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Abstract. Gyroscopes are mechanical device for measuring and maintaining orienta-
tion. Advances in manufacturing techniques in microelectromechanical systems (MEMS)
allow for mass manufacturing of low-cost and miniaturized vibratory gyroscopes. Small
disturbances, such as thermo interference, can increase phase drifts in the oscillatory sig-
nal and give inaccurate results. To remedy the aforementioned problem, researchers are
considering networks of coupled MEMS gyroscopes. Experimental and numerical studies
have shown that networked MEMS gyroscopes can increase the sensitivity while minimiz-
ing phase drift. In this note, we study a network of symmetrically coupled gyroscopes
in a Hamiltonian setting. We first investigate the effects of coupling topology on the
gyroscopic array. Normal form techniques are used to obtain the equations of motion of
the reduced system. The techniques outlined here are applicable to generic symmetric
Hamiltonian networks.

1. MEMs Gyroscopes

From the recent numerical work by Vu et al. [2011], we discovered that coupling multiple
vibratory gyroscopes together as a navigation system can minimize the effects of noise,
material imperfections, phase drift, and power consumption relative to a single device con-
figuration. From experiments, we know that the damping and forcing coefficients have a
relative small scale compared to other system parameters. The equations of the network
model can be written as a Hamiltonian system and the dynamics can be studied as per-
turbations of the Hamiltonian structure. In this section, we develop a differential equation
model of a network of gyroscopes in a Hamiltonian setting.

1.1. A Single Gyrosocpe. As seen from Figure 1, a vibratory gyroscope is represented
as a spring-mass system. In this system, x and y represents the directions in the drive and
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sense modes, respectively and z represent the axis perpendicular to the xy-plane. Then,
the governing equations can be written as

mẍ+ cxẋ+ κxx+ µxx
3 = fe(t) + 2mΩz ẏ

mÿ + cyẏ + κyy + µyy
3 = − 2mΩzẋ.

where m is the proof mass, Ωz is the angular rate of rotation along the z-axis, cx (cy),
κx (κy) and µx (µy) are the damping, spring and nonlinear constants along the x- (y-
) directions, respectively. Typical forcing term has sinusoidal form fe(t) = Ad coswdt.
Coriolis forces appear in the driving and sensing modes as Fcx = 2mΩz ẏ and Fcy =
−2mΩzẋ.

Figure 1. A diagram of a vibratory gyroscope system. A known driving
force induces the spring-mass system to vibrate in the x-axis. An external
rotating force, perpendicular to the xy-plane induces oscillations in the y-
direction by transferring energy through the Coriolis force. Using the known
driving force as a reference, the measured oscillations can be used to detect
and quantify the rate of rotation

1.2. A Network of Gyroscope. To form a network of gyroscopes, we incorporate the
coupling terms into the model as

(1)
mẍi + cxẋi + κxx+ µxx

3
i = fe(t) + 2miΩz ẏi +

∑
i∼j

λijh(xi, xj)

mÿi + cyẏi + κyy + µyy
3
i = − 2miΩzẋi,
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where i ∼ j denotes all the jth gyroscopes that are coupled to the ith gyroscope, λij denotes
the coupling strength constant, and h(xi, xj) represents the coupling function.

1.3. Hamiltonian Formulation. As mentioned earlier, the damping and the forcing co-
efficients are relatively small in comparison to other parameters in the system. Thus, we
may use the Hamiltonian approach to study the dynamics. First, we discard the damp-
ing and the forcing terms in (1) by assuming cx = cy = 0 and fe(t) = 0. We further
assume that the coefficients are identical in both directions and for each gyroscope and let
qi = (qi1, qi2)

T = (xi, yi)
T be the configuration components and pi = mq̇i + Gqi. We can

write the Hamiltonian form of i-th gyroscope as(
q̇i
ṗi

)
=

(
−G

m
1
mI2

−(K − 1
mG

2 − λΓhxi(0, 0, 0)) −G
m

)(
qi
pi

)
+

(
0

−fi + λΓ (h(xi−1, xi, xi+1)− hxi(0, 0, 0)xi)

)
,

where G =

(
0 −mΩ
mΩ 0

)
, Γ =

(
1 0
0 0

)
, K = diag(κ, κ), and fi =

(
µx3i
µy3i

)
.

2. System Analysis

Given the complexity of the gyroscopic network, we will show the advantages of using the
Hamiltonian approach in this section. First, topology of the coupled gyroscopic systems
are considered. We discuss different topologies and their effects on the network. Then,
taking advantage of the structure of the network, we use symmetry methods to simplify
the system. Eigenvalues and critical bifurcation point of a symmetry-breaking bifurcation
are obtained.

2.1. Topological Considerations. We begin our analysis by considering the system as
unidirectionally and bidirectionally connected rings. These configurations are illustrated
in Figure 2. Let Yi = (qi, pi)

T , then we may write the system as

Ẏ = MY + F (Y ),

where Y = (Y1, . . . , Yn) and F (Y ) = (f1, . . . , fn). Let 0i and Ii denote the i × i zero and
identity matrices. Then, we can define the skew-symmetric matrix

J2i =

[
0i Ii
−Ii 0i

]
.

Recall that a Hamiltonian matrix must satisfy the condition

MTJ + JM = 0,
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where J = diag

n times︷ ︸︸ ︷
(J4, . . . , J4). We can show that the linear system of the unidirectional case

does not satisfy the Hamiltonian condition, but the bidirectional case does. The proof is
left to the reader as an exercise or see Buono et al. [2014].

1

2

3

. . .

n

(a) Unidirectionally coupled gyroscopes.
Coupling function: h(xi−1, xi, xi+1) =
xi+1 − xi.

1

2

3

. . .

n

(b) Bidirectionally coupled gyroscopes.
Coupling function: h(xi−1, xi, xi+1) =
(xi+1 − xi) + (xi−1 − xi).

Figure 2. The coupled gyroscopic systems represented as directed graphs.

2.2. Isotypic Decomposition. Given that the unidirectional ring is not Hamiltonian, we
will not further consider this case. To take advantage the symmetric structure present in the
bidirectional ring, we construct a transformation matrix P so that, under this coordinate
transformation, the linear system of the network decomposes into its isotypic components.
Details for constructing this matrix for the gyroscopic network can be found in Buono
et al. [2014]. For general symmetric networks, please see Golubitsky et al. [1988] and the
references therein.

Let P be a matrix with the aforementioned properties and U = PY , then the system can
be written as

U̇ =MU + F(U).

When n is odd, the linear part of the system is

M = diag
(
M0,M1,M1, . . . ,Mbn/2c,Mbn/2c

)
,

where

Mj =

(
−G

m
1
mI2

−(K − 1
mG

2 + 2λΓ(1− cos (2πj/N)) −G
m

)
.

Similarly, when n is even, the linear part of the system is

M = diag
(
M0,M1,M1, . . . ,Mn/2−1,Mn/2−1,Mn/2

)
.
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The block diagonalization of the linear system allows us to calculate the eigenvalues and
they are

ρ±j =
1√
m

√
−
(
κ+ 2mΩ2 + λ

(
1− cos

2πj

n

))
±√sj and − ρ±j ,

where sj = 4mΩ2(κ+mΩ2 +λ(1−cos (2πj/n)))+λ2(1−cos (2πj/n))2. More importantly,
we also determined the critical point of a symmetry-breaking bifurcation and it is λ∗bn/2c =

−κ
2(1− cos(2πj/n))

.

3. Symmetric Normal Form

Due to the topological structure of the gyroscopic network, we were able to put the linear
system in block diagonal form and obtain critical information on the bifurcation dynamics
of the system. To better understand the bifurcating solutions, we will determine the
corresponding normal form. The linear normal form can be obtained by finding a suitable
symplectic linear transform. For the higher order terms, we apply invariant theory to
simplify the calculations.

3.1. Linear Hamiltonian Normal Form. To begin, we must find a transformation ma-
trix Q that would put the linear part of the system into Hamiltonian linear normal form.
Details of finding this symplectic transformation matrix can be found in Meyer et al. [2008]
and Burgoyne and Cushman [1974]. Due to the length of the discussion, we again refer
the reader to Buono et al. [2014] for the specific details of the symplectic transformation
Q.

Assume that we have obtained Q and let X = QU , the system can be written in the
following form

Ẋ = MX + F(X).

More importantly, the Hamiltonian of the network can be written as

H(X) = H̃0(X) +H2(X).

where ˜̇ denotes a function already in normal form, H̃0(X) and H2(X) represent polyno-
mials of degree two and four, respectively. We note that H1 terms are not present in the
Hamiltonian function because there are no quadratic terms present in the system.

3.2. Nonlinear Hamiltonian Normal Form with Symmetry. Using the linear terms,
we may proceed to simplify the higher-order terms of the Hamiltonian. For Hamiltonian
systems without symmetry, we need to use the method of Lie triangle [Meyer et al., 2008].
For discussion on the normal form of symmetric systems, please see Golubitsky et al. [1988].
In the bidirectional case, the system has dihedral (Dn) symmetry. We will take advantage
of this topological structure and simplify our calculations.
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Recall that a function is invariant under symmetry group Γ if H(γX) = H(X) for all
γ ∈ Γ. Since the system is Dn-symmetric, the normal form of its Hamiltonian must be Dn-
invariant. In order words, the terms in H2(X) that are also Dn invariant are the only terms
that could be part of the symmetric normal form. Thus, we first calculate the invariants
of the system. Comparing the list of invariants and the terms in H2(X), we may drop
any terms that are not part of the invariant set and obtain the symmetric normal form
for the higher order terms. Neusel [2007] and Paule and Sturmfels [2008] are references for
invariant theory and they provide algorithms on calculating the invariants.

As a result, we may write a further simplified Hamiltonian function as

H̃(X) = H̃0(X) + H̃2(X) +O(X5).

For example, when n = 3, the Hamiltonian of the system in normal form is

H̃(X) =
ρ1
2

(x21,1 + x21,3) +
ρ2
2

(x21,2 + x21,4) +
1

2
(x22,2 + x23,2) +

√
κ+ 4Ω2

2
(x22,1 + x23,1)

+

√
κ+ 4Ω2

2
(x22,3 + x23,3)

1

8

µκ2

(κ+ 4 Ω2)2
(
x22,4 + x23,4

)2
.

4. Conclusion

In this note, we used MEMS gyroscopes as a motivating example to study coupled dy-
namical systems. We outlined the methods used in analyzing a bidirectionally coupled
gyroscopic system. The steps outlined in this method can be used for other networks with
symmetry [Matus-Vargas et al., 2014., Chan et al., 2014]. For future work on Hamiltonian
networks, one can set the problem within the groupoid formalism by Golubitsky et al.
[2005]. In this context, we may study networks that do not have symmetric spatial struc-
ture. Topological criteria and generic bifurcations for Hamiltonian coupled cell networks
are currently underway in Chan [2014].
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