−νs)m = ζ(s)m,

where p runs over all nonzero prime ideals of OM . �

Let ϑM,c(x) and ϑm,c(x) denote the summatory function associated to RM,c(s)
and ζ(s)m(c−1) · Em,c(s) respectively. Then Proposition 2 gives

ϑM,c(x) 6 hnar
M ϑm,c(x),

which in conjunction with (5) becomes

ϑM,c(x)�
√
dM (log dM )m−1ϑm,c(x).(6)

Here the implicit constant depends only on m. Since Em,c(s) is entire while ζ(s)
has a simple pole at s = 1, we obtain (cf. [1], loc. cit.):

Corollary. ϑM,c(x) �
√
dM (log dM )m−1x(log x)m(c−1)−1, the implicit constant

depending only on c and m = [M : Q].
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We turn to the proof of Proposition 1. Put

ϕM (q) = |(OM/q)×|,
and let A×M be the group of ideles of M . As usual, we think of A×M as the restricted
direct product

∏′
vM
×
v , where v runs over the places of M and Mv is the completion

of M at v, and we identify M× with its image in A×M under the diagonal embedding.
We also put

ÔM =
∏
v-∞

Ov,(7)

where v runs over the finite places of M and Ov is the ring of integers of Mv. By
appending the coordinate 1 at the infinite places, we may view Ô×M as a subgroup
of A×M . Similarly, the product M×∞ =

∏
v|∞M×v and its identity component (M×∞)0

are subgroups of A×M with coordinate 1 at the finite places. With these conventions,

hnar
M = |A×M/(M

× · Ô×M · (M
×
∞)0)|

(cf. [2], pp. 146-147). As idele class characters are trivial on the principal ideles
and idele class characters of finite order are trivial on the identity component at
infinity, we deduce that there are at most hnar

M extensions of a given character of Ô×M
to a finite-order idele class character of M . Let us write ϕ∗M,c(q) for the number
of characters χ of Ô×M of order dividing c and conductor q, the conductor of a
character of Ô×M being defined in the same way as for idele class characters. Then
the preceding discussion gives

h∗M,c(q) 6 hnar
M ϕ∗M,c(q).

Now ϕ∗M,c is multiplicative because Ô×M =
∏
v-∞O×v by (7). Thus∑

q

h∗M,c(q)(Nq)−s 4M hnar
M

∏
p

(
∑
ν>0

ϕ∗M,c(p
ν)(Np)−νs),(8)

where p runs over the nonzero prime ideals of OM .
We now focus on the Euler factor in (8) corresponding to a particular prime ideal

p. Let v be the corresponding place of M and p the residue characteristic of p. We
consider cases according as p|c or p - c. In both cases we use the fact that if ν > 2
then ϕ∗K,c(p

ν) is the number of characters of O×v of order dividing c which factor
through O×v /(1 + pνOv) but not through O×v /(1 + pν−1Ov).

Suppose first that p - c. Then any character of O×v of order dividing c is trivial
on the pro-p-group 1 + pOv. Hence if ν > 2 then ϕ∗M,c(p

ν) = 0. Furthermore

ϕ∗M,c(p) = gcd(c,Np− 1)− 1

because O×v /(1 + pOv) is cyclic and the trivial character of O×v does not have
conductor p. In particular we have ϕ∗M,c(p) 6 c− 1, whence∑

ν>0

ϕ∗M,c(p
ν)(Np)−νs 4M 1 + (c− 1)(Np)−s.

Therefore ∑
ν>0

ϕ∗M,c(p
ν)(Np)−νs 4M (1 + (Np)−s)c−1(9)

by the binomial theorem.
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Next suppose that p|c. If k > e(p)/(p− 1) + 1 then every element of 1 + cpkOv
is a cth power (cf. [2], p. 186). In particular, every element of 1 + cpe(p)+1Ov is a
cth power. It follows that ϕ∗M,c(p

νOv) = 0 for ν > e(p)(vp(c) + 1) + 1. Now for
1 6 ν 6 e(p)(vp(c) + 1) we apply the trivial estimate

ϕ∗M,c(p
ν) 6 |O×v /(1 + pνOv)|.

Since |O×v /(1 + pνOv)| = (Np)ν−1(Np− 1) 6 (Np)ν , we obtain∑
ν>0

ϕ∗M,c(p
ν)(Np)−νs 4M

e(p)(vp(c)+1)∑
ν=0

(Np)ν(1−s).(10)

This completes our discussion of the individual Euler factors in (8).
Now combine (8), (9), and (10). We obtain∑

q

h∗M,c(q)(Nq)−s 4M hnar
M ·

∏
p-c

∏
p|p

(1 + (Np)−s)c−1 · EM,c(s)(11)

We may weaken the estimate in (11) by extending the product over p - c to a
product over all p, and then we use the identity

ζM (s)/ζM (2s) =
∏
p

(1 + (Np)−s).

Making this substitution in (11), we obtain Proposition 1.
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