A mathematical model for the sexual selection of extravagant and costly mating displays

Sara Clifton
Northwestern University
Engineering Sciences and Applied Math
BU/Keio University Workshop
Sept. 16th, 2014

In Collaboration with Professor Danny Abrams
Northwestern University

Department of Engineering Sciences and Applied Mathematics

High cost of sex appeal

• Requires extra resources (Emlen 1999)

Department of Engineering Sciences and Applied Mathematics

High cost of sex appeal

• Cumbersome

Department of Engineering Sciences and Applied Mathematics

High cost of sex appeal

Dangerous

Department of Engineering Sciences and Applied Mathematics

Handicap Principle

- Handicapping ornaments an honest signal of high quality (Zahavi 1975)
 - Parasite resistance (Hamilton, Zuk 1982)
 - Testosterone levels (Ditchkoff et al. 2001)
 - Antioxidant production (Wenzel et al. 2012)

Department of Engineering Sciences and Applied Mathematics

Model

- ullet Assume each animal has an intrinsic health $\,h_i$
- Assume intrinsic cost/benefit of ornamentation changes individual fitness of animal:

$$\varphi_i^{(ind)} = a_i(2a_{opt} - a_i)$$

Advertising size

Optimal advertising size as a function of h_i

Department of Engineering Sciences and Applied Mathematics

Model

Assume a social benefit of larger-than-average ornaments:

$$\varphi_i^{(soc)} = \operatorname{sgn}(a_i - \bar{a})|a_i - \bar{a}|_{\uparrow}^{\gamma}$$

Ensures monotonicity

Sensitivity to deviations from the population mean

Department of Engineering Sciences and Applied Mathematics

Model

 Incorporate social and individual effects into a total fitness:

$$\varphi_i = s \,\varphi_i^{(soc)} + (1 - s) \,\varphi_i^{(ind)}, \quad 0 \le s \le 1$$

Tunes relative importance of social effects

Department of Engineering Sciences and Applied Mathematics

Model

 Incorporate social and individual effects into a total fitness:

$$\varphi_i = s \,\varphi_i^{(soc)} + (1 - s) \,\varphi_i^{(ind)}, \quad 0 \le s \le 1$$

Tunes relative importance of social effects

Large social sensitivity γ

Department of Engineering Sciences and Applied Mathematics

Model

 Create a dynamical system where equilibria correspond to fitness extrema:

$$\frac{\mathrm{d}a_i}{\mathrm{d}t} = c \frac{\partial \varphi_i}{\partial a_i}$$
 Time scaling constant

Department of Engineering Sciences and Applied Mathematics

Model

 Create a dynamical system where equilibria correspond to fitness extrema:

$$\frac{\mathrm{d}a_i}{\mathrm{d}t} = c \frac{\partial \varphi_i}{\partial a_i}$$

Time scaling constant

$$\frac{\mathrm{d}a_i}{\mathrm{d}t} = c \Big[s \, \gamma \Big(1 - \frac{1}{N} \Big) |a_i - \bar{a}|^{\gamma - 1} \\ + 2 \, (1 - s) (a_{opt} - a_i) \, \Big]$$
 Number of individuals

$$+2(1-s)(a_{opt}-a_i)$$

Department of Engineering Sciences and Applied Mathematics

Preliminary Numerical Results

low social sensitivity

high social sensitivity

(b)
$$\gamma = 3/2$$

(c)
$$\gamma = 2$$

Department of Engineering Sciences and Applied Mathematics

Investigate uniform fixed point

• Reduce system to one equation (taking $a_i = a$)

$$\frac{\mathrm{d}a}{\mathrm{d}t} = c \Big[2 (1-s)(a_{opt} - a) \Big]$$

- Fixed point is $a = a_{opt}$
- Look at linear stability of fixed point within $a_i=a$ manifold

Department of Engineering Sciences and Applied Mathematics

Uniform fixed point

- $\bullet \;$ Unstable for $\gamma < 2$; stable for $\gamma > 2$
- \bullet Bifurcation at $\gamma=2\,$ due to quadratic individual fitness

Department of Engineering Sciences and Applied Mathematics

Investigate two niche fixed point

- Consider two groups, with ornament sizes a_1, a_2 and fraction x in group 1
- Reduce to two niche system

$$\frac{\mathrm{d}a_1}{\mathrm{d}t} = \cdots, \quad \frac{\mathrm{d}a_2}{\mathrm{d}t} = \cdots$$

• System has one fixed point, a function of \boldsymbol{x} and model parameters

Department of Engineering Sciences and Applied Mathematics

Two niche fixed point

• Within two niche manifold, fixed point is linearly stable for $\gamma < 2$ for all fractions x

Department of Engineering Sciences and Applied Mathematics

Two niche fixed point

- Within two niche manifold, fixed point is linearly stable for $\gamma < 2$ for all fractions x
- ullet Problem: Numerics show only *certain ranges* of x are stable

Department of Engineering Sciences and Applied Mathematics

Numerical steady states

Department of Engineering Sciences and Applied Mathematics

Numerical steady states

Department of Engineering Sciences and Applied Mathematics

Expected stable steady states

Department of Engineering Sciences and Applied Mathematics

Form continuum model

Go from microscopic to macroscopic view:

$$\frac{\frac{\mathrm{d}a_1}{\mathrm{d}t} = \cdots}{\frac{\mathrm{d}a_2}{\mathrm{d}t} = \cdots} \\
\vdots \\
\frac{\mathrm{d}a_N}{\mathrm{d}t} = \cdots$$

$$N \to \infty \qquad \frac{\partial p}{\partial t} = \cdots$$

System of N ordinary DEs becomes one partial DE for a distribution of ornament sizes p(a,t)

Department of Engineering Sciences and Applied Mathematics

Continuum model

• Distribution satisfies continuity equation:

$$\frac{\partial p}{\partial t} = -\frac{\partial}{\partial a} \left(p \frac{\mathrm{d}a}{\mathrm{d}t} \right)$$

Department of Engineering Sciences and Applied Mathematics

Continuum model

• Distribution satisfies continuity equation:

$$\frac{\partial p}{\partial t} = -\frac{\partial}{\partial a} \left(p \frac{\mathrm{d}a}{\mathrm{d}t} \right)$$

where

$$\frac{\mathrm{d}a}{\mathrm{d}t} = c \left[s\gamma |a - \bar{a}|^{\gamma - 1} + 2(1 - s)(a_{opt} - a) \right]$$

Department of Engineering Sciences and Applied Mathematics

Continuum model

• Distribution satisfies continuity equation:

$$\frac{\partial p}{\partial t} = -\frac{\partial}{\partial a} \left(p \frac{\mathrm{d}a}{\mathrm{d}t} \right)$$

where

$$\frac{\mathrm{d}a}{\mathrm{d}t} = c \left[s\gamma |a - \bar{a}|^{\gamma - 1} + 2(1 - s)(a_{opt} - a) \right]$$

$$\bar{a}(t) = \int_{-\infty}^{\infty} a(t) p(a, t) da$$

Department of Engineering Sciences and Applied Mathematics

Investigate two niche steady state

Two niche steady state is

$$p = x \delta(a - a_1) + (1 - x) \delta(a - a_2)$$

Department of Engineering Sciences and Applied Mathematics

Investigate two niche steady state

Two niche steady state is

$$p = x \delta(a - a_1) + (1 - x) \delta(a - a_2)$$

• "Perturb" delta functions into Gaussians ($\sigma(t) << 1$)

$$p = x \mathcal{N} \left[a_1, \sigma_1(t)^2 \right] + (1 - x) \mathcal{N} \left[a_2, \sigma_2(t)^2 \right]$$

Department of Engineering Sciences and Applied Mathematics

Investigate two niche steady state

 Plug this into continuity equation, solve for dynamics of σ_1, σ_2 near the fixed points a_1, a_2

$$\frac{d\sigma_1}{dt} = \lambda_1 \sigma_1 + \mathcal{O}(\sigma_1^3)$$
$$\frac{d\sigma_2}{dt} = \lambda_2 \sigma_2 + \mathcal{O}(\sigma_2^3)$$

$$\frac{\mathrm{d}\sigma_2}{\mathrm{d}t} = \lambda_2 \sigma_2 + \mathcal{O}(\sigma_2^3)$$

Two niche fixed point is linearly stable when

$$\lambda_1, \lambda_2 < 0$$

Department of Engineering Sciences and Applied Mathematics

Two niche steady state stable region

Department of Engineering Sciences and Applied Mathematics

Recall numerical stable region

Department of Engineering Sciences and Applied Mathematics

Non-uniform health

- Add variation in animal health (affects optimal ornament size)
- Sample numerical results:

ornament size

Department of Engineering Sciences and Applied Mathematics

Arctic charr brightness (N=20)

Peacock eye spots (N=24)

Dung beetle horn length (N=223)

Viren plumage color (N=62)

Department of Engineering Sciences and Applied Mathematics

Recap

- Minimal model has only one- and two-niche steady states
- For small social sensitivity, stable fixed point is two niche

Department of Engineering Sciences and Applied Mathematics

Advertising is honest (mostly)

ullet Rank correlation au between intrinsic health and ornament size is close to 1

$$\gamma < 1$$

$$\gamma > 1$$

Department of Engineering Sciences and Applied Mathematics

Summary of model predictions

Model predicts two niche stratification of advertising

Department of Engineering Sciences and Applied Mathematics

Summary of model predictions

Model predicts two niche stratification of advertising

Social effects lead to largerthan-optimal ornaments (lower herd fitness)

Department of Engineering Sciences and Applied Mathematics

Summary of model predictions

Model predicts two niche stratification of advertising

Social effects lead to largerthan-optimal ornaments (lower herd fitness)

Handicap principle implies honest signaling

Department of Engineering Sciences and Applied Mathematics

Thanks

Professor Danny Abrams

Grant No. DGE-1324585

James S. McDonnell Foundation

Department of Engineering Sciences and Applied Mathematics

Supplemental

• Two-niche system for large N:

$$\frac{da_1}{dt} = c \left[s\gamma \left((1-x) |a_1 - a_2| \right)^{\gamma - 1} + 2(1-s)(a_{opt} - a_1) \right]$$

$$\frac{da_2}{dt} = c \left[s\gamma \left(x |a_1 - a_2| \right)^{\gamma - 1} + 2(1-s)(a_{opt} - a_2) \right]$$

• Two-niche fixed point for large N:

$$a_{1} = a_{opt} + \left(\frac{s\gamma}{2(1-s)}\right)^{\frac{\gamma-3}{\gamma-2}} \left((1-x) \left| x^{\gamma-1} - (1-x)^{\gamma-1} \right|^{\frac{1}{2-\gamma}} \right)^{\gamma-1}$$

$$a_{2} = a_{opt} + \left(\frac{s\gamma}{2(1-s)}\right)^{\frac{\gamma-3}{\gamma-2}} \left(x \left| x^{\gamma-1} - (1-x)^{\gamma-1} \right|^{\frac{1}{2-\gamma}} \right)^{\gamma-1}$$

Department of Engineering Sciences and Applied Mathematics

Supplemental

More general model: Assume only

$$\varphi_i = s \varphi_i^{(soc)} + (1 - s) \varphi_i^{(ind)}, \quad 0 \le s \le 1$$
Monotonic increasing

Monotonic increasing

Singly-peaked at a_{opt}

• Then fixed point of $\frac{\mathrm{d}a_i}{\mathrm{d}t}=c\frac{\partial\varphi_i}{\partial a_i}$ can only exist for $a_i\geq a_{opt}$

Department of Engineering Sciences and Applied Mathematics

Supplemental

Further assume

$$\frac{\mathrm{d}^3}{\mathrm{d}a_i^3}\varphi_i^{(soc)} > 0 \quad \text{or} \quad \frac{\mathrm{d}^3}{\mathrm{d}a_i^3}\varphi_i^{(soc)} < 0$$

except possibly at $a=\bar{a}$

• Additionally, assume

$$\frac{\mathrm{d}^3}{\mathrm{d}a_i^3}\varphi_i^{(ind)} \equiv 0$$

Department of Engineering Sciences and Applied Mathematics

Supplemental

Only possible phase planes are

