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1. Introduction

The purpose of this survey is to emphasize algebraic aspects of Chern–Weil and
Chern–Simons theory in infinite dimensions. The main open questions concern the
classification or even existence of nontrivial Ad-invariant functions on the Lie algebra
of some infinite-dimensional Lie groups that naturally appear in differential geometry
and mathematical physics. These groups include gauge groups of vector bundles,
diffeomorphism groups of manifolds, groups of bounded invertible pseudodifferential
operators, and semidirect products of these groups. They typically appear as the
structure groups of manifolds of maps between manifolds (e.g., in string theory) and
in the setup of the Atiyah–Singer families index theorem. In effect, this article is a
plea by a geometer for help from the experts in Lie groups.

As reviewed in Section 2, Chern–Weil theory is a well-established procedure to
pass from an Ad-invariant polynomial p on the Lie algebra of a finite-dimensional
Lie group G defined over a field k to an element cp ∈ H∗(BG, k), the cohomology of
the classifying space BG. For the classical compact connected groups over C, this
correspondence is an isomorphism. For a G-bundle P −→ B classified by a map
f : B −→ BG, the class cp(P ) = f ∗cp ∈ H∗(B,C) is by definition the characteristic
class of P associated to p. For G = U(n), SO(n), these are the Chern classes and
Pontrjagin classes, respectively. They are used extensively in differential geometry,
algebraic geometry and differential topology.
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Characteristic classes are obstructions to bundle triviality, i.e., they vanish on triv-
ial bundles. When a Chern class of a bundle vanishes, the precise obstruction in-
formation for that class is unavailable, but there is a chance to obtain more refined
geometric information. To begin, one can directly construct a de Rham representative
Cp(P ) of cp(P ) from a connection on P ; this is often also called Chern–Weil theory.
The advantage of the geometric approach is that one can in theory, and sometimes
in practice, explicitly compute this de Rham representative from knowledge of the
curvature of the connection.

If Cp(P ) vanishes pointwise, a very strong condition, then there is a secondary
or Chern–Simons class TCp(P ) ∈ H∗(B,C/Z). As opposed to the topologically
defined Chern classes, the Chern–Simons classes depend on the choice of connection,
and so are inherently geometric objects. When defined, the Chern–Simons classes
are obstructions to a trivial bundle admitting a trivialization by flat sections of a
connection. Thus the secondary classes are more subtle and correspondingly harder
to work with than with the primary/Chern classes. They notably appear as the
generators of the integer cohomology of the classical groups.

Infinite-dimensional manifolds such as loop spaces LM of manifolds and mapping
spaces Maps(N,M) between manifolds occur frequently in mathematical physics.
Here the structure group of the tangent or frame bundle is an infinite-dimensional
Lie group, the gauge group of a finite rank bundle. More generally, a finite rank
bundle E −→M over the total space of a fibration M −→ B of manifolds, the setup
of the Atiyah–Singer families index theorem, naturally leads to an infinite rank bundle
E −→ B with a more complicated structure group. In light of physicists’ intriguing
formal manipulations with path integrals, in particular their quick non-rigorous proofs
of the Atiyah–Singer index theorem using loop spaces [2], it is natural to look for a
good theory of characteristic classes of infinite rank vector bundles.

There are several immediate pitfalls. The fiber of such a bundle, an infinite-
dimensional vector space, comes with many inequivalent norm topologies, in contrast
to finite-dimensional vector spaces. As a result, the topology of the fiber has to be
specified carefully. If the topology is compatible with a Hilbert space structure on
the model fiber H, it is tempting to take as structure group GL(H), the group of
bounded invertible operators with bounded inverse. However, unlike in finite dimen-
sions, GL(H) is contractible, so every GL(H) bundle is trivial. This kills the theory
of Chern classes in this generality.

Of course, GL(H) contains many interesting subgroups with nontrivial topology.
In particular, if a subgroup G consists of determinant class operators, then one can
try to form the characteristic classes associated to the invariant polynomial Tr(Ak) for
A in the Lie algebra of trace class operators; after all, for finite rank complex bundles,
these polynomials form a generating set for the algebra of U(n)-invariant polynomials.
However, in infinite dimensions, these classes are generally noncomputable, in the
sense that operator traces are rarely given by e.g., integrals of pointwise calculable
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expressions. In particular, it will usually be impossible to tell if these Chern classes
vanish or not. Notice that we are not even considering the more difficult topological
approach of working with BG.

In summary, in infinite dimensions we do not expect a version of Chern–Weil theory
that applies to all bundles. Instead, we should look for naturally occurring structure
groups with nontrivial topology, and we should look for computable Ad-invariant
functions.

As with the example Tr(Ak), traces on the Lie algebra of a group give rise to
invariant functions. For gauge groups, a wide class of traces is known and these
“tend to be” computable. However, the determination of all invariant functions is
open. This gives us a theory of characteristic classes on mapping spaces, the subject
of Section 3, and allows us to determine some nontrivial cohomology of mapping
spaces.

This theory is not as geometric as desired, in the sense that natural connec-
tions on mapping spaces are not compatible with a gauge group, but instead are
Ψ∗0-connections for a larger group Ψ∗0 of pseudodifferential operators. This larger
group has fewer traces, which in fact have been classified. (An excellent reference for
pseudodifferential operators and traces is [38].) Again, it is not known if there are
Ad-invariant functions not arising from traces.

It turns out that the Pontrjagin classes vanish for Maps(N,M), so we are forced
to consider secondary classes. In Section 4 we discuss Chern–Simons classes for
loop spaces. We use these classes to show that π1(Diff(S2 × S3)) is infinite, where
Diff(S2 × S3) is the diffeomrophism group of this 5-manifold. This result is new but
not unexpected, and is given more as an illustration of potential applications of these
techniques.

In Section 5 we discuss characteristic classes associated to Diff(Z), the group of
diffeomorphisms of a closed manifold Z. As pointed out by Singer, there is no known
theory of characteristic classes for Diff(Z)-bundles. Specifically, there are no known
nontrivial Ad-invariant functions on Lie(Diff(Z)). Instead, we outline a method to de-
tect elements of H∗(Diff(G),C) for classical Lie groups G. This is cheating somewhat,
as in finite-dimensional bundle theory we want the cohomology of classifying spaces
like BU(n), not of U(n) itself. Of course, H∗(BU(n),C) is related to H∗(U(n),C)
by transgression arguments dating back to Borel. It is completely unclear if these
arguments can be formulated in infinite dimensions, so the results of this section are
baby steps towards understanding characteristic classes for diffeomorphism groups.

In Section 6, we discuss the setup of the families index theorem of Atiyah–Singer.
As recognized by Atiyah and Singer and used by Bismut, this theorem can be re-
stated in terms of an infinite rank superbundle E . We discuss constructing a theory
of characteristic classes on these bundles. Here the structure group G contains both
a gauge group and the group Diff(Z). Having a very large group makes it easier to
find Ad-invariant functions in principle, but again we know of no nontrivial invariant
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functions. Nevertheless, we can define characteristic classes of E for certain connec-
tions due to Bismut. We discuss an attempt to construct a proof of the families
index theorem using characteristic classes on E . While there are serious gaps in the
argument, it is very intriguing that a semidirect product Gn Ψ∗0 naturally appears as
a structure group. Thus the work in this last section is in some sense is a culmination
of the techniques in the previous sections.

The determination of the algebra of invariants for Lie groups is a classical topic
with a very 19th century feel. In highlighting the obvious, namely the central role
of these Lie-theoretic questions in Chern–Weil theory, I’m reminded of Moliere’s M.
Jourdain, who discovers that he has been speaking prose all his life without knowing
it. In any case, I hope this article spurs interest in extending this classical theory to
infinite-dimensional settings of current interest in geometry and physics.

It is a pleasure to thank Andrés Larrain-Hubach, Yoshiaki Maeda, Sylvie Paycha,
Simon Scott and Fabián Torres-Ardila for many helpful conversations on this subject.

2. General comments on Chern–Weil theory

Let G be a finite-dimensional Lie group, and let PG be algebra of AdG-invariant
polynomials from g = Lie(G) to C. In its more abstract form, Chern–Weil theory
gives a map

cw : PG −→ H∗(BG,C).

Since G-bundles E −→ B are classified by elements f ∈ [B,BG], the set of homotopy
classes of maps from B to BG, a polynomial p ∈ PG gives rise to a characteristic
class cp(E) = f ∗cw(p) ∈ H∗(B,C).

For compact connected groups, the suitably normalized map cw is a ring isomor-
phism to H∗(BG,Z) [9] (see Ch. 3, Section 4 for references to Borel’s original work),
[10], with the corresponding characteristic classes called Chern classes for G = U(n)
and Pontrjagin classes for G = SO(n). Since the adjoint action is given by conjuga-
tion for classical groups, for any k ∈ Z+ the polynomials A 7→ Tr(Ak) are in PG. For
U(n), the corresponding characteristic classes are the kth components of the Chern
character (up to normalization). It is a classical result of invariant theory that these
polynomials generate PU(n). We note that the kth Chern class is given by the trace
of the transformation induced by A on Λk(Cn); since this transformation is usually
also denoted by Ak, it is easy to confuse the two uses of Tr(Ak).

Remark 2.1. If a group G is linear, i.e., there is an embedding i : G −→ GL(N,C) for
some N (or equivalently, G admits a finite-dimensional faithful representation), then
an AdG-invariant function on g corresponds to a i(G)-conjugation invariant functional
on di(g). The functionalsA 7→ Tr(Ak) certainly work, but there may be other invariant
functions if i(G) has “small enough” image in GL(N,C). For example, the Pfaffian
Pf(A) is an invariant polynomial for A ∈ SO(n) which is not in the algebra generated
by the Tr(Ak); while det(A) is in this algebra, the Pfaffian satisfies (Pf(A))2 = det(A).
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This abstract approach to characteristic classes is not very useful in practice, both
because BG tends to be far from a manifold, and because classifying maps are hard
to find. However, the classifying space approach certainly is powerful. For example,
if a bundle is trivial, then it is classified by a constant map, and so it immediately
follows that its characteristic classes vanish. (For U(n), the converse almost holds: if
a hermitian vector bundle E has vanishing Chern classes, then some multiple kE is
trivial. The proof is nontrivial.)

There are alternative approaches to constructing e.g., Chern classes, one topological
and one geometric. The topological approach constructs the highest Chern class cn(E)
of a rank-n complex vector bundle and then iteratively constructs the lower Chern
classes by passing to a flag bundle [19, 28]. Since our bundles will have infinite rank,
it’s hard to get started on this approach.

At this point, we once and for all pass from principal G-bundles to vector bundles
with G as structure group, although the former case is somewhat more general. Thus
we are assuming that G is linear, and a G-bundle denotes a vector bundle with
structure group G.

Since the topological approach seems unpromising, we follow the geometric method.
If B is a paracompact manifold, then it admits a partition of unity, so G-bundles over
B admit G-connections. (Finite-dimensional manifolds and even Banach manifolds
are paracompact). cp(E) is then the de Rham cohomology class [p(Ω)] of p(Ω), where
Ω is the g-valued curvature two-form of the connection, and p(Ω) involves wedging
of forms and the Lie bracket in g in a natural way. The Ad-invariance of p is used
crucially to show that p(Ω) is closed and that its cohomology class is independent of
the connection. This material is standard, and can be found in e.g., [4, 6, 37]. In
summary,

Theorem 2.2 (Chern–Weil Theorem). Let p be an AdG-invariant C-valued power
series on g. Let E −→ B be a bundle over a manifold B with structure group G, and
let ∇ be a G-connection with curvature Ω. Then

(i) p(Ω) is a closed even degree form on B.
(ii) The de Rham cohomology class [p(Ω)] ∈ H∗(B,C) is independent of the choice

of ∇.

Often, the power series of interest are in fact polynomials of some degree k <
dim(B)/2, in which case [p(Ω)] ∈ H2k(B,C). In particular, for U(n), the classes on a
complex bundle E associated to (2πi)−1 Tr(Ak) are denoted by ck(E) and are called
the kth Chern classes; the normalization ensures that they are in fact integral classes.
The Pontrjagin classes of a real finite rank bundle F are by definition the Chern
classes of the complexification F ⊗C, corresponding to the embedding of SO(n) into
U(n). On U(n), the most important example of a power series is the exponential
function eA; the corresponding Chern class is called the Chern character. In index
theory, other power series like the Â-genus naturally occur, although all these are
truncated to polynomials at the dimension of the manifold. On infinite rank bundles
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over infinite-dimensional manifolds, there is no reason to truncate, so the use of power
series is more natural.

The advantage to the geometric approach is that the de Rham representative p(Ω)
is pointwise computable on B. For example, a trivial complex bundle has vanishing
Chern classes. From the geometric construction, we can conclude more: a bundle
with a nonvanishing Chern class does not admit a flat connection. This is a stronger
statement precisely because there are nontrivial bundles E with flat connections;
these have a discrete structure group.

For noncompact finite-dimensional Lie groups, the situation is not so clean. For
G = GL(n,R)+, the connected group of orientation-preserving elements of GL(n,R),
cw is not surjective. For G is homotopy equivalent to SO(n), so the universal Euler
class, the element e ∈ Hn(BSO(n),Z) corresponding to the Pfaffian in PSO(n), is also
an element of Hn(BGL(n,R)+,Z). However, since the Pfaffian is not GL(n,R)+-
invariant, e is not in the image of cw on PGL(n,R)+ .

It is clear that parts of geometric Chern–Weil theory carry over to infinite-dimensional
Lie groups, especially since tricky questions about the topology of these Lie groups
can often be avoided. For example, let G be the group of invertible transformations
of a fixed Hilbert space of the form I + A, where A is trace class. Since all such
operators are bounded, it is not hard to show that G is indeed a Lie group, with
Lie algebra given by the set of trace class operators. Certainly the first Chern class
c1(E) = [Tr(Ω)] ∈ H2(B,C) exists for any connection on a G-bundle E −→ B. Here
Tr refers to the operator trace. However, this Chern class is not computable except in
special cases. In particular, we do not expect to be able to tell if this class is nonzero
or not. By restricting A to lie in higher Shatten classes, we can construct higher but
similarly noncomputable Chern classes, as discussed in [34].

Making sense of Lie groups of unbounded operators on a Hilbert space is difficult,
particularly since the exponential map may have a sparse image. For finite rank
bundles, one can take a default position by considering bundles for classical groups
as GL(n,C)-bundles. Since GL(n,C) deformation retracts onto U(n), the topological
theory of characteristic classes is the same for the two groups. In fact, the geometric
theory is the same, as the Ad-invariant polynomials are the same for the two groups.
Of course, for other linear groups the situation can be more complicated.

By analogy, in infinite dimensions we might begin with GL(H), the group of
bounded invertible operators with bounded inverses on a real or complex Hilbert
space H. As an open subset of the set of bounded endomorphisms of H, GL(H) is a
Lie group [31]. However, this group has trivial Chern–Weil theory. For by Kuiper’s
Theorem, the unitary group U(H) and hence GL(H) is contractible in the norm
topology. Thus BGL(H) has the homotopy type of a point, so all GL(H) bundles
are trivial. (U(H) should not be confused with the group U(∞) = lim−→ U(n), which
has nontrivial topology by Bott periodicity.)
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This problem of having a large contractible structure group is a key feature of
infinite dimensions. As an example of its annoying presence, we can use GL(H) to
“ruin” Chern–Weil theory for finite rank bundles. For example, if we embed GL(n,C)
into GL(N,C) as an upper left block for N > n, then we can extend a rank-n complex
bundle E to a rank-N bundle with essentially the same transition functions. Since
this amounts to adding a trivial (N − n)-rank bundle to E, the Chern classes are
unchanged. However, if we embed GL(n,C) into GL(H), then the extended bundle
and any characteristic classes become trivial. (We can cook up a similar example in
finite dimensions: Let E −→ S1 be the Q-bundle which is trivial over (0, 2π) and
with (0, q) glued to (2π, 2q). Then E is nontrivial as a Q-bundle, but becomes trivial
when extended to an R-bundle.)

From these examples, we see that we should consider infinite rank bundles whose
structure group is a subgroup of GL(H) with nontrivial topology. Fortunately, there
are several well-known infinite-dimensional manifolds with a good Chern–Weil theory
of characteristic classes.

3. Mapping Spaces and their characteristic classes

3.1. The topological setup. Let Nn,Mm be smooth, oriented, compact manifolds.
Fix s0 � 0, and let Maps(N,M) be the functions f : N −→ M of Sobolev class
s0 (denoted f ∈ Hs0). Here we fix covers {(Uα, φα)}, {(Vβ, ψβ)} of N,M , respec-
tively, and we are imposing that ψβfφ

−1
α : Rn −→ Rm is of Sobolev class s0 for all

α, β. Maps(N,M) is a smooth Banach manifold [11], and the smooth structure is
independent of the choice of covers.

We could work with the space of smooth maps from N to M as a Fréchet manifold,
but this is technically more difficult. In particular, the implicit function theorem,
which is used repeatedly in the foundations of manifold theory, is not guaranteed
to hold for Fréchet manifolds. This is a little lazy, as the implicit function theorem
holds for tame Fréchet manifolds [17] such as Maps(N,M), but we choose to work
with Sobolev spaces just to keep the notation down.

The easiest examples of mapping spaces are free loop spaces LM (N = S1) and in
particular free loop groups LG. The most natural bundles are the tangent bundles
TLM, TLG. Just as in finite dimensions, TLG is canonically trivial, so we do not
expect characteristic classes for loop groups.

To develop a theory of characteristic classes of TLM , we should determine its
structure group and look for Ad-invariant functions. A tangent vector in TLM at
a loop γ should be the infinitesimal information in a family of loops s 7→ γs(θ), for
θ ∈ S1 and s ∈ (−ε, ε). The infinitesimal information is {γ̇(θ) = (d/ds)|s=0γs(θ) :
θ ∈ S1}. This is a vector field along γ, i.e., a section of γ∗TM −→ S1; the pullback
bundle has the effect of distinguishing tangent vectors γ̇(θ0), γ̇(θ1) where γ(θ0) =
γ(θ1). Conversely, given a Riemannian metric on M , the exponential maps expγ(θ) :
Tγ(θ)M −→ M combine to take a vector field along γ to a loop. Taking care of the
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analytic details, we get TγLM = Γ(γ∗TM), where we take Hs0 sections of γ∗TM.
Since M is oriented, γ∗TM is a trivial rank-m real bundle over S1 denoted Rm = Rm

γ .
The trivialization is not canonical, so TLM need not be trivial, and we have a hope
of constructing characteristic classes.

We now show that the structure group of TLM is a group of gauge transformations.
This structure group is determined by the differentials of the transition functions of
LM . Fix a Riemannian metric on M . Call s ∈ TγLM short if expγ(θ) s(θ) is inside the
cut locus of γ(θ) for all θ. Let Uγ be the neighborhood of γ in LM consisting of the
all exponentials along γ of short loops. These neighborhoods give an open cover of
LM . On Uγ0∩Uγ1 , the transition functions are given by fiberwise invertible nonlinear
maps ΓRm −→ ΓRm. Since ΓRm is a vector space, the differentials of the transition
maps at a v ∈ Rn can be naturally identified with invertible linear maps on Rm which
act fiberwise. Thus the structure group is the group of Hs0 bundle automorphisms of
Rm, i.e., the gauge group G(Rn). (Strictly speaking, we should take the gauge group
of G(TRn), but this has the same homotopy type as G(Rn).)

The general case of Maps(N,M) is similar. The path components of Maps(N,M)
are in bijection with [N,M ]. Pick a path component X0 and f : N −→ M in X0.
Then for all g ∈ X0, TgMaps(N,M) ' Γ(f ∗TM −→ N) noncanonically. f ∗TM need
not be trivial, but as above the structure group on X0 is G(f ∗TM). For convenience,
we always complexify real bundles, so the structure group is G(f ∗TM ⊗ C). From
now on, we often omit the ⊗ C term.

In summary, TMaps(N,M) is a gauge bundle, or G-bundle for short.
Now that the structure group of TMaps(N,M) has been determined, we look for

AdG-invariant functions on g. Here g = Lie(G) = End(f ∗TM) is the vector space
of Hs0−1 bundle endomorphisms of f ∗TM. Since the Lie group and Lie algebra act
fiberwise on f ∗TM , the adjoint action of G on g is fiberwise conjugation: Ad(A)(b) =
AbA−1. For fixed Riemannian metrics on N and M , f ∗TM inherits an inner product,
and we can set

ck : G(f ∗TM) −→ C, ck(A) =

∫
N

tr(Ak) dvolN .

Note that the trace depends on the metric on M . This is clearly Ad-invariant, so we
can define

ck(X0) = [ck(Ω)] ∈ H2k(X0,C) (3.1)

for Ω the curvature of any gauge connection on TMaps(N,M). We will usually
just write ck(Maps(N,M)) ∈ H2k(Maps(N,M),C). Some examples of these “gauge
classes” will be computed in Section 3.3.

The reader familiar with characteristic classes may be appalled that we are omit-
ting the usual normalizing constants which in finite dimensions guarantee that Chern
classes have integral periods. In infinite dimensions, there is no known topological
method of producing integral characteristic classes, so there is no natural normaliza-
tion.
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There are certainly many other Ad-invariant functions. For any smooth function
h : N −→ C, ck,h(A) =

∫
N
h · tr(Ak) dvolN is Ad-invariant. Letting h approach a

delta function, we see that for every distribution h ∈ D(N), h(tr(Ak)) is Ad-invariant.
Although it is overkill, this fits in with the finite-dimensional situation, where the
structure group GL(n,C) is the gauge group of the bundle Cn −→ ∗, where ∗ is a
point, and h ∈ D(∗) must be multiplication by a constant.

Open question: Determine all AdG-invariant analytic functions on g.

Since G is dense in g, solving this question includes finding all the traces on g,
i.e., linear functions t : g −→ C with t(ab) = t(ba) for all a, b ∈ g. This is in turn
equivalent to computing the Hochschild cohomology group HH0(g,C), which should
be feasible. This is interesting even in the loop group case, where we are asking for
HH0(Lg,C), where g is now the Lie algebra of the compact group G.

For an overview of a large class of Ad-invariant functions on Lg with applications
to integrable systems, see [35].

3.2. The geometric setup. Since we are taking a geometric approach to charac-
teristic classes, we should see if the natural geometry on Maps(N,M) is compatible
with the structure group G. In fact, it is not, as we now explain.

For simplicity, we will just consider loop spaces LMm. The parameter θ always
denotes the loop parameter, so LM = {γ(θ) : θ ∈ S1, γ(θ) ∈ M} for γ of Sobolev
class s0.

Fix a Riemannian metric on M and fix s ∈ [0, s0]. Define an Hs inner product on
TγLM by

〈X, Y 〉γ,s =

∫
S1

〈Xγ(θ), (I + ∆)sYγ(θ)〉γ(θ) dθ.

Here ∆ = D∗D, withD = D
dγ

= γ∗∇M the covariant derivative along γ, or equivalently

the γ-pullback of the Levi-Civita connection ∇M on M . The role of the positive
elliptic operator (I + ∆)s is to count roughly s − (m/2) derivatives of the vector
fields, by the so-called basic elliptic estimate. Thus the larger the s and s0, the closer
we are to modeling the smooth loop space. In particular, the L2 metric (i.e., s = 0),
while independent of a choice of s and hence natural, is too weak for many situations.
(For example, the absolute version of the Chern–Simons classes discussed in Section
4 are multiples of s, and hence vanish at s = 0.)

This Hs metric gives rise to a Levi-Civita connection ∇s on LM by the Koszul
formula

2〈∇s
YX,Z〉s = X〈Y, Z〉s + Y 〈X,Z〉s − Z〈X, Y 〉s (3.2)

+〈[X, Y ], Z〉s + 〈[Z,X], Y 〉s − 〈[Y, Z], X〉s,

but only if the right-hand side is a continuous linear functional of Z ∈ TγLM . Note
that this continuity is not an issue in finite dimensions.
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We will consider loop groups as an example. First, recall that for a finite-dimensional
Lie group G with a left-invariant metric, there is a global frame for TG consisting
of left-invariant vector fields Xi. For such vector fields, the Kozul formula simplifies,
since the first three terms on the right-hand side of (3.2) vanish. In particular, one
can determine ∇Xj

Xi in terms of the structure constants of G. Since any vector field
on G can be written as X = f iXi for fi ∈ C∞(G), the Leibniz rule then determines
∇YX completely for any X, Y.

For loop groups LG, we can take an infinite basis {Xi} of TeLG = Lg, by e.g.,
taking Fourier modes with respect to a chosen basis of g. We can extend these to
left-invariant vector fields. A calculation first due to Freed [13] gives

2∇s
XY = [X, Y ] + (I + ∆)−s[(I + ∆)sX, Y ] + (I + ∆)−s[X, (I + ∆)sY ], (3.3)

for X, Y left-invariant. The reader is encouraged to rework this calculation, which
just uses that (I + ∆)s is selfadjoint for the L2 inner product. There are technical
issues here, such as checking that the right-hand side of (3.3) stays in Hs0 , and that
applying the Leibniz rule to infinite sums f iXi also stays in Hs0 . Since the Xi are so
explicit, these issues can be resolved.

In (3.3), (I + ∆)s is a differential operator if s ∈ Z+ and is a classical pseudodiffer-
ential (ΨDO) operator otherwise. In any case, (I+ ∆)−s is always pseudodifferential.
The critical Sobolev dimension for LG is 1/2, since loops need to be in H(1/2)+ε to
be continuous, so we will always assume s > 1/2. As an operator on Y for fixed X,
∇s
XY has order zero: the first order differentiations in the first and third terms on

the right-hand side of (3.3) cancel (as seen by a symbol calculation), and the second
term has order −2s+ 1.

These technical calculations are really quite crucial. On general principles, the
connection one-form and the curvature two-form take values in the Lie algebra of the
structure group. So calculating these forms tells us for which structure group G our
connection is a G-connection. For the curvature two-form

Ωs(X, Y ) = ∇s
X∇s

Y −∇s
Y∇s

X −∇s
[X,Y ],

we can always say that Ωs ∈ Λ2(LG,End(TγLG)) by default, but the vector space
End(TγLG) is too big to be useful. After all, End(TγLG) could only be the Lie
algebra of Aut(TγLG), all technical issues aside. Without further restrictions, this
group contains both bounded and unbounded operators, so its topology is unclear.

Thus without some detailed computations, the setup would be too formal. However,
since ∇s is built from zero order ΨDOs, Ωs also takes values in zero order ΨDOs.
That is good news, since order zero ΨDO are bounded operators on TγLG with any
Hs norm. Moreover, the vector space Ψ≤0 of classical ΨDOs of integer order at most
zero is the Lie algebra of Ψ∗0, the Lie group of invertible classical zeroth order ΨDOs
[32]. (Inverses of elements in Ψ∗0 are automatically bounded.) Note that Ψ∗0 ⊃ G(Rn),
since gauge transformations are (zero-th order) multiplication operators.
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Thus by just working out the connection and curvature, we see that it is natural to
extend the structure group from the gauge group G, which was good enough for the
topology of LG, to Ψ∗0, which is needed to incorporate the Levi-Civita connection.

Before leaving the loop group case, we note that Freed proved that Ωs actually takes
values in ΨDOs of order at most −1. By some careful calculations, sharp results have
been obtained:

Proposition 3.1. [20], [27] If G is abelian, the curvature two-form Ωs for LG takes
values in ΨDOs of order −∞ for all s ≥ 1. If G is nonabelian, the curvature two-form
takes values in ΨDOs of order −∞ for s = 1 and order −2 for s > 1. These results
are also valid for the based loop groups ΩG.

The case s = 1 is known to be special: for complex groups G, ΩG is a Kähler
manifold for the s = 1 metric [34]. The proposition again singles out this case,
and applies to all finite-dimensional Lie groups. One proof that the curvature has
order −∞ involves showing that the map α : Lg 7→ Lg[[ξ−1]] (which appears in
integrable systems as the space of formal nonpositive integer order ΨDOs on the

trivial bundle E = S1 × g −→ S1) given by α(X) =
∑∞

`=0
(−1)`

i`
(∂θX)ξ−` is a Lie

algebra homomorphism. It would be interesting to know how this representation of
Lg on the Hs sections of E fits into the general theory of loop group representations.

We now consider (3.2) for general loop spaces LM . Now all six terms on the right-
hand side contribute unless M is parallelizable. For s ∈ Z+, after some simplifications,
we end up with terms that take θ derivatives of Z (e.g., (I + ∆)sZ). This apparently
obstructs the right-hand side from being a linear functional in Z in the Hs norm, but
we can integrate by parts 2s times over S1 to remove this problem. As a result, the
Levi-Civita connection exists in this case. In contrast, for s 6∈ Z+, trying to integrate
by parts involves the infinite symbol asymptotics σ(I + ∆)s ∼

∑∞
k=0 σ−k(I + ∆)s

of the ΨDO (I + ∆)s, and so does not terminate. To make a long story short, the
Levi-Civita connection does not exist.

Theorem 3.2. [27] Let M be a Riemannian manifold. Then the Levi-Civita connec-
tion for the Hs metric on LM exists for s ∈ Z+∪{0}. If M is not parallelizable, then
the Levi-Civita connection does not exist for s 6∈ Z+ ∪ {0}.

This demonstrates the perils of geometry in infinite dimensions. A similar result
should hold for Maps(N,M) but has not been worked out.

Remark 3.3. Now that the structure group Ψ∗0 = Ψ∗0(f ∗TM −→ N) has naturally
appeared, we can formulate the notion of principal Ψ∗0-bundles and associated vector
bundles for general Ψ∗0(E −→ N). To see that the theory of Ψ∗0-bundles is topologi-
cally distinct from the theory of G-bundles, we should show that G is not a deformation
retract of Ψ∗0. This is probably true, as for A ∈ Ψ∗0, the top order symbol σ0(A) lives
in G(π∗E −→ S∗N), which does not retract onto G(E −→ N). It would be good to
work this out.
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To summarize, the geometry of Maps(N,M) leads us to extend the structure group
from a gauge group to a group of Ψ∗0. In contrast, putting a metric on a complex
finite rank bundle leads to a reduction of the structure group GL(n,C) to U(n).

3.3. Characteristic classes for Maps(N,M). The immediate issue is to find all
Ad-invariant functions for Ψ≤0 = Ψ≤0(f ∗TM −→ N). Since this algebra is larger
than the gauge algebra g = End(f ∗TM), we expect fewer invariants. As a start,
we know we can build invariants from traces. In this setting the traces have been
classified, as we explain.

Recall that the Wodzicki residue of a ΨDO A acting on sections of a bundle E −→
Nn is defined by

resw : Ψ≤0 −→ C, resw(A) = (2π)−n
∫
S∗N

tr σ−n(A)(x, ξ) dξ dvol(x), (3.4)

where S∗N is the unit cosphere bundle. For dim(N) > 1, the Wodzicki residue is
the unique trace on the full algebra of ΨDOs up to scaling, although the facts that
it is a trace and is unique are not obvious [12, 38]. (The issue for N = S1, the loop
space case, is that the unit cosphere bundle is not connected, but this case has been
treated in [33].) In particular, the integrand tr σ−n(A)(x, ξ) is not a trace, so we
cannot apply distributions to the integrand to get other traces. The Wodzicki residue
vanishes on ΨDOs which do not have a symbol term of order −n, so it vanishes
on g, on all differential operators, and on all classical operators of noninteger order.
The Wodzicki residue is orthogonal to the operator trace, in the sense that operators
of order less than −n are trace class but have vanishing Wodzicki residue. Just to
reassure ourselves that this trace is nontrivial, for any first order elliptic operator D on
sections of E, σ−n(I+D∗D)−n/2(x, ξ) = |ξ|−n, so resw(I+D∗D)−n/2 = vol(S∗N) 6= 0.

Remark 3.4. The Wodzicki residue is the higher dimensional analogue of the residue
considered by Adler, van Moerbeke and others in the study of the KdV equation and
flows on coadjoint orbits of loop groups [1, 16]. The Ad-invariant functions becomes
integrals of motion, and are used to study the complete integrability of this system.

On the subalgebra Ψ≤0, there are more traces. The leading order symbol trace is
defined by

Trlo(A) = (2π)−n
∫
S∗N

tr σ0(A)(x, ξ) dξ dvol(x). (3.5)

Since σ0(AB) = σ0(A)σ0(B) for A,B ∈ Ψ≤0, the integrand is a trace, and so any
distribution on S∗N applied to the function σ0(A) ∈ C∞(S∗N) is a trace.

Theorem 3.5. [26] For dim(N) > 1, all traces on Ψ≤0 are of the form

A 7→ c · resw(A) + C(trσ0(A))

for some c ∈ C and C ∈ D(S∗N).

The proof is an impressive calculation in Hochschild cohomology.
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Remark 3.6. For α < 0, the set of ΨDOs of order at most α is a subalgebra of the
full ΨDO algebra. In [25], the traces on these subalgebras are classified.

Now that we know what the traces are, we can define two types of characteristic
classes for Ψ∗0-bundles for Ψ∗0 = Ψ∗0(F −→ Z) with Z closed and F a complex bundle.

Definition 3.7. The kth Wodzicki–Chern class cw
k (E) of the Ψ∗0-bundle E −→M ad-

mitting a Ψ∗0-connection ∇ is the de Rham cohomology class [resw(Ωk)] ∈ H2k(M,C),
where Ω is the curvature of ∇. The kth leading order symbol class clo

k (E) is the de
Rham class [Trlo(Ωk)].

Note that if ∇ is in fact a gauge connection, then clo
k (E) is a multiple of the gauge

classes in (3.1), since for gauge connections the symbol is independent of the cotangent
variable ξ.

For Maps(N,M), we easily get cw
k (Maps(N,M))

def
= cw

k (TMaps(N,M) ⊗ C) = 0.
For TMaps(N,M) is a gauge bundle admitting a gauge connection. The curvature
form of this connection takes values in End(f ∗TM) and so has vanishing Wodzicki
residue.

In contrast, it is shown in [23] that clo
k (Maps(N,M)) = vol(S∗N) · ev∗n ck(TM),

where the evaluation map evn : Maps(N,M) −→ M is given by evn(f) = f(n) for a
fixed n ∈ N. With some work, this can be extended to:

Proposition 3.8. Let Mapsf (N,M) denote the connected component of an element
f ∈ Maps(N,M) for M connected. Let F −→ M be a rank-` complex bundle with
ck(F ) 6= 0. Then

0 6= clo
k (π∗ ev∗ F ) ∈ H2k(Mapsf (N,M),C).

Thus we can use the leading order symbol classes to show that Maps(N,M) has
roughly as much cohomology as M does. Of course, Maps(N,M) should have much
more cohomology. Setting M = BU(`), we get

Theorem 3.9. [23] Let E −→ N be a rank-` hermitian bundle. There are surjec-
tive ring homomorphisms from H∗(BG(E),C) and H∗(BΨ∗0(E),C) to the polynomial
algebra H∗(BU(`),C) = C[c1(EU(`)), . . . , c`(EU(`))].

This is to our knowledge the first (incomplete) calculation of the cohomology of
BΨ∗0, which is needed for a full understanding of the theory of characteristic classes.
Even for the gauge group, these results seem to be new, although more precise results
are known for specific 4-manifolds N4 of interest in Donaldson theory. In contrast,
the homotopy groups of (a certain stabilization of) Ψ∗0 and hence of BΨ∗0 have been
completely computed in [36].

In summary, the study of traces on Ψ≤0 yields two types of characteristic classes,
the Wodzicki–Chern classes and the leading order symbol classes, but only the latter
are nontrivial. Note that we have not addressed the question of finding Ad-invariant
functions not associated to traces.
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Open Question: Determine all AdΨ∗0
-invariant functions on Ψ≤0.

4. Secondary classes on Ψ∗0-bundles

In this section we discuss secondary or Chern–Simons classes in infinite dimensions.
This material is taken from [22, 23, 27].

It is useful to think of the Wodzicki–Chern classes as purely infinite-dimensional
constructions: if E −→ M is a Ψ∗0(E` −→ ∗)-bundle with ∗ just a point, then E is
a finite-rank bundle and the only “ΨDOs” are elements of GL(`,C), so there is no
Wodzicki residue. In contrast, the leading order symbol Chern classes reduce to the
usual Chern classes in this case.

We have already seen applications of the leading order symbol Chern classes. The
Wodzicki–Chern classes are poised to detect the difference between Ψ∗0- and G-bundles.
For as with Maps(N,M), cw

k (E) = 0 if E admits a reduction to a G-bundle. Thus if
we can find a single Ψ∗0-bundle E with cw

k (E) 6= 0 for some k, then Ψ∗0 cannot have a
deformation retraction to G.

However, this approach has completely failed to date.

Conjecture 4.1. For any Ψ∗0-bundle E over a paracompact base, cw
k (E) = 0 for all k.

This conjecture holds if either (i) the structure group of E reduces from Ψ∗0 to the
group Ell∗ of invertible zeroth order ΨDOs with leading symbol the identity [23], or
(ii) E admits a bundle map via fiberwise Fredholm zeroth order ΨDOs to a trivial
bundle [22].

The proof of (i) uses the fact that Ell∗ has the homotopy type of invertible operators
of the form identity plus smoothing operator, and these operators have vanishing
Wodzicki residue.

For (ii), we first note that this condition always holds for finite-rank bundles. The
proof follows the structure of the heat equation proof of the families index theorem
(FIT) for superbundles [5]. One takes a superconnection ∇ on E and modifies it to
Bt = ∇+t1/2A, where A is a zero-th order odd operator on each fiber. The Wodzicki–
Chern character of E has representative exp(−B2

t ) for any t ≥ 0. As t −→ ∞, Bt

becomes concentrated on the finite rank index bundle for A∗A, and so the Wodzicki–
Chern character vanishes. This implies that all the Wodzicki–Chern classes vanish.

Remark 4.2. Although almost all details have been omitted, this proof is much quicker
than the heat equation proofs of the FIT, and for good reason. In the FIT proofs, one
is trying to compute the Chern character of the index bundle in terms of characteristic
classes by comparing the t −→ 0 and t −→∞ limits of heat operators. The t −→∞
limit is relatively easy, and is mimicked in the proof outlined above. However, because
one essentially wants to use the operator trace, the construction of the appropriate
Bt is much more delicate, in order to have a well-defined limit at t = 0. Once again,
we see the strong contrast between the operator trace and the Wodzicki residue.
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The vanishing of the Wodzicki–Chern classes is not the end of the story, as it is in
fact the prerequisite to defining secondary classes. Let ∇0,∇1 be connections on a
Ψ∗0-bundle with local connection one-forms ω0, ω1 and curvature Ω0,Ω1. Then just as
for finite-rank bundles, as even forms

cw
k (Ω1)− cw

k (Ω0) = dCSw
k (∇1,∇0), (4.1)

with the odd form CSw
k (∇1,∇0) given by

CSw
k (∇1,∇0) =

∫ 1

0

resw[(ω1 − ω0) ∧
k−1︷ ︸︸ ︷

Ωt ∧ ... ∧ Ωt] dt, (4.2)

where

ωt = tω0 + (1− t)ω1, Ωt = dωt + ωt ∧ ωt.
Here we are just lifting the finite-dimensional formula from [6, Appendix], replacing
the matrix trace with the Wodzicki residue. (4.1) is precisely the explicit formula
showing that the Wodzicki–Chern class is independent of connection, and so is the
Ψ∗0 version of the proof of Theorem 2.2 (ii).

(4.1) shows that CSw
k determines a 2k− 1 cohomology class if the Wodzicki–Chern

forms for ∇0,∇1 vanish pointwise. This holds in all cases we have been able to
compute.

Open question: Do Wodzicki–Chern forms always vanish pointwise?

If this is the case, then the theory of secondary classes for Ψ∗0-bundles based on the
Wodzicki residue produces cohomology classes in odd degrees.

For finite-rank bundles E −→ N , the corresponding classes are called Chern–
Simons classes CSk(∇0,∇1) ∈ H2k−1(N,C), when they exist. In contrast to the Chern
classes, which are defined via the geometric Chern–Weil theory but have topological
content, these “relative” Chern–Simons classes really do depend on the choice of two
connections, and so are geometric objects. There is an “absolute” version of Chern–
Simons classes CSk(∇) ∈ H2k−1(N,C/Z) that only uses one connection but takes
values in a weaker coefficient ring [7].

Definition 4.3. The kth Wodzicki–Chern–Simons (WCS) class associated to connec-
tions ∇0,∇1 on a Ψ∗0-bundle E −→ M is the cohomology class of CSw

k (∇1,∇0) in
H2k−1(M,C), provided this form is closed.

In finite dimensions there are two ways to assure that characteristic forms for
E −→ N vanish: either use a flat connection, or pick a form whose degree is larger
than the dimension of N or the rank of E. For example, if E is trivial, it admits a
flat connection ∇, so we can define CSk(∇, g−1∇g) for any gauge transformation g.
The dimension restriction is only useful to define CSr for dim(N) = 2r − 1; this was
used very effectively by Chern–Simons [7] and Witten [39] to produce invariants of
3-manifolds.
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For Maps(N,M) with M parallelizable, a fixed trivialization of TM leads to a
global trivialization of TMaps(N,M). A gauge transformation g of TM induces
a gauge transformation of TMaps(N,M), so one has an element CSw

k (∇, g−1∇g)
∈ H2k−1(Maps(N,M),C).

Open question: Is CSw
k (∇, g−1∇g) ever nonzero?

Although the dimension restriction on N looks incapable of generalization to
Maps(N,M), an examination of the representative resw((Ωs)k) of cw

k for the Hs metric
(s ∈ N) shows that this form vanishes pointwise for 2k > dim(M), as in (4.3) below.
Thus we always get a secondary class CSw

k (∇1,∇0) ∈ H2k−1(Maps(N,M2k−1),C)
associated to the s = 1, 0 metrics on Maps(N,M) determined by fixed metrics on
N,M .

For simplicity, we go back to the loop space case LM . Because the L2 (or s = 0)
connection is so easy to treat – its connection one-form is just the one-form for the
Levi-Civita connection on M – the local formula for CSw

k = CSw
k (∇1,∇0) really is

explicitly computable [27, Prop. 5.4]: as a (2k − 1)- form on TγLM ,

CSw
k (X1, ..., X2k−1) (4.3)

=
2

(2k − 1)!

∑
σ

sgn(σ)

∫
S1

tr[(−ΩM(Xσ(1), γ̇)− 2ΩM(·, γ̇)Xσ(1))

· (ΩM)k−1(Xσ(2), . . . , Xσ(2k−1))],

where σ is a permutation of {1, . . . , 2k−1} and ΩM is the curvature of the Levi-Civita
connection on M . The tangent vectors Xi are vector fields in M along γ, so we see
that this form will vanish if 2k − 1 > dim(M).

We would like to use CSw
k to detect odd cohomology in H∗(LM,C). We need a

test cycle in degree 2k − 1. The natural candidate is M itself, thought of as the set
of constant loops. However, for these loops γ̇ = 0, so (4.3) vanishes. Instead, assume
that M admits an S1-action a : S1 ×M −→ M. This induces a map ã : M −→ LM
by ã(m)(θ) = a(θ,m). Dropping the tilde, the action now produces a test cycle
a∗[M ] ∈ H2k−1(LM,Z), where [M ] is the fundamental class of M , which is assumed
orientable. (For the trivial action, a∗[M ] is M as constant loops.)

If
∫
a∗[M ]

CSw
k =

∫
M
a∗CSw

k is nonzero, then CSw
k 6= 0 in the cohomology of LM .

The computation of the integral is frustrating: it always vanishes in the easiest case
dim(M) = 3; in higher dimensions, most explicit Riemannian metrics come with large
continuous symmetry groups, and in all examples we get

∫
a∗[M ]

CSw
k = 0, although we

cannot prove a general vanishing theorem. Fortunately, there is a family gt, t ∈ (0, 1),
of Sasaki–Einstein metrics on S2 × S3 due to [15] which is explicit enough and has
enough symmetry to make the integral calculation feasible but which is not “too
symmetric.” In particular, this construction gives a metric fibration S1 −→ S2 ×
S3 −→ S2 × S2 generalizing the Hopf fibration, so we get a circle action by rotating
the fiber. The calculations can be done in closed form by Mathematica c©. We get
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a∗[M ]

CSw
k 6= 0, and so with a little work we conclude that H5(L(S2 × S3),C) is

infinite.
A circle action a on M also induces ã : S1 −→ Diff(M) by ã(θ)(m) = a(θ,m), so

we get an element of π1(Diff(M)). It is easy to check that
∫
a∗[M ]

CSw
k 6= 0 implies

π1(Diff(M)) is infinite. In particular, π1(Diff(S2 × S3)) is infinite.
We tend to trust the computer calculations, as in the t −→ 0 limit the metric gt

becomes a metric on S5 and the integral explicitly vanishes. This matches with the
known result that π1(Diff(S5)) is finite. On the other hand, up to factors of π, the
integrals calculated are always rational; this needs further explanation.

Remark 4.4. (i) While there is nothing in theory to stop us from computing WCS
classes for Maps(N,M), in practice the number of computations necessary to compute
the Wodzicki residue of an operator on Nn increases exponentially in n. So while
computations are feasible for loop spaces and Maps(Σ2,M), the setting for string
theory, one needs a very good reason to do computations on higher-dimensional source
manifolds.

(ii) These results are too specific. If one can show that the Wodzicki–Chern forms
always vanish pointwise, then a much more robust theory of WCS classes would be
available.

5. Characteristic classes for diffeomorphism groups

The search for characteristic classes associated to the diffeomorphism group of a
closed manifold X can be interpreted in two ways: (i) Diff(X) is an open subset
of Maps(X,X), and so as in Section 3 characteristic classes can be used to detect
elements of H∗(Diff(X),C); (ii) certain infinite rank bundles have Diff(X) as part of
their structure group. In this section we consider the first question, and in Section 6
we treat (ii).

First, the proof that cohomology classes for Maps(X,X) are detected by charac-
teristic classes of X (Prop. 3.8) does not carry over to Diff(X). Indeed, the proof
should break down, since as in finite dimensions the Lie group Diff(X) admits a flat
connection and so has vanishing leading order symbol classes. (As usual, there are
technicalities about the Lie group structure on Diff(X), which are most easily treated
by considering Hs diffeomorphisms.)

Thus we expect to find only secondary classes. We now outline a method that may
produces odd degree classes in H∗(Diff(X),C).

The cohomology ring H∗(U(n),Z) is generated by suitably normalized Chern–
Simons classes, as the standard forms tr((g−1dg)2k−1) built from the Maurer–Cartan
form g−1dg are the Chern–Simons forms for ck associated to the flat connection ∇
on the trivial bundle U(n)× gl(n,C) and to the gauge equivalent connection g−1∇g
[29]. Here we think of g as the gauge transformation M 7→ g ·M for M ∈ gl(n,C).
There are similar results for other classical linear groups; see e.g., [34, Ch. 4.11] and
the Bourbaki references therein, [8], particularly the references to the original work



18 S. ROSENBERG

of Hopf, and [18, Ch. 3D] for a modern treatment for SO(n). Moreover, a certain
average of these forms along loops in G give generators for H∗(LG,Z) [34].

In finite dimensions, identifying the Maurer–Cartan form with a gauge transfor-
mation requires an embedding G −→ GL(N,C). For G = Diff(X), we can embed
i : G −→ GL(Γ(CN)), where CN = X × CN is the trivial bundle over X, GL refers
to bounded operators with bounded inverses, and Γ(CN) refers to Hs sections. The
embedding is given by i(φ)(s)(x) = s(φ−1x). Now φ makes sense as a gauge transfor-
mation of the trivial bundle Diff(X)× Γ(CN) via s 7→ i(φ)(s).

We can now define the Maurer–Cartan form φ−1dφ for φ ∈ Diff(X). As in Section 4,
we will get secondary classes in Hodd(Diff(X),C) associated to the trivial connection
∇ and φ−1∇φ once we pick an AdG-invariant function on Lie(Diff(X)). Since a family

of diffeomorphisms φt starting at the identity has infinitesimal information φ̇0, a vector
field on X, we have Lie(Diff(X)) = Γ(TX). The adjoint action of a diffeomorphism
φ on a vector field V is easily seen to be V 7→ φ∗V .

Open Question: Find a nontrivial AdDiff(X)-invariant function on the set of (Hs)
vector fields on a closed manifold X.

Remark 5.1. (i) Because the adjoint action is not by conjugation, finding a trace on
Γ(TX) does not produce secondary classes. It seems to be an open question whether
there exist any nontrivial traces on Γ(TX) for general X. If X = G is itself a compact
linear Lie group, there are many traces on TIDiff(G) = Γ(TG). Namely, a vector field
V on G is just a g-valued function on G, so for any distribution f ∈ D(G), f(tr(V ))
is a trace. This case needs further work.

(ii) There is another context in which this Open Question comes up. Diff(X) is
the structure group for fibrations X −→ M −→ B of manifolds with fibers X, so
characteristic classes associated to Diff(X) would be obstructions to the triviality of
a fibration, just as ordinary characteristic classes as obstructions to the triviality of
principal G-bundles.

Thus this general approach to secondary classes for Diff(X) is unavailable at
present. However, for X = G a compact linear Lie group, we can detect odd de-
gree classes in H∗(Diff(X),C) using finite rank bundles. Let α : G −→ Diff(G) be
the embedding g 7→ Lg, for Lg left translation by g. The trivial rank bundle CN1 =
Diff(G) × gl(N,C) admits the gauge transformation φ ∈ Diff(G) 7→ (M 7→ φ(e)M).
This gauge transformation, also denoted by φ, restricts to the gauge transformation
g on α(G) ⊂ Diff(G) since Lg(e) = g. The bundle CN1 has the trivial connection ∇1.

The gauge transformed connection ∇φ
1 = φ−1∇1φ has the global connection one-form

φ−1dφ, which restricts to g−1dg on α(G). On the finite-rank bundle α(G), we use the
ordinary matrix trace to define Chern–Simons forms

CS2k−1(∇1,∇φ
1) = tr((φ−1dφ)2k−1).
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We can also define Chern–Simons classes for ∇g on CN by the same formula. A
straightforward calculation gives∫

α(z2k−1)

CS2k−1(∇1,∇φ
1) =

∫
z2k−1

CS2k−1(∇,∇g)

for any (2k − 1)-chain z2k−1 on G. This implies

Theorem 5.2. [29] For any compact linear group G, the map α : G −→ Diff(G),
g 7→ Lg, induces a surjection α∗ : H∗(Diff(G),R) −→ H∗(G,R).

Dualizing this result, we see that the real homology of G injects into the homology
of Diff(G). As with mapping spaces, we expect nontrivial homology in infinitely many
degrees, but these techniques only give information up to dim(G).

6. Characteristic classes and the Families Index Theorem

As explained below, the families index theorem (FIT) is a generalization of the
Atiyah–Singer index theorem. Infinite rank superbundles E naturally appear in the
setup of the FIT. In this section we discuss how a theory of characteristic classes on E
may give insight into the FIT. In particular, the relevant structure group incorporates
aspects of gauge groups, diffeomorphism groups, and the group Ψ∗0 of pseudodifferen-
tial operators discussed in previous sections. This section is based on [21].

The bundle E was explicitly mentioned by Atiyah and Singer [3] as a topological
object, but was not used in their proof. Bismut [5] used E as a geometric object, in
that he constructed what is now called the Bismut superconnection on E . Bismut did
not define characteristic classes for E , because he did not need them: the fine details
of his proof take place on the sections of a finite rank bundle, the model fiber of E
(see Remark 6.3). In this section we try to define characteristic classes directly on
E . The hope, not yet realized, is that not only is E a proper setting for the FIT, but
that a proof of the FIT can take place on E .

We recall the basic setup, inevitably leaving out a slew of technicalities. Let Z −→
M

π−→ B be a fibration of closed connected manifolds, and let E,F −→ M be
finite rank bundles. Set Zb = π−1(b), Eb = E|Zb

, Fb = F |Zb
. Assume that we have

a smoothly varying family of elliptic operators Db : Γ(Eb) −→ Γ(Fb). Although the
dimensions of the kernel and cokernel of Db need not be continuous in b, the index
ind(Db) = dim ker(Db) − dim coker(Db) is constant. It is therefore plausible and
indeed true that the virtual bundle IND(D) = [ker(Db)]− [coker(Db)] ∈ K(B) is well
defined.

Although the FIT can be stated entirely within K-theory, it is easier to state it as
an equality in cohomology. The Chern character ch : K(B)⊗Q −→ Hev(B,Q) is an
isomorphism, and the FIT identifies ch(IND(D)) with an explicit characteristic class
built from the symbols of the Db.

Even the case where B = {b} is a point is highly nontrivial. In this case,

ch(IND(D)) = ind(Db) ∈ H0({b},Q) = Q
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(of course the index is an integer). Identifying the corresponding characteristic
class gives the “ordinary” Atiyah–Singer index theorem, which generalizes Riemann–
Roch type theorems for smooth varieties and the Chern–Gauss–Bonnet theorem.
Thus in the appearance of a base parameter space, the FIT is a smooth version
of Grothendieck–Riemann–Roch theorems.

Rather than discussing the characteristic classes built from the symbols of general
Db, we will discuss the particular case of families of coupled Dirac operators; in
fact, a K-theory argument shows that proving the FIT for coupled Dirac operators
implies the full FIT. (Coupled Dirac operators are discussed in e.g., [24].) So assume
that M and every fiber Zb are orientable and spin in a compatible way, and that
E = S+ ⊗ K,F = S− ⊗ K, where S± are the spinor bundles for M and K is yet
another bundle over M . Put a metric on M ; the restriction of the metric to each Zb
defines a Dirac operator on S±b . Put a connection ∇K on K. This induces connections

∇b on each Kb, and gives a family of coupled Dirac operators ∂/∇
K

= ∂/∇b : Eb −→ Fb.

Let Â(M) be the Â-genus of M , and let
∫
Z

denote integration over the fiber (i.e.,
capping with Z as a class in H∗(M,Q)).

Theorem 6.1. (FIT) ch(IND(∂/∇)) =
∫
Z
Â(M) ∪ ch(K) in Hev(B,Q).

If π! : K(M) −→ K(B) is the analytic pushforward map, which by definition sends

H to IND(∂/∇
H

), then the FIT can be restated as the commutativity of the diagram

K(M)
ch−−−→ Hev(M,Q)

π!

y yR
Z Â ∪ (·)

K(B)
ch−−−→ Hev(B,Q).

As in the last section, the structure group of the fibration is Diff(Z), but there
is more going on. The bundle E −→ M pushes down to the infinite rank bundle
π∗E = E −→ B, where the fiber Eb is the smooth sections of Eb. (Thus E is the sheaf
theoretic pushdown of the sheaf Γ(E).) It is easy to check that Eb is modeled on Γ(F )

for some bundle F
p−→ Z of rank equal to rank(E).

The structure group of E is

G =


F

f−−−→ F

p

y p

y
Z

φ−−−→ Z

: φ ∈ Diff(Z), f |Fz a linear isomorphism

 .

This just says that when fibers of M are glued by a diffeomorphism of Z over b ∈ B,
Eb must be glued by a bundle isomorphism. G is called Diff(Z, F ) in [3]. These
transition maps act pointwise on Γ(F ) (within a fixed Sobolev class), the model
space for the fibers of E , by

s 7→ fsφ−1, i.e., s 7→ [z 7→ f(z)(s(φ−1(z)))].
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We note that this equation defines a faithful action of G on Γ(F ), which is a Hilbert
space once we fix a Sobolev class of sections. The tangent space to G at a pair (φ, f)
is given by [31]:

T(φ,f)G =


F

s−−−→ f ∗TF

p

y f∗p∗

y
Z

V−−−→ φ∗TZ

: s|Fz linear

 .

This follows from thinking of φ as an element of Maps(Z,Z) and similarly for f , and
calculating as in previous sections. In particular, the Lie algebra g = T(id,id)G is

g =


F

s−−−→ TF

p

y p∗

y
Z

V−−−→ TZ

: s|Fz linear

 .

The difficulty of implementing Chern–Weil theory is the following:

Open question: Find a nontrivial AdG-invariant function on g.

Remark 6.2. (i) The subgroup of G where φ is the identity is precisely the gauge
group G(F ) of F , so we are looking for generalizations of the invariant functions in
Section 3. The structure group restricts to G(F ) if the fibration Z −→ M −→ B is
trivial. In particular, if the fibration is N −→ Maps(N,M) × N −→ Maps(N,M)
and E = ev∗ TM −→ Maps(N,M), then E is precisely TMaps(N,M).

(ii) As a subcase of (i), fix a compact group G, let E be a trivial G-bundle, and
let S1 −→ M = B × S1 −→ B be a trivial circle fibration. Then G(F ) is the loop
group LG. This so-called caloron correspondence between G-bundles over M and
LG-bundles over B is discussed thoroughly in [30] and goes back to work of Garland
and Murray [14]. In particular, characteristic classes for LG-bundles are constructed
by Murray and Vozzo in [30]; the characteristic classes treated below reduce to the
Murray–Vozzo classes in this case.

We can avoid answering the Open Question and still define characteristic classes
in a restricted sense. We first recall the construction of a connection on E due to
Bismut [5]. Let HM be a complement to the vertical bundle VM = ker π∗ in TM.
For example, if we have chosen a metric on M , we can take HM = (VM)⊥. Recall
that E −→ M has a connection ∇E; for a given hermitian metric on E, we may
assume that ∇E is a hermitian connection. The Bismut connection ∇ = ∇B on
E −→ B is defined by

∇Xr(b)(z) = ∇E
XH r̃(b, z), (6.1)

where X ∈ TbB, r ∈ Γ(E), z ∈ π−1(b), XH is the horizontal lift of X to HM(b,z), and
r̃ ∈ Γ(E) is defined by r̃(b, z) = r(b)(z). (Here we abuse notation a little by writing
(b, z), which assumes that a local trivialization of Z −→M −→ B has been given.)
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Remark 6.3. We outline Bismut’s heat equation proof of the FIT. Bismut first adjusts
∇B to be unitary with respect to the L2 hermitian metric on E . He then modifies the
new connection in a nontrivial way to form a superconnection ∇t on E for t > 0. The
“curvature” two-form ∇2

t acts fiberwise on E , just as for finite rank bundles, and takes
values in smoothing (and hence trace class) operators. As t −→ ∞, the form-valued
operator trace Tr(∇2

t ) converges to a representative of the Chern character of the
index bundle; this step is not too difficult in light of the original heat equation proof
of the index theorem. As t −→ 0, Tr(∇2

t ) converges nontrivially to the differential
form representative of the right hand side of the FIT. It is not hard to show that the
two limits differ by an exact form, so their cohomology classes are the same.

This is called the local form of the FIT, since the proof generates the specific
characteristic forms in the right cohomology class.

The (easy) Bismut connection fits into the Atiyah–Singer framework as follows:

Lemma 6.4. [21] The Bismut connection is a G-connection. In a fixed local triv-
ialization, the connection one-form assigns to X ∈ TbB the pair (V, s) ∈ g, where

V = φ̇t(0) = XH and s(v)(b,z) = (d/dt)t=0‖0,t(z)v.

Here the parallel translation ‖0,t for the Bismut connection is thought of as a
bundle isomorphism of F via a local trivialization. The proof directly shows that the
holonomy of the Bismut connection lies in G.

This suggests that if we can define the Chern character for connections on E for
the coupled Dirac operator case (i.e., E is the superbundle associated to (S+ ⊗K)
⊕ (S− ⊗K) ), then we could try to prove the local FIT by showing

(i) For the (easy) Bismut connection on E , the representative differential form

ch(ΩB) of the Chern character ch(E) equals
∫
Z
Â(ΩM)ch(ΩK), where ΩM is the cur-

vature of the Levi-Civita connection for the metric on M , and ΩK is the curvature of
the connection on K.

(ii) There exists a connection on E for which ch(E) = ch(IND(∂/∇
K

)) ∈ Hev(B,Q).

Since the Chern character should be independent of the connection on E , this would
give the FIT.

As we will now see, step (i) fails, but in a very precise way.
For a fixed hermitian connection ∇E on E, the associated Bismut connection has

curvature two-form ΩB taking values in g, so we can write ΩB(X, Y ) = (V, s) for
X, Y ∈ TbB, V ∈ Γ(TZ), and s ∈ Γ(TF ).With respect to a local trivialization, we can
consider s ∈ Γ(TEb). The connection ∇E induces a connection on Eb, or equivalently
gives a splitting TEb = V Eb ⊕HEb. The vertical component (ΩB)v = sv ∈ V Eb can
naturally be identified with a map sv : Eb −→ Eb. Since s covers V , it easily follows
that sv ∈ End(Eb), i.e., sv is a fiberwise endomorphism of Eb. Thus we can create
forms

b 7→ ck(Ω
B
b ) =

∫
Z

tr((ΩB
b )v)k ∈ Λ2k−dim(Z)(B). (6.2)
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We claim that these forms are closed and have de Rham class independent of the
choice of ∇ on E. To see this, first note that it is well known and not difficult to
compute that the Bismut connection on E has curvature

ΩB(ξ1, ξ2) = ∇E
T (ξH

1 ,ξ
H
2 ) +RE(ξH1 , ξ

H
2 ), (6.3)

with T (ξH1 , ξ
H
2 ) = [ξ1, ξ2]H− [ξH1 , ξ

H
2 ] and RE the curvature of ∇E. Moreover, the first

term on the right-hand side of (6.3) is horizontal and the second term is vertical with
respect to the splitting of TEb. Thus (ΩB)v = RE. Then for k = 1 for simplicity, we
have

dB

∫
Z

tr(ΩB)v =

∫
Z

dM tr(RE) =

∫
Z

tr∇Hom(RE)

=

∫
Z

tr[∇, RE] = 0.

The equality dM tr(RE) = tr∇Hom(RE) is an easy calculation using the fact that RE

is skew-hermitian, and the last line uses the Bianchi identity.
Thus we have constructed characteristic classes, and in particular a Chern char-

acter, for the restricted class of Bismut connections without finding AdG-invariant
functions on g. Note that in the case of Remark 6.2, these classes reduce to the
classes discussed in Section 3, since for gauge transformations Ω = Ωv.

The Chern character of the infinite rank superbundle associated to a family of
coupled Dirac operators is

ch(E) =

∫
Z

ch(RE) =

∫
Z

ch(ΩS+−S−) ∪ ch(ΩK). (6.4)

Since we have ch(ΩS+−S−) and not Â(ΩM), this is not what we wanted!

Despite this failure, we now see what we can do with step (ii). We want to mimic
the usual “cancellation of nonzero eigenspaces” in the heat equation proof of the index
theorem, i.e., we want a connection that respects the splitting

(S+ ⊗K)b = ker(∂/∇
K

b )⊕ ker⊥+,

where ker⊥+ equals (ker(∂/∇
K

b ))⊥, and similarly for S−⊗K. This perpendicular compo-

nent is spanned by the eigensections of ∂/∇
K

= ∂/+ with nonzero eigenvalues, and ∂/∇
K

is an isomorphism between these eigenspaces. For this connection, we expect that
ch(ker⊥+) = ch(ker⊥−) as forms computed with respect to this split connection. This
would imply

ch(IND(∂/∇
K

)) = ch(ker(∂/∇
K

+ )) + ch(ker⊥+)− ch(ker(∂/∇
K

− ))− ch(ker⊥−) = ch(E). (6.5)

This would finish (ii).
The natural choice for such a connection is given by orthogonally projecting the

Bismut connection to the kernel and its perpendicular complement. The problem is
that the isomophism ∂/∇

K

+ : (ker∂/+)⊥ −→ (ker∂/−)⊥ is not a G-isomorphism, since
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∂/∇
K

+ is far from an element of G. However, we can replace D = ∂/∇
K

+ with its uni-

tarization Du = D/|D∗D|1/2 on these complements. Du is a zero order invertible
pseudodifferential operator, precisely the type of operator treated in Section 4.

This motivates extending the structure group to a semidirect product G̃ = GnΨ∗0,
with G acting on Ψ∗0 by conjugation. We have to extend our definition of characteristic

classes from G to G̃, but this is straightforward based on the earlier work: for a G̃-
connection with curvature Ω̃ = (V, s, B) ∈ g̃ (so B ∈ Ψ≤0), we consider expressions
like ∫

Zb

tr((sv
∇b )k)dvolM/B +

∫
Zb

tr((σ0(B))k).

It is now straightforward to check that (6.5) holds. However, we are not claiming
that the Chern character form for this projected connection in (6.5) is closed. Even
if it is, we are definitely not claiming that it is cohomologous to the Chern character
form in (6.5), as this would give the wrong formula for the FIT.

Despite the glaring problems with these arguments, we see that when we try to
prove the FIT directly on E , the extended structure group G̃ naturally occurs.

Remark 6.5. Recall that the starting point for Donaldson theory is the moduli space
A/G, where A = A(F ) is the space of connections on F and G = G(F ) is the
gauge group. The action of G on A, g · ∇ = g∇g−1, extends to an action of G by
(φ, f) · ∇ = f(φ−1)∗∇f−1, since for φ = Id, f is a gauge transformation.

Thus it is natural to consider the moduli space A/G. However, this space seems
to be a fat point in the following sense.

Conjecture 6.6. [21] The orbit of a generic connection is dense.

An example of a nongeneric connection is a flat connection. As justification for the
conjecture, it can be shown that the normal space to the G-orbit O∇ in the L2 metric
on T∇A = Λ1(Z,End(F )) is

{α ∈ Λ1(Z,End(F )) : ∇∗α = 0 and RF (·, V )z ⊥ αz,∀z ∈ Z, ∀V ∈ TzZ}.
(The equation ∇∗α = 0 is the equation for the normal space to the gauge orbit of ∇.)
It is plausible that for a generic connection, the curvature equation RF (·, V )z ⊥ αz
and its higher covariant derivatives form an overdetermined system of equations, and
so has only the zero solution. We expect standard gauge theory techniques to help
prove the conjecture.
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Lie Algebras, Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys
in Mathematics, Vol. 47, Springer-Verlag, Berlin, 2004.

2. Atiyah, M., Circular symmetry and stationary phase approximation, Astérisque 131 (1984),
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1989.
10. Dupont, J. L., Curvature and Characteristic Classes, Lect. Notes Math. 640, Springer-Verlag,

Berlin, 1978.
11. Eells, J., A setting for global analysis, Bull. Amer. Math. Soc. 72 (1966), 751–807.
12. Fedosov, B., Golse, F., Leichtnam, E., and Schrohe, E., The noncommutative residue for mani-

folds with boundary, J. Funct. Analysis 142 (1996), 1–31.
13. Freed, D., Geometry of Loop Groups, J. Diff. Geom. 28 (1988), 223–276.
14. Garland, H., Murray, M. K., Kac-Moody algebras and periodic instantons, Commun. Math.

Phys. 120 (1988), 335–351.
15. Gauntlett, J.P., Martelli, D., Sparks, J., Waldram, D., Sasaki-Einstein metrics on S2×S3, Adv.

Theor. Math. Phys. 8 (2004), 711, hep–th/0403002.
16. Guest, M., Harmonic Maps, Loop Groups, and Integrable Systems, LMS Student Texts, Vol. 38,

Cambridge U. Press, Cambridge, 1997.
17. Hamilton, R., Nash-Moser implicit function theorems, Bull. Amer. Math. Soc. 7 (1986), 65–222.
18. Hatcher, A., Algebraic Topology, Cambridge U. Press, Cambridge, UK, 2002,

www.math.cornell.edu/ hatcher/AT/ATpage.html.
19. Husemoller, D., Fibre Bundles, 1st ed., Springer-Verlag, New York, 1966.
20. Larrain-Hubach, A., Explicit computations of the symbols of order 0 and -1 of the curvature

operator of ΩG, Letters in Math. Phys. 89 (2009), 265–275.
21. Larrain-Hubach, A., Paycha, S., Rosenberg, S., and Scott, S., in preparation.
22. Larrain-Hubach, A., Rosenberg, S., Scott, S., and Torres-Ardila, F., in preparation.
23. , Characteristic classes and zeroth order pseudodifferential operators, Spectral Theory

and Geometric Analysis, Contemporary Mathematics, Vol. 532, AMS, 2011.
24. Lawson, H. Blaine and Mickelsohn, M., Spin Geometry, Princeton U. Press, Princeton, NJ, 1989.
25. Lesch, M. and Neira Jimenez, C., Classification of traces and hypertraces on spaces of classical

pseudodifferential operators, arXiv:1011.3238.
26. Lescure, J.-M. and Paycha, S., Uniqueness of multiplicative determinants on elliptic pseudodif-

ferential operators, Proc. London Math. Soc. 94 (2007), 772–812.
27. Maeda, Y., Rosenberg, S., and Torres-Ardila, F., Riemannian geometry on loop spaces,

arXiv:0705.1008.
28. Milnor, J., Characteristic Classes, Princeton U. Press, Princeton, 1974.
29. Misiolek, G., Rosenberg, S., and Torres-Ardila, F., in preparation.
30. Murray, M. K. and Vozzo, R., The caloron correspondence and higher string classes for loop

groups, J. Geom. Phys. 60 (2010), 1235–1250.
31. Omori, H., Infinite-Dimensional Lie Groups, A.M.S., Providence, RI, 1997.



26 S. ROSENBERG

32. Paycha, S., Chern-Weil calculus extended to a class of infinite dimensional manifolds,
arXiv:0706.2554.

33. Ponge, R., Traces on pseudodifferential operators and sums of commutators, arXiv:0607.4265.
34. Pressley, A. and Segal, G., Loop Groups, Oxford University Press, New York, NY, 1988.
35. Reyman, A.G. and Semenov-Tian-Shansky, M.A., Integrable Systems II: Group-Theoretical

Methods in the Theory of Finite-Dimensional Integrable Systems, Dynamical systems. VII, En-
cyclopaedia of Mathematical Sciences, Vol. 16, Springer-Verlag, Berlin, 1994.

36. Rochon, F., Sur la topologie de l’espace des opérateurs pseudodifférentiels inversibles d’ordre 0,
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