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McMullen’s Examples: A Cantor Set of Quasi-Circles

Fλ(z) = zn +
λ

zd

|λ| small but nonzero in C, and

1
n

+
1
d
< 1

For the Julia set on the left,

n = d = 3 and λ = 0.01.
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The n = d = 2 Case: A Cantor Set

Fλ(z) = z2 +
λ

z2 , λ = 0.2111
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The n = d = 2 Case: The Connectedness Locus

Fλ(z) = z2 +
λ

z2
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The n = d = 2 Case: Period-Three Example

Fλ(z) = z2 +
λ

z2
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The n = d = 2 Case: A Misiurewicz Example

Fλ(z) = z2 +
λ

z2 , λ = −3 + 2
√

2
16
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The n = d = 2 Case: A Sierpiński Carpet

Fλ(z) = z2 +
λ

z2 , λ = − 1
16
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The n = d = 2 Case: A Sierpiński Carpet

Fλ(z) = z2 +
λ

z2 , λ = − 1
16
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Sierpiński Carpets

Sierpiński curve
A subset of the plane is called a Sierpiński curve if it is compact,
connected, locally connected, nowhere dense, and the boundaries of
its complementary domains are disjoint simple, closed curves.
In 1958, Whyburn proved the following two remarkable results about
such sets.

1 Any two Sierpiński curves are homeomorphic.
2 The Sierpiński curve/carpet is universal in the sense that it

contains a homeomorphic image of any compact, connected,
one-dimensional, planar set.

Paul Blanchard ( Boston University) Checkerboard Julia Sets BU/Keio U Workshop 10 / 35



A Checkerboard Julia Set

Fλ(z) = zn +
λ

zd

Here n = 4 and d = 3.

λ = 0.18
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A Checkerboard Julia Set

F (z) = z4 +
0.18
z3
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A Checkerboard Julia Set

F (z) = z4 +
0.18
z3
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The Dynamical Trichotomy

The Escape Trichotomy (Devaney, Look, Uminsky)
Let vλ = Fλ(cλ) be a critical value. Then:

1 if vλ lies in Bλ, then J(Fλ) is a Cantor set;
2 if vλ lies in Tλ 6= Bλ, then J(Fλ) is a Cantor set of disjoint simple

closed curves surrounding the origin;
3 in all other cases, J(Fλ) is a connected set. In addition, if

F j
λ(vλ) ∈ Tλ 6= Bλ for some j ≥ 1, then J(Fλ) is a Sierpiński curve.
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Preliminaries for Fλ(z) = zn +
λ

zd

Critical points:
n − 1 critical points at∞
d − 1 critical points at 0
n + d “free” critical points that satisfy the equation

zn+d =

(
d
n

)
λ.

Prepoles: The prepoles satisfy the equation

zn+d = −λ.
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Immediate basin of∞ and the trap door

Immediate basin Bλ of∞:
The component of the basin of∞ that contains∞.

Trap door Tλ:
The inverse image of Bλ that contains the pole at the origin. Note that
it is possible that Bλ = Tλ.
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Symmetries

Fλ has symmetries in both the dynamical plane and the parameter
plane.

Symmetry Lemma I
Fλ is conjugate to Fλ̄ by the conjugacy z 7→ z.

This symmetry implies that the parameter plane is symmetric under
complex conjugation.
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Symmetries—Lemma II

Symmetry Lemma II

If ω is a (n + d)th root of unity, then Fλ(ωz) = ωnFλ(z).

This second symmetry implies that the Julia set of Fλ is symmetric
under the map z 7→ ωz. Similarly, Bλ and Tλ possess this (n + d) -fold
symmetry.
Moreover, since the free critical points are arranged symmetrically with
respect to z 7→ ωz, all of the free critical orbits behave symmetrically
with respect to this rotation.
However, it is not necessarily true that all of these critical orbits behave
in the same manner.
The most important consequence of Symmetry Lemma 2 is the fact
that the orbits of all of the free critical points can be determined from
the orbit of any one of them. So the one-dimensional λ-plane is a
natural parameter plane for these maps.
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Symmetries—Lemma II

There is a Mandelbrot set centered
on the positive real axis at

λ0 =

(
d
n

+ 1
) n+d

1−n
(

d
n

) d+1
n−1

We denote it byM0.

Here, n = 13 and d = 7, and

λ0 ≈ 0.32.
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Symmetries—Lemma II

The orbit diagram for the critical
points of

Fλ0(z) = z13 +
λ0

z7 ,

where λ0 is the center ofM0. The
critical point on the positive real axis
is a fixed point, and it is labeled with
the number 0. The orbits of the
remaining critical points are
determined from the orbit of the fixed
point using Symmetry Lemma 2.
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Symmetries—Lemma III

Symmetry Lemma III

Suppose that η is an (n + d)(n − 1)st root of unity. Let ν = ηn+d and
ω = ηn−1. Then

F k
νλ(ηz) = ηnk

F k
λ (z)

for k = 1, 2, 3, . . . .

Note that ν is an (n − 1)st root of unity and ω is an (n + d)th root of
unity.
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Symmetries—Lemma III

We can determine the orbit diagram of Fνλ from the orbit diagram of λ.
In particular, if cλ is a critical point for Fλ, then ηcλ is a critical point for
Fνλ. We denote this critical point by cνλ. From Symmetry Lemma 3,
we have

F k
νλ (cνλ) = F k

νλ (ηcλ) = ηnk
F k
λ (cλ) .

Therefore, the orbits of the critical points of Fλ and Fνλ behave
symmetrically with respect to rotation by some power of η.
Consequently, the parameter plane is symmetric under the rotation
λ 7→ νλ.
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Symmetries—Lemma III
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Symmetries—Lemma III

The orbit diagram for the critical
points of

Fλ1(z) = z13 +
λ1

z7 ,

where λ1 = νλ0 is the center of the
"next" principal Mandelbrot setM1,
i.e., the image ofM0 under the
rotation z 7→ νz.
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Checkerboard Julia Sets

All checkerboard Julia sets are homeomorphic.

However, the maps Fλ restricted to their Julia sets are not always
topologically conjugate.

Question: Is there an invariant that tells us when two parameter values
drawn from the main cardioids of different principal Mandelbrot sets
yield conjugate dynamics on their respective Julia sets?

Answer: Yes.
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Some Notation

The principal Mandelbrot set intersecting the positive real axis is
denotedM0.

The remaining n − 2 principal Mandelbrot sets is labeledM1 through
Mn−2 where the ordering is in the counterclockwise direction.

We writeMj ≡Mk if the parameters at the centers ofMj andMk
have conjugate dynamics on their Julia sets.

We denote the center of the main cardioid ofMj by λj . We only
consider these λ-values.
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Dynamical Invariant

For each of the λ-values we are considering, we have n + d
connecting Fatou components, labeled C j

λ for j = 0,1, . . . ,n + d − 1
in the counterclockwise direction

Minimum Rotation Number

The rotation number for C j
λ is the number of connecting components

that C j
λ is rotated through, in either direction, under the map Fλ.

The smallest rotation number over all the C j
λ’s for a given λ is the

minimum rotation number. We denote it by ρ(λ).
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Example of Rotation Number

A C j
λ with ρj = −1.
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Minimum Rotation Number

Minimum Rotation Number and Conjugacies
For a given n and d ,Mj ≡Mk if and only if ρ(λj) = ρ(λk ).
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Conjugacies

Conjugacies

Let ν = e2πi/(n−1). The map Fλ is conjugate to Fµ if and only if
µ = ν j(d+1)λ or µ = ν j(d+1)λ̄ for some integer j .

So all centers whose parameters are of the form νkλ or νk λ̄ where
k ≡ j(d + 1) mod(n − 1) have conjugate dynamics.

Paul Blanchard ( Boston University) Checkerboard Julia Sets BU/Keio U Workshop 30 / 35



Conjugacies

gcd conjugacy
Let g = gcd(n − 1,d + 1).
If λ = νgµ or λ = νgµ̄, then Fλ and Fµ have conjugate dynamics.
Therefore,Mi ≡Mi+g for all i = 0,1, . . . ,n − 1.
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Example: n = 11 and d = 4

n = 11, d = 4

Here, n − 1 = 10 and
d + 1 = 5. Hence, g = 5.
M0 ≡M5,
M1 ≡M6 ≡M4 ≡M9,
M2 ≡M7 ≡M3 ≡M8

As we will see, we have 3
conjugacies classes for this
example.
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Example: n = 13 and d = 7

If n = 13 and d = 7, then g = 4. There are three conjugacy classes.
This figure contains one orbit diagram for each of the three classes.
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Number of Conjugacy Classes

We can also obtain a count of the number of conjugacy classes for a
given n and d .

Theorem
If g is even, there are 1 + g/2 conjugacy classes for Fλ. If g is odd,
there are (g + 1)/2 such conjugacy classes
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Summary

We have a classification of the dynamics for all of the principal
Mandelbrot sets.
What about the others? Various results are known, but so far
there is no dynamical invariant that handles all cases.

Thank you for your attention.
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