Checkerboard Julia Sets and the Families of Rational Maps $F_{\lambda}(z)=z^n+rac{\lambda}{z^d}$

Paul Blanchard

Boston University

Boston University/Keio University Workshop September 16, 2014

Figen Çilingir

Daniel Cuzzocreo

Daniel M. Look Elizabeth D. Russell

Robert L. Devaney

McMullen's Examples: A Cantor Set of Quasi-Circles

$$F_{\lambda}(z) = z^n + \frac{\lambda}{z^d}$$

 $|\lambda|$ small but nonzero in \mathbb{C} , and

$$\frac{1}{n} + \frac{1}{d} < 1$$

For the Julia set on the left,

n = d = 3 and $\lambda = 0.01$.

The n = d = 2 Case: A Cantor Set

$$F_{\lambda}(z) = z^2 + \frac{\lambda}{z^2}, \quad \lambda = 0.2111$$

Paul Blanchard (Boston University)

Checkerboard Julia Sets

The n = d = 2 Case: The Connectedness Locus

$$F_{\lambda}(z) = z^2 + \frac{\lambda}{z^2}$$

The n = d = 2 Case: Period-Three Example

$$F_{\lambda}(z) = z^2 + \frac{\lambda}{z^2}$$

Paul Blanchard (Boston University)

Checkerboard Julia Sets

BU/Keio U Workshop 6 / 35

The n = d = 2 Case: A Misiurewicz Example

$$F_{\lambda}(z)=z^2+rac{\lambda}{z^2},\quad \lambda=-rac{3+2\sqrt{2}}{16}$$

The n = d = 2 Case: A Sierpiński Carpet

$$F_{\lambda}(z) = z^2 + \frac{\lambda}{z^2}, \quad \lambda = -\frac{1}{16}$$

Paul Blanchard (Boston University)

Checkerboard Julia Sets

BU/Keio U Workshop 8 / 35

The n = d = 2 Case: A Sierpiński Carpet

$$F_{\lambda}(z) = z^2 + \frac{\lambda}{z^2}, \quad \lambda = -\frac{1}{16}$$

Sierpiński curve

A subset of the plane is called a *Sierpiński curve* if it is compact, connected, locally connected, nowhere dense, and the boundaries of its complementary domains are disjoint simple, closed curves. In 1958, Whyburn proved the following two remarkable results about such sets.

- Any two Sierpiński curves are homeomorphic.
- The Sierpiński curve/carpet is universal in the sense that it contains a homeomorphic image of any compact, connected, one-dimensional, planar set.

A Checkerboard Julia Set

$$F_{\lambda}(z) = z^n + \frac{\lambda}{z^d}$$

Here
$$n = 4$$
 and $d = 3$.

 $\lambda = 0.18$

Paul Blanchard (Boston University)

Checkerboard Julia Sets

BU/Keio U Workshop 11 / 35

A Checkerboard Julia Set

$$F(z) = z^4 + \frac{0.18}{z^3}$$

Paul Blanchard (Boston University)

Checkerboard Julia Sets

BU/Keio U Workshop 12 / 35

A Checkerboard Julia Set

 $F(z) = z^4 + \frac{0.18}{z^3}$

Paul Blanchard (Boston University)

Checkerboard Julia Sets

The Escape Trichotomy (Devaney, Look, Uminsky)

Let $v_{\lambda} = F_{\lambda}(c_{\lambda})$ be a critical value. Then:

- if v_{λ} lies in B_{λ} , then $J(F_{\lambda})$ is a Cantor set;
- 2 if v_{λ} lies in $T_{\lambda} \neq B_{\lambda}$, then $J(F_{\lambda})$ is a Cantor set of disjoint simple closed curves surrounding the origin;
- in all other cases, $J(F_{\lambda})$ is a connected set. In addition, if $F_{\lambda}^{j}(v_{\lambda}) \in T_{\lambda} \neq B_{\lambda}$ for some $j \ge 1$, then $J(F_{\lambda})$ is a Sierpiński curve.

Critical points:

- n-1 critical points at ∞
- d 1 critical points at 0
- n + d "free" critical points that satisfy the equation

$$z^{n+d} = \left(\frac{d}{n}\right)\lambda.$$

Prepoles: The prepoles satisfy the equation

$$z^{n+d} = -\lambda.$$

Immediate basin B_{λ} of ∞ :

The component of the basin of ∞ that contains $\infty.$

Trap door T_{λ} :

The inverse image of B_{λ} that contains the pole at the origin. Note that it is possible that $B_{\lambda} = T_{\lambda}$.

 F_{λ} has symmetries in both the dynamical plane and the parameter plane.

Symmetry Lemma I

 F_{λ} is conjugate to $F_{\overline{\lambda}}$ by the conjugacy $z \mapsto \overline{z}$.

This symmetry implies that the parameter plane is symmetric under complex conjugation.

Symmetry Lemma II

If
$$\omega$$
 is a $(n+d)^{th}$ root of unity, then $F_{\lambda}(\omega z) = \omega^n F_{\lambda}(z)$.

This second symmetry implies that the Julia set of F_{λ} is symmetric under the map $z \mapsto \omega z$. Similarly, B_{λ} and T_{λ} possess this (n + d)-fold symmetry.

Moreover, since the free critical points are arranged symmetrically with respect to $z \mapsto \omega z$, all of the free critical orbits behave symmetrically with respect to this rotation.

However, it is not necessarily true that all of these critical orbits behave in the same manner.

The most important consequence of Symmetry Lemma 2 is the fact that the orbits of all of the free critical points can be determined from the orbit of any one of them. So the one-dimensional λ -plane is a natural parameter plane for these maps.

There is a Mandelbrot set centered on the positive real axis at

$$\lambda_0 = \left(\frac{d}{n} + 1\right)^{\frac{n+d}{1-n}} \left(\frac{d}{n}\right)^{\frac{d+1}{n-1}}$$

We denote it by \mathcal{M}_0 .

Here, n = 13 and d = 7, and

 $\lambda_0 \approx 0.32.$

The orbit diagram for the critical points of

$$F_{\lambda_0}(z)=z^{13}+\frac{\lambda_0}{z^7},$$

where λ_0 is the center of \mathcal{M}_0 . The critical point on the positive real axis is a fixed point, and it is labeled with the number 0. The orbits of the remaining critical points are determined from the orbit of the fixed point using Symmetry Lemma 2.

Symmetry Lemma III

Suppose that η is an (n + d)(n - 1)st root of unity. Let $\nu = \eta^{n+d}$ and $\omega = \eta^{n-1}$. Then

$$F_{\nu\lambda}^k(\eta z) = \eta^{n^k} F_{\lambda}^k(z)$$

for $k = 1, 2, 3, \ldots$

Note that ν is an (n-1)st root of unity and ω is an (n+d)th root of unity.

We can determine the orbit diagram of $F_{\nu\lambda}$ from the orbit diagram of λ . In particular, if c_{λ} is a critical point for F_{λ} , then ηc_{λ} is a critical point for $F_{\nu\lambda}$. We denote this critical point by $c_{\nu\lambda}$. From Symmetry Lemma 3, we have

$$\mathcal{F}_{
u\lambda}^{k}\left(\mathcal{c}_{
u\lambda}
ight)=\mathcal{F}_{
u\lambda}^{k}\left(\eta\mathcal{c}_{\lambda}
ight)=\eta^{n^{k}}\mathcal{F}_{\lambda}^{k}\left(\mathcal{c}_{\lambda}
ight).$$

Therefore, the orbits of the critical points of F_{λ} and $F_{\nu\lambda}$ behave symmetrically with respect to rotation by some power of η . Consequently, the parameter plane is symmetric under the rotation $\lambda \mapsto \nu \lambda$.

Symmetries—Lemma III

Paul Blanchard (Boston University)

The orbit diagram for the critical points of

$$F_{\lambda_1}(z)=z^{13}+\frac{\lambda_1}{z^7},$$

where $\lambda_1 = \nu \lambda_0$ is the center of the "next" principal Mandelbrot set \mathcal{M}_1 , i.e., the image of \mathcal{M}_0 under the rotation $z \mapsto \nu z$.

- All checkerboard Julia sets are homeomorphic.
- However, the maps F_{λ} restricted to their Julia sets are not always topologically conjugate.

Question: Is there an invariant that tells us when two parameter values drawn from the main cardioids of different principal Mandelbrot sets yield conjugate dynamics on their respective Julia sets?

Answer: Yes.

The principal Mandelbrot set intersecting the positive real axis is denoted $\mathcal{M}_{0}.$

The remaining n-2 principal Mandelbrot sets is labeled M_1 through M_{n-2} where the ordering is in the counterclockwise direction.

We write $M_j \equiv M_k$ if the parameters at the centers of M_j and M_k have conjugate dynamics on their Julia sets.

We denote the center of the main cardioid of \mathcal{M}_j by λ_j . We only consider these λ -values.

For each of the λ -values we are considering, we have n + d connecting Fatou components, labeled C_{λ}^{j} for j = 0, 1, ..., n + d - 1 in the counterclockwise direction

Minimum Rotation Number

The rotation number for C_{λ}^{j} is the number of connecting components that C_{λ}^{j} is rotated through, in either direction, under the map F_{λ} .

The smallest rotation number over all the C_{λ}^{j} 's for a given λ is the *minimum rotation number*. We denote it by $\rho(\lambda)$.

Example of Rotation Number

A
$$C_{\lambda}^{\prime}$$
 with $\rho_{j} = -1$.

Paul Blanchard (Boston University)

Minimum Rotation Number and Conjugacies

For a given *n* and *d*, $M_j \equiv M_k$ if and only if $\rho(\lambda_j) = \rho(\lambda_k)$.

Conjugacies

Let $\nu = e^{2\pi i/(n-1)}$. The map F_{λ} is conjugate to F_{μ} if and only if $\mu = \nu^{j(d+1)}\lambda$ or $\mu = \nu^{j(d+1)}\overline{\lambda}$ for some integer *j*.

So all centers whose parameters are of the form $\nu^k \lambda$ or $\nu^k \overline{\lambda}$ where $k \equiv j(d+1) \mod(n-1)$ have conjugate dynamics.

gcd conjugacy

Let g = gcd(n - 1, d + 1).

If $\lambda = \nu^{g} \mu$ or $\lambda = \nu^{g} \overline{\mu}$, then F_{λ} and F_{μ} have conjugate dynamics. Therefore, $\mathcal{M}_{i} \equiv \mathcal{M}_{i+q}$ for all $i = 0, 1, \dots, n-1$.

n = 11, *d* = 4

 Here, n - 1 = 10 and d + 1 = 5. Hence, g = 5.

•
$$\mathcal{M}_0 \equiv \mathcal{M}_5$$
,
 $\mathcal{M}_1 \equiv \mathcal{M}_6 \equiv \mathcal{M}_4 \equiv \mathcal{M}_9$,
 $\mathcal{M}_2 \equiv \mathcal{M}_7 \equiv \mathcal{M}_3 \equiv \mathcal{M}_8$

• As we will see, we have 3 conjugacies classes for this example.

Example: n = 13 and d = 7

If n = 13 and d = 7, then g = 4. There are three conjugacy classes. This figure contains one orbit diagram for each of the three classes. We can also obtain a count of the number of conjugacy classes for a given n and d.

Theorem

If *g* is even, there are 1 + g/2 conjugacy classes for F_{λ} . If *g* is odd, there are (g + 1)/2 such conjugacy classes

- We have a classification of the dynamics for all of the principal Mandelbrot sets.
- What about the others? Various results are known, but so far there is no dynamical invariant that handles all cases.

Thank you for your attention.