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1 Review of numerical continuation [11]

See the lecture notes [11] for more details. We are interested in problems of the form

Ut “ F pU ;µq U P Rn, µR

where µ is a parameter. For example, consider

ut “ ´µ ` u2, u P R. (1.1)

Suppose that we are interested in steady state solutions to (1.1). One can easily see that such solutions satisfy

u2 “ µ. Thus,

u “

"
˘

?
µ µ ě 0

DNE µ ă 0

Thus, steady state solutions depend on the parameter µ.

The idea behind continuation is to try to use information about known solutions to find “nearby” solutions. This

is possible by the implicit function theorem. For example, to find steady state solutions to equation (1.1), we

look for zeros of the function fpu;µq :“ u2 ´ µ. Suppose that we know the exact solution u “ u˚ for a fixed

µ “ µ˚; then it must be true that fpu˚;µ˚q “ 0. One can easily check that fupu˚;µ˚q ‰ 0 provided u ‰ 0; thus,

by the implicit function theorem, there exists function gpµq for µ near µ˚ so that fpgpµq;µq “ 0. The curve gpµq

is the curve of equilibria in parameter space; see Figure 1. This means that to perform numerical continuation

we need a method of finding zeros of functions.

1.1 Newton’s method

Consider fµpuq :“ fpu;µq with µ fixed. We assume for convenience that f : R Ñ R. We are interested in finding

the value of u so that fµpuq “ 0. We take as our initial guess u0 :“ u˚ where fpu˚;µ˚q “ 0 and µ is very close

to µ˚. Then our next guess u1 is computed by finding the intersection of the tangent line to fµ at u0 with the

u “ 0 axis; see Figure 2. In particular,

u1 “ u0 ´
fpu0q

fupu0q
.

1



Figure 1: Existence of equilibrium solutions for µ near µ˚. The curve of such solutions is given by gpµq, where
gpµq exists due to the implicit function theorem.

Figure 2: Step 1 of Newton’s method to find zeros of fµpuq.

One then repeats the process to find successive guesses for ueq:

un`1 “ un ´
fpunq

fupunq
.

and one can show that un Ñ ueq as n Ñ 8.

For numerical continuation, the procedure is as follows. We are interested in computing the curve of parameter-

dependent equilibria tU : F pUq “ 0u where U “ pu, µq. We assume that we know one point on the curve

U˚ “ pu˚, µ˚q. We compute the tangent to the curve of equilibria at U˚ by finding tV˚ : FU pU˚qV˚ “ 0u. We

take a small step h ! 1 along this tangent space; this is our initial guess for Newton’s method. We then perform

Newton’s method on the subspace which is perpendicular to the tangent space tU : xU ´U˚, V˚y “ h, ||V˚|| “ 1u.

See Figure 3.

A very good numerical continuation package exists known as AUTO07p [4].

2 Our problem: Experimental observation of oscillons [8]

The motivation for this talk is oscillons: spatially localized, temporally oscillating structures that emerge from

a uniform background state in parametrically forced nonlinear systems.

Oscillons were first observed in an experiment performed by Umbanhowar et al. using granular media [13]. In that

work, the researchers filled a 127 mm diameter circular disk with an approximately 3 mm thick layer of bronze
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Method

Figure 3: Using Newton’s method for numerical continuation. The blue curve is the curve of parameter dependent

equilibria, which we would like to find. We assume that we know one point on this curve U˚. We perform Newton’s

method on the subspace tU : xU ´ U˚, V˚y “ h, ||V˚|| “ 1u with U “ U˚ ` hV˚, ||V˚|| “ 1, as our initial guess.

spheres. The bronze spheres were approximately 0.15-0.18 mm in diameter, so that the layer was approximately

17 spheres thick. The circular disk was then placed on a vibrating table and subjected to vertical vibrations.

Oscillating heaps of beads were seen to emerge for certain values of the forcing frequency and amplitude. These

heaps were seen to oscillate between a heap and a crater at half the forcing frequency; see Figure ??. The

oscillons were observed in a variety of arrangements; see Figure 4.

Oscillons were subsequently observed in a variety of experimental settings including Newtonian fluids [1, 12, 18,

19], chemical reactions [10, 15, 17], and colloidal suspensions [7]. In chemical reactions, oscillons have also been

observed in autonomous systems [14] and in systems subjected to global feedback [16]. The frequency of the

pattern oscillation is often close to the forcing frequency or half the forcing frequency, and we refer to these

patterns as 1:1 and 2:1 resonance oscillons, respectively. See Figure 5 for some examples.

3 2:1 forced complex Ginzburg–Landau equation

We model the systems in which oscillons have been observed with the 2:1 forced complex Ginzburg–Landau

(CGL) equation. We first explain the derivation and relevance of this equation to our problem. We then review

known results on the 2:1 forced CGL in one space dimension; we are interested in the planar case.

3.1 Derivation [8]

We illustrate the derivation of the forced CGL for general forced systems by studying this issue in the context

of forced reaction–diffusion systems. The details of this derivation are shown as part of [8]. We summarize the

main ideas. We consider a periodically forced parameter dependent reaction–diffusion system

ut “ ∆u ` fpu; νq ` Γe2iΩt, u P Rm, (3.1)

with Γ, Ω, ν P R. We assume fp0; νq “ 0 for all ν so that equation (3.1) supports the homogeneous rest solution

upx, tq ” 0. It has been argued, see for instance [3, 5], that the 2:1 forced complex Ginzburg–Landau (CGL)

equation

AT “ p1 ` iαq∆A ` p´µ ` iωqA ´ p1 ` iβq|A|2A ` γA, A P C (3.2)
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(a) dipole (b) polymeric chain

(c) triangular tetramer (d) square ionic lattice

Figure 4: Top view of various arrangements of oscillons in a granular system. The system was illuminated from

above so that the bright spots correspond with heaps and the dark spots correspond with craters. The time between

the panels in Figures a-c is one forcing period. Figure taken from [13, Figure 3].

is a modulation equation for (3.1) near a supercritical Hopf bifurcation of the rest state u “ 0. In other words,

ApX,T q captures the “slow” dynamics of the envelope for a carrier wave evolving on the fast time scale t; see

Figure 6. If the slow and fast scales could be completely separated, then one could write

upt;X,T q “ �ApX,T qeiΩt, (3.3)

with X :“ �x and T :“ �2t. The 2:1-ratio between the oscillation frequency of the forcing in (3.1) to that of the

ansatz (3.3) is consistent with experimental findings. In equation (3.2), α, β, µ, ω, γ P R are real parameters

which can be obtained from the original equation (3.1). In this section we use a multiple scales analysis to

formally derive (3.2) as the amplitude equation for (3.1). We remark that since the ansatz (3.3) explicitly factors

out the time oscillations, oscillons correspond with localized steady state solutions to (3.2); i.e., spatially localized

solutions to

0 “ p1 ` iαq∆A ` p´µ ` iωqA ´ p1 ` iβq|A|2A ` γA, A P C.

3.1.1 Hypotheses

We assume that the unforced reaction–diffusion system

utpx, tq “ D∆upx, tq ` fpupx, tq; νq, u P Rm, x P Rn (3.4)

supports a homogeneous rest solution upx, tq “ u0 so that fpu0, νq “ 0 for all ν; without loss of generality, we

assume u0 “ 0. We assume that f is smooth in both u and ν so that we can Taylor expand

fpu, νq “ fup0; 0qu ` N2ru, us ` N3ru, u, us ` fνp0; 0qν ` fuνp0; 0quν ` . . . (3.5)

where N2r. . .s and N3r. . .s are the appropriate bilinear and trilinear forms. In what follows, we consider only

isotropic solutions to (3.4) so that we can take n “ 1 without loss of generality.
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described in [11] and via direct visualization from the side
with shutter speeds of 0.1–1 ms, enabling measurement
of instantaneous amplitudes.

In Fig. 1a we present a typical time sequence of a single
oscillon, on the background of a flat underlying state.
Similar states had been previously noted in [12]. In con-
trast to previously observed subharmonic oscillons, the os-
cillon period, 2p!v0, is harmonic with the basic forcing
frequency. A typical phase space for a 3:2 forcing ratio is
shown in Fig. 1b. Oscillons typically appear near the bi-
critical point, where states corresponding to both v1 and
v2 are concurrently unstable. As described in [10,11,13]
square (hexagonal) patterns correspond to regions of phase
space dominated by response frequencies that are subhar-
monics (harmonics) of v0. Oscillons are formed only in
regions of phase space where the harmonic frequency is
dominant. On a subsequent change of either gz or x , how-
ever, they can persist in narrow regions on the subharmonic
side bicritical point as, for example, when coexisting with
squares (see Fig. 1).

Oscillons (Fig. 1c) can be surrounded by patterns having
a number of different symmetries. When surrounded by
squares, the oscillons and squares oscillate with respective
angular frequencies of v0 and 3v0!2. Oscillons (Fig. 1c,

FIG. 1. (a) A time sequence of an oscillon observed at
v0!"2p# ! 25 Hz, n ! 47 cS, and h ! 0.33 cm. The frames,
of width 1.6 cm, are 6.7 ms apart. (b) A typical phase diagram
[v0!"2p# ! 30 Hz, h ! 0.2 cm, n ! 23 cS]. Besides the
square, hexagon, SSS, and rhomboid states reported previously
[13], we observe oscillons (whose locations are indicated by
the dark arrows) that can coexist with the flat state [(c) left) at
n ! 47 cS, v0!"2p# ! 25 Hz, and h ! 0.35 cm; square state
and hexagonal-based oscillon state [(c) center and (c) right]
at v0!"2p# ! 30 Hz and h ! 0.2 cm. Filled (open) symbols
describe transition lines measured for fixed x and increasing
(decreasing) gz . The hatched region is a transition region
between hexagonal and HBO patterns. All states were obtained
with a 3:2 forcing ratio and f ! 0±.

right) are also observed in a large area of phase space on
a background of a superlattice state formed by two super-
imposed hexagonal lattices (labeled hexagonal-based os-
cillons or HBO) with a relative orientation of 22± 6 2±.
In the center of each superhexagon a large amplitude os-
cillon is present while the nearest neighbors have smaller
amplitudes. This state is qualitatively similar to superlat-
tice I states observed in [14,15]. When surrounded by a
flat state, oscillons are metastable with typical lifetimes of
103 104 oscillation periods. The amount of both hystere-
sis and lifetimes of the oscillon states increases with the
fluid viscosity.

Oscillons are readily discerned within many different
patterns such as the twelvefold quasipatterns formed in a
5:4 forcing ratio (Fig. 2b) and spatially subharmonic su-
perlattice (SSS) states (Fig. 2c). Although not easily ap-
parent from above, the high-amplitude characteristic form
of oscillons within these patterns is readily seen when the
state is viewed from the side. In contrast to the temporally
harmonic response of the oscillons when surrounded by
either the flat or hexagonal states, oscillons surrounded by
SSS states [11] echo the temporally subharmonic response
observed in these patterns. Spatially, this response is seen
as a lateral shift of the oscillons’ position every 2p!v0.

Multifrequency oscillons can, as in [4,5], form bound
states such as the doublet and triplet shown in Fig. 2a. As
the fluid viscosity is increased there is more of a tendency
to form multioscillon bound states with a larger number
of components (Fig. 2d). This suggests that the attractive
force between oscillons increases with n. Within bound
states all of the component oscillons are in phase with one
another. In contrast to single-frequency oscillons where
larger structures are created with increased driving, two-
frequency oscillons on a flat background are destabilized
by an increase in the driving amplitude. When located
within a pattern, however, increased driving amplitude gen-
erally results in the creation of a larger number of oscillons
and, for high driving amplitudes, droplet ejection.

FIG. 2. Typical oscillons within a (a) flat state (n ! 47 cS,
75!50 Hz); doublet and triplet (right) at h ! 0.4 cm and a
triplet ( left) at h ! 0.33 cm. (b) Twelvefold quasipattern at
n ! 47 cS, 75!60 Hz, h ! 0.33 cm. (c) An SSS pattern (n !
23 cS, 75!60 Hz, h ! 0.2 cm). (d) A localized hexagonal os-
cillon structure (n ! 87 cS, 60!40 Hz, h ! 0.4 cm).
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(a) Newtonian fluid. The left panel is the time sequence for a

single oscillon. The right two panels represent two different

configurations of oscillons at a single snapshot in time. Figure

taken from [1, Figures 1 and 2].

possibility of achieving truly stationary conditions. The use
of closed systems is feasible only for the BZ, CIMA
!chlorite-iodide-malonic acid", and related reactions, in
which the dynamic behavior of interest persists for an hour
or more. After we describe the observed phenomena, we use
these as a basis for further theoretical discussion of various
types of models in Sec. III. We then conclude with some
general considerations and thoughts about future research di-
rections in this field.

II. EXPERIMENTAL EXAMPLES OF LOCALIZED
REACTION-DIFFUSION PATTERNS

We present here examples of several types of localized
patterns found in reaction-diffusion systems. Most, but by no
means all, of these patterns have been studied in the BZ
system, either in a gel reactor !CFUR" or in a closed system
in which the reactants are mixed with octane and the surfac-
tant aerosol OT !BZ-AOT system16,41,42". After mixing, the
system forms a reverse microemulsion that comprises water
droplets of diameter #5–10 nm containing the BZ reactants,
surrounded by a monolayer of surfactant molecules and
floating in a sea of octane. The average droplet diameter is
proportional to the ratio of water to AOT concentrations,
while the average spacing between droplets decreases as the
$water%:$octane% ratio is raised, until droplets begin to fuse to
form water channels.

A. Localized stationary spots

A dramatic example of localized stationary spots is seen
in Fig. 1, where we construct a “chemical memory device”6

using a photosensitive variant of the BZ-AOT system. As the
light intensity is varied, the system exhibits a subcritical Tur-
ing instability, leading to a regime in which the homoge-
neous steady state and localized spots can coexist. If we
illuminate at high intensity, only the uniform state is stable;
in the dark, the sole stable state is the Turing !spot" pattern.
We first illuminate at high intensity to establish the uniform
state. If we then insert a patterned mask, the dark areas of the
pattern are imprinted on the medium. On removing the mask
and lowering the light intensity into the bistable range, the
imprinted pattern persists for an hour or more. Brief expo-
sure to high-intensity light erases the pattern, but it returns

when the light is removed. Longer exposures permanently
delete the pattern. Thus, the system can serve as a rewritable
memory device.

B. Localized oscillatory spots „oscillons…
An oscillon is a spot, group of spots, or other object that

oscillates in time while remaining stationary in space. The
term was introduced in plasma physics,43 but has become
more familiar in connection with the striking behavior ob-
served in a thin layer of a vibrated granular material.35 The
first and, to the best of our knowledge, still the only example
of oscillons in a chemical system was found in the BZ-AOT
system catalyzed by the same Ru!bpy"3 metal complex em-
ployed in the case above of stationary spots, but without
illumination.9 Figure 2 shows two snapshots of an oscillon
consisting of a spot and a ring. The snapshots are separated
in time by half a period of oscillation. During each period,
the localized spot disappears for roughly half the interval and
the ring for the other half. Oscillons are related to the oscil-
latory Turing patterns first found in the BZ-AOT system44

and later in the CDIMA reaction.45

C. Breathing spots

A breathing spot resembles an oscillon in that its diam-
eter varies periodically, but breathers never totally disappear
as oscillons do. Breathing spots have been found in the
ferrocyanide-iodate-sulfite !FIS" reaction carried out in a
CFUR.46 Figure 3 shows an example of the phenomenon.
Unfortunately, this single example of a breather in reaction-
diffusion systems is not totally convincing, since at maxi-
mum extension the edges of the breather are very close to the
boundary of the system, and the breathing behavior might be
interpreted as arising from interaction between the front and
the system boundary.47

In general, one can imagine perturbing a single localized
spot with disturbances of different symmetries characterized
by the number n of lobes around the perimeter of the circular
spot, where we write the perturbation in the form exp!in!",
and ! is the polar angle. Figure 4 illustrates four possible
perturbations of a circular interface. The breathing spot dis-
cussed above corresponds to the case n=0 of a circularly
symmetric perturbation. Breathers can also arise for the case
n=2. An example of this type of breathing filament in a gas

FIG. 1. !Color online" Localized spots in the BZ-AOT system !Ref. 6". !Left
column" Illumination of the BZ-AOT reaction through a “face-mask” for
5 min at intensity I= I0 sufficient to suppress all patterns. Right part of the
reactor !narrow stripe with Turing stationary spots" remains in darkness.
I0=28 mW/cm2. !Right column" Subsequent illumination without any mask
for 1 h at intensity I= I0 /5. This intensity of light prevents the emergence of
new spots, but cannot suppress already existing patterns. Size of the snap-
shots is 7.7 mm"5.8 mm. $Malonic acid%0=0.1 M, $H2SO4%0=0.3 M,
$NaBrO3%0=0.25 M, $Ru!bpy"3%0=0.004 M; volume fraction of aqueous
droplets #d=0.45, $&$H2O% / $AOT%=10.

FIG. 2. Oscillon in the BZ-AOT reaction !Ref. 9". The ring diameter is
about 0.6 mm. Time between frames, 47 s, is half the period of oscillation.
#d=0.41, $&$H2O% / $AOT%=15, $H2SO4%=0.25 M, $NaBrO3%=0.2 M,
$MA%=0.25 M, $Ru!bpy"3

2+%=4.2 mM. Frame size=2.2"2.0 mm2.
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system forms a reverse microemulsion that comprises water
droplets of diameter #5–10 nm containing the BZ reactants,
surrounded by a monolayer of surfactant molecules and
floating in a sea of octane. The average droplet diameter is
proportional to the ratio of water to AOT concentrations,
while the average spacing between droplets decreases as the
$water%:$octane% ratio is raised, until droplets begin to fuse to
form water channels.

A. Localized stationary spots

A dramatic example of localized stationary spots is seen
in Fig. 1, where we construct a “chemical memory device”6

using a photosensitive variant of the BZ-AOT system. As the
light intensity is varied, the system exhibits a subcritical Tur-
ing instability, leading to a regime in which the homoge-
neous steady state and localized spots can coexist. If we
illuminate at high intensity, only the uniform state is stable;
in the dark, the sole stable state is the Turing !spot" pattern.
We first illuminate at high intensity to establish the uniform
state. If we then insert a patterned mask, the dark areas of the
pattern are imprinted on the medium. On removing the mask
and lowering the light intensity into the bistable range, the
imprinted pattern persists for an hour or more. Brief expo-
sure to high-intensity light erases the pattern, but it returns

when the light is removed. Longer exposures permanently
delete the pattern. Thus, the system can serve as a rewritable
memory device.

B. Localized oscillatory spots „oscillons…
An oscillon is a spot, group of spots, or other object that

oscillates in time while remaining stationary in space. The
term was introduced in plasma physics,43 but has become
more familiar in connection with the striking behavior ob-
served in a thin layer of a vibrated granular material.35 The
first and, to the best of our knowledge, still the only example
of oscillons in a chemical system was found in the BZ-AOT
system catalyzed by the same Ru!bpy"3 metal complex em-
ployed in the case above of stationary spots, but without
illumination.9 Figure 2 shows two snapshots of an oscillon
consisting of a spot and a ring. The snapshots are separated
in time by half a period of oscillation. During each period,
the localized spot disappears for roughly half the interval and
the ring for the other half. Oscillons are related to the oscil-
latory Turing patterns first found in the BZ-AOT system44

and later in the CDIMA reaction.45

C. Breathing spots

A breathing spot resembles an oscillon in that its diam-
eter varies periodically, but breathers never totally disappear
as oscillons do. Breathing spots have been found in the
ferrocyanide-iodate-sulfite !FIS" reaction carried out in a
CFUR.46 Figure 3 shows an example of the phenomenon.
Unfortunately, this single example of a breather in reaction-
diffusion systems is not totally convincing, since at maxi-
mum extension the edges of the breather are very close to the
boundary of the system, and the breathing behavior might be
interpreted as arising from interaction between the front and
the system boundary.47

In general, one can imagine perturbing a single localized
spot with disturbances of different symmetries characterized
by the number n of lobes around the perimeter of the circular
spot, where we write the perturbation in the form exp!in!",
and ! is the polar angle. Figure 4 illustrates four possible
perturbations of a circular interface. The breathing spot dis-
cussed above corresponds to the case n=0 of a circularly
symmetric perturbation. Breathers can also arise for the case
n=2. An example of this type of breathing filament in a gas

FIG. 1. !Color online" Localized spots in the BZ-AOT system !Ref. 6". !Left
column" Illumination of the BZ-AOT reaction through a “face-mask” for
5 min at intensity I= I0 sufficient to suppress all patterns. Right part of the
reactor !narrow stripe with Turing stationary spots" remains in darkness.
I0=28 mW/cm2. !Right column" Subsequent illumination without any mask
for 1 h at intensity I= I0 /5. This intensity of light prevents the emergence of
new spots, but cannot suppress already existing patterns. Size of the snap-
shots is 7.7 mm"5.8 mm. $Malonic acid%0=0.1 M, $H2SO4%0=0.3 M,
$NaBrO3%0=0.25 M, $Ru!bpy"3%0=0.004 M; volume fraction of aqueous
droplets #d=0.45, $&$H2O% / $AOT%=10.

FIG. 2. Oscillon in the BZ-AOT reaction !Ref. 9". The ring diameter is
about 0.6 mm. Time between frames, 47 s, is half the period of oscillation.
#d=0.41, $&$H2O% / $AOT%=15, $H2SO4%=0.25 M, $NaBrO3%=0.2 M,
$MA%=0.25 M, $Ru!bpy"3

2+%=4.2 mM. Frame size=2.2"2.0 mm2.
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(b) Belousov–Zhabotinsky chemical reaction.

Time between panels equals the forcing pe-

riod. Figure taken from [15, Figure 2].
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states. To facilitate quantitative investigation, we limited
ourselves to the study of the system’s dynamics solely
within the subcritical region. This was accomplished by
mechanically introducing an O!h" protrusion on the fluid
surface by either striking or blowing compressed air on
the suspension surface while increasing the acceleration
at a fixed frequency until a O!10%" hysteretic transition
from the featureless state to oscillons is observed. Despite
the crude nature of the perturbation, the transition to
oscillons was reproducible to #1% 2%. We define Gtran
as the threshold to the flat state upon decreasing G. Near
Gtran either a single oscillon or oscillon pair is excited
(Figs. 1a and 1b).
As in [1] oscillons oscillate with frequency f$2 with

states p out of phase able to coexist. For G . Gtran
oscillons can interact to form localized patterns such
as the triad structures of in-phase oscillons, shown in
Fig. 1c. Depending on both the driving amplitude and
initial conditions, both short oscillon chains, composed
of either like- or unlike-phase oscillons, and localized
patterns of oscillons, with an internal hexagonal symmetry,
have been observed. One important difference between
oscillons observed in suspensions relative to those seen in
granular media is [9] the range of their interactions. In
suspensions, oscillons attract each other when separated
by distances greater than their radius. In granular media
the interaction distance is much shorter, typically a small
fraction of an oscillon radius. (This may be due to the
different degrees of shear thinning in the two media.) As
observed in [1,5] increase of G leads to the formation of
oscillon chains that tend to elongate by adding additional
“links” in one direction while widening in the transverse
direction. For large enough G this process eventually fills
the entire cell with stripes. Further increase of G leads
to distortion of the stripes and, eventually, to fingerlike
states and droplet ejection. As the phase diagram in
Fig. 2 shows, in contract to granular media, both oscillons
and striped patterns are observed throughout the entire
explored range of frequencies. The lower threshold, Gpat,
for the formation of patterns is typically reproducible to
within 2% whereas the upper threshold for patterns is

FIG. 1. Typical side view of localized states with
r ! 1.28 g$cm3, h ! 4 cm, frame widths ! 4 cm. (a) Single
oscillon, f ! 14 Hz. (b) Oscillon pair, f ! 20 Hz.
(c) Oscillon triad f ! 25 Hz. Two driving periods are
shown for each sequence.

strongly hysteretic and dependent on plate leveling. When
G is decreased from a patterned state to below Gpat, the
patterns decay into long chains of oscillons that gradually
contract in length. Bending and rotation accompany the
chain’s contraction. Finally, the oscillons lose stability to
the featureless state at Gtran. The most robust states are
bound pairs of opposite “polarity” oscillons.
Changes in suspension depth do not lead to any quali-

tative changes in the system’s behavior until a critical
frequency where the oscillon amplitude A (typically, A
is of order a$v2, the excitation amplitude) approaches
h. Below this frequency, a transition from oscillons to
propagating states occurs that corresponds to the breaking
of the A ! 2A symmetry for t ! t 1 2$f. Photographs
of a typical propagating solitary structure are displayed in
Fig. 3a. Whereas the oscillons are subharmonic stand-
ing waves oscillating at frequency f$2, these propagating
solitary states are similar in appearance to those seen in
highly dissipative Newtonian fluids (Fig. 3b). They are
harmonic with the driving with their structure repeating
itself over a basic period of 1$f [2]. The 3D struc-
ture of the states shown in the figure is representative
and is independent of the driving frequency and fluid pa-
rameters. As Fig. 2 shows, the phase diagrams for the
different heights are nearly identical until the transition to
propagating states (DSS are observed below f # 20 Hz
in the figure). The appearance of propagating states is ac-
companied by a smooth increase in Gtran, relative to the
value observed for the oscillon state. A time sequence of
a typical state appearing at the transition to propagating
states is presented in Fig. 3c. Although these transition
states do not propagate, they are seen to sway in the lateral
direction. Their form suggests a mechanism by which the
subharmonic oscillon becomes a propagating state whose
time dependence is harmonic with the driving frequency.

FIG. 2. Phase diagram of a clay suspension with
r ! 1.28 g$cm3 for h ! 4.0 cm (triangles) and h ! 0.8 cm
(circles). Shown are the lower stability boundaries, Gpat
(open symbols), for patterns and Gtran (filled symbols), for
oscillon or propagating solitary wave states. The dashed
line schematically indicates the transition to highly hysteretic
fingerlike states, the system’s first instability. Both oscillons
and patterns exist in the subcritical region of this state.

3191

(c) Colloidal suspension. The time sequence for three different configurations are shown: a single

oscillon, a pair of oscillons, and an oscillon triad. Two full driving periods are shown for

each sequence. Figure taken from [7, Figure 1].

Figure 5: Oscillons observed in other materials.

We furthermore assume that u “ 0 is a stable solution of (3.4) for ν ą 0 and that it undergoes a supercritical

Hopf bifurcation as ν is decreased through zero. This last assumption is necessary so that equation (3.4)

supports temporally oscillating solutions. In other words, we assume that the curves λ “ λ˘pk; νq which satisfy

dpλ˘pk; νq, ik; νq “ 0 cross the imaginary axis with nonzero speed at λ “ ˘iω0, ω0 ‰ 0, as ν is decreased through

zero. See Figure 7. In the above,

dpλ,Θ; νq :“ detrΘ2D ` fup0; νq ´ λs, Θ P C (3.6)

is the dispersion relation associated with Btu “ Lu, where Lpνq :“ D∆ ` fup0; νq, is the linearization of

the unforced reaction–diffusion equation (3.4) about u “ 0. The crossing of the essential spectrum through

the imaginary axis leads to what is known as a Hopf bifurcation; this bifurcation can lead to either a stable

(supercritical) or an unstable (subcritical) limit cycle. We assume that the cycle is stable; see Figure 8.

Lastly, we assume λ “ ˘iω0 are simple eigenvalues for fup0; 0qv0 “ λv0.

Under these hypotheses we add near 2:1 resonant forcing to (3.4) for ν “: �2pµ small

utpx, tq “ D∆upx, tq ` fpupx, tq, �2pµq ` �2pγve2ipω0´�2 pωqt. (3.7)

The parameters pµ, pγ and pω are real and bounded. The vector v P Rm allows the amplitude of forcing to be
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Figure 6: Representation of the slow versus fast time scales in the multiple scales expansion. The solid teal line

represents the carrier wave upx, tq; it evolves over the fast time scale t. The dotted navy line represents the

solution envelope ApX,T q; it evolves over the slow time scale T :“ �2t.

Figure 7: Essential spectrum for L, the unforced reaction–diffusion equation, linearized about u “ 0. We assume

that the essential spectrum of L crosses the imaginary axis with nonzero speed as ν is decreased through zero.

different for each system variable. The scalings ν “ �2pµ, �2pγ, and �2pω are necessary for consistency in the

scaling.

3.1.2 Multiple scales expansion set-up

We use a multiple scales expansion to model the evolution of small amplitude solutions to (3.7). This idea is

explained further in, for example, [6, Chapter 7]. We define X :“ �x and T :“ �2t. As shown in Figure 6, X and

T capture the solution envelope as it evolves over the “long” space and “slow” time scales. We assume that the

evolution of u on each time or space scale is independent of the other scales, i.e., u “ px, t;X,T q “ apx, tqApX,T q.

Since X and T depend implicitly on x and t, respectively, the derivatives in (3.7) become

Btupx, t;X,T q ÞÑ
Bu

Bt
` �2

Bu

BT
“: ut ` �2uT (3.8a)

and

∆upx, t;X,T q ÞÑ
B2u

Bx2
` �2

B2u

BX2
“: ∆xu ` �2∆Xu.

On the short space scale ∆xu “ 0; we therefore write u “ upt;X,T q and the spatial Laplacian operator ∆

becomes

∆upt;X,T q ÞÑ �2∆Xu. (3.8b)

One can see from the derivatives (3.8) that the relative scaling of X and T ensures that both slow variables affect

u over the same scale Op1{�2q.
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ν

r

(a) Supercritical Hopf bifurcation, c1 ă 0.

ν

r

(b) Subcritical Hopf bifurcation, c1 ą 0.

Figure 8: Supercritical versus subcritical Hopf bifurcation. Plotted is the radius of the cycle r versus the parameter

ν. The zero solution exists for all ν. A limit cycle with r ą 0 bifurcates at ν “ 0; it exists for either positive

or negative ν, depending on the sign on c1. Solid lines represent stable solutions whereas dotted lines represent

unstable solutions.

We plug the Taylor expansion (3.5) and derivatives (3.8) into equation (3.7) to get

ut ´ fup0; 0qu “ ´ �2uT ` �2D∆Xu ` N2ru, us ` N3ru, u, us

` �2fuνp0; 0qupµ ` . . . ` �2pγve2iω0te´2iωT . (3.9)

Next, we expand solutions to (3.9) near u “ 0

upt;X,T q “ �u1pt;X,T q ` �2u2pt;X,T q ` �3u3pt;X,T q ` c.c ` Op�4q. (3.10)

We match terms in (3.9) at successively higher orders in �.

Op�q : L0u1 “ 0 (3.11a)

Op�2q : L0u2 “ N2ru1, u1s ` pγve2iω0te´2iωT (3.11b)

Op�3q : L0u3 “ ´BTu1 ` D∆Xu1 ` 2N2ru1, u2s ` N3ru1, u1, u1s ` pµf0
uνu1 (3.11c)

...
...

where L0 :“ Bt ´ fup0; 0q is defined as a map

L0 : L2pr0, 2π{ω0s{„q Ñ L2pr0, 2π{ω0s{„q,

with dompL0q “ H1pr0, 2π
ω0

s{„q. In equations (3.11), the expressions f0
ν and f0

uν are shorthand for the Taylor

expansion vector fνp0; 0q and matrix fuνp0; 0q, respectively.

3.1.3 Matching

We first solve (3.11a). By hypothesis the only nontrivial solutions to L0vptq “ 0 are linear combinations of

eiω0tv0 and e´iω0tv0. Hence, u1 “ A1pX,T qeiω0tv0 ` c.c. with A1pX,T q P C, and where A1 is unknown. We can

similarly solve the for u2 using the Op�2q terms. At Op�3q we use the expressions for u1 and u2 in combination

with the Fredholm alternative to find that A1pX,T q must satisfy

BTA1v0 ¨ w0 “

!
∆XA1Dv0 ` pµA1f

0
uνv0

` |A1|2A1

`
´ 4N2

“
v0, pf0

uq´1N2rv0, v0s
‰

` 2N2

“
v0, p2iω0I ´ f0

uq´1N2rv0, v0s
‰

` 3N3rv0, v0, v0s

¯

` 2pγA1e
´2ipωTN2rv0, pf0

u ´ 2iω0Iq´1vs
(

¨ w0, (3.12)

where v0 and w0 are eigenvectors corresponding with L0 and L:
0, respectively; they are unique by hypothe-

sis.

We remark that there exists appropriate coordinate transformations to turn (3.12) into the 2:1 forced complex

Ginzburg–Landau equation

AT “ p1 ` iαq∆XA ` p´µ ` iωqA ´ p1 ` iβq|A|2A ` γA. (3.13)

7



(a) standard oscillon:

monotone tails

(b) standard oscillon:

oscillatory tails

(c) reciprocal oscillon:

monotone tails

(d) reciprocal oscillon:

oscillatory tails

Figure 9: Localized solutions to equation (3.15). The dotted line represents u ” 0.

3.2 Review of results in 1 spatial dimension [2]

As discussed above, the 2:1 forced complex Ginzburg–Landau (CGL) equation

ut “ p1 ` iαq∆u ` p´µ ` iωqu ´ p1 ` iβq|u|2u ` γu, u P C (3.14)

captures the dynamics of small amplitude oscillatory solutions. Thus, oscillons correspond with steady state so-

lutions to (3.14). In this section, we review known results for the steady state CGL in one space dimension

0 “ p1 ` iαquxx ` p´µ ` iωqu ´ p1 ` iβq|u|2u ` γū, u P C, x P R (3.15)

from [2]. We remark that in equations (3.14) and (3.15) we have used u as the amplitude variable, rather than

A as in equation (3.2); this is for consistency with our notation throughout the remainder of these notes.

It was shown in [2] that (3.15) supports two types of localized solutions. The first localized solution, referred

to as a standard oscillon, can be thought of as a homoclinic orbit connecting to the trivial background state

u “ 0 in the limits x Ñ ˘8 as shown in Figures 9a-9b. The second localized solution, referred to as a reciprocal

oscillon, can be thought of as a homoclinic orbit connecting to a nontrivial background state u`
unif ‰ 0 in the

limits x Ñ ˘8 as shown in Figures 9c-9d. Reciprocal oscillon solutions to the CGL were originally reported

in [20]. In both cases, the localized solution may have monotone or oscillatory tails. We omit discussion of the

reciprocal oscillons for brevity.

Since the planar radially symmetric steady state CGL

0 “ p1 ` iαq

´
urr `

ur

r

¯
` p´µ ` iωqu ´ p1 ` iβq|u|2u ` γū (3.16)

reduces to the one-dimensional case (3.15) in the far field r “ 8, we expect that the bifurcation curves in one

space-dimension may hold for the planar CGL. Therefore, we use the bifurcation curves for the one-dimensional

CGL1 as a starting point for our planar analysis, but with the caution that the results may not be the same. In

the remainder of this chapter we review the relevant results from [2]. We remark, however, that it is not always

true that the 1-dimensional results carry over to two dimensions; one therefore still needs to be precise in the

analysis.

3.2.1 Spatial eigenvalue analysis

The bifurcation curves for the one-dimensional CGL were computed in [2] using a spatial eigenvalue analysis.

We seek nontrivial solutions to the linearization of (3.15) about some homogeneous solution u “ uhom of the

1We remark that [2] uses µ instead of ´µ; therefore, all bifurcation curves are flipped across the µ “ 0 plane relative to ours.
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Re k

Im k

(a) spatial eigenvalues for monotone tail solu-

tions

Re k

Im k

(b) spatial eigenvalues for oscillatory tail solu-

tions

Figure 10: Possible spatial eigenvalue arrangements for the bifurcation of localized solutions. Spatial eigenvalues

collide on the imaginary axis and then move away.

form U “ eikjxU0 where U :“ pRepuq, Impuqq and Uj is the eigenvector associated with spatial eigenvalue kj .

The linearization will be of the form

0 “ ∆U ` CU, (3.17)

where the matrix C :“ Cpuhomq P R2 depends on the solution uhom. Localized solutions may bifurcate as

small-amplitude solutions from a homogeneous state u “ uhom only if the (3.17) has spatial eigenvalues tkju

with Repkjq “ 0 for some j. Furthermore, localized solutions bifurcate into the parameter region where these

spatial eigenvalues move away from the imaginary axis: this ensures that the stable and unstable manifolds are

as high dimensional as possible. Equation (3.17) has four spatial eigenvalues since there are two space derivatives

and U P R2; these eigenvalues obey the symmetry k ÞÑ ´k due to the Laplacian. Thus, there are two cases to

consider, as shown in Figure 10.

(i) On the bifurcation curve k1 “ k2 “ 0 and k3 “ ´k4 “ m P R. Localized solutions bifurcate into the region

where k1 and k2 split along the real axis of the complex plane; see Figure 10a. This bifurcation gives rise

to localized solutions with monotone tails (Figures 9a and 9c).

(ii) On the bifurcation curve k1 “ k2 “ k3 “ k4 “ im with m P R. Localized solutions bifurcate into the region

where kj split away from the imaginary axis so that tkjuX iR “ H; see Figure 10b. This bifurcation results

in standard oscillons with oscillatory tails (Figures 9b and 9d).

The difference between the standard oscillons (Figures 9a and 9b) and reciprocal oscillons (Figures 9c and 9d)

is that the linearization (3.17) is computed using u ” 0 and u “ uunif ‰ 0, respectively.

3.2.2 Standard oscillon bifurcation curves

The linearization of (3.15) about u “ 0

0 “

¨

˚̋1 ´α

α 1

˛

‹‚

¨

˚̋v

w

˛

‹‚

xx

`

¨

˚̋´µ ` γ ´ω

ω ´µ ´ γ

˛

‹‚

¨

˚̋v

w

˛

‹‚, (3.18)

has four spatial eigenvalues which satisfy

p1 ` α2qk4 ` 2pαω ´ µqk2 ` µ2 ` ω2 ´ γ2 “ 0. (3.19)

In Figure 11 we illustrate the spatial eigenvalues k, plotted in the complex plane, for various values of ω and γ.

The two bifurcation cases are as follows:
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×2 ×2×2

×2

×2 ×4 ×2
µ− αω

γ −
�

µ2 + ω2

Γa Γa

Γ0Γ0

Γb

u±
unif

µ = ωβ

Figure 11: Plotted is the pµ, γq-plane with α, β, and ω fixed. The inlays are the spatial eigenvalues associated

with the linearization of (3.15) about u “ 0 plotted in the complex plane. There are two bifurcation cases to

consider: (i) into the region below Γ0 (purple dashed line) for µ ą αω, and (ii) into the region below Γa (green

dash-dotted line) for µ ă αω. Non-trivial uniform solutions u˘
unif emerge at a fold bifurcation at Γb (maroon

dotted line); the fold curve Γb intersects Γ0 at µ “ βω where u`
unif “ u´

unif “ 0.

(i) Define

Γ0 :“ tpµ, γq : γ “
a
µ2 ` ω2u,

set µm :“ αω ` m2

2 , and pick γm so that pµm, γmq P Γ0. Then, with

pµ, γq “ pµm, γm ´ �2q,

k1,2 split into Op�q eigenvalues along the real axis, whilst k3,4 « ˘m, as shown in Figure 11. Thus, standard

monotone oscillons may bifurcate for µ ą αω into the region below the curve Γ0.

(ii) Define

Γa :“ tpω, γq : p1 ` α2qγ2 “ pω ` αµq2u,

set µm :“ αω ´ m2

2 , and pick γm so that pµm, γmq P Γa. Then, with

pµ, γq “ pµm, γm ´ �2q,

kj “ ˘Op�q ˘ i
`
m ` Op�q

˘
,

as shown in Figure 11. Thus, standard oscillatory oscillons may bifurcate for µ ă αω into the region below

the curve Γa.

We remark that in [2] it was found that localized solution of either type only bifurcate provided that also µ ă βω.

The same condition remains true in the planar case; it is related to a subcriticality condition.

4 Our numerical results in 2 spatial dimensions [9]

We first remark that we have proven the existence of small amplitude localized solutions in two spatial dimensions

in [9]. We omit a detailed review of this result since this lecture focuses on numerical methods to find solutions

far from onset.

Theorem 1 Fix αω ă µ ă βω and let γ “
a
µ2 ` ω2 ´ �2. Then there is an �0 ą 0 so that (3.16) has a

nontrivial stationary localized radial solution of amplitude Op�q for each � P p0, �0q.
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α > 0, µ > 0
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Γ∗
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Γ0
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ωz

α > β

α < β

Γd
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ωz

Γb
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Γb

Γb

Γb

Γb

Γa

Γa

Γa

Γa

z < 0

z > 0

z > 0
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Figure 12: Expected existence regions of standard oscillons in each of the parameter quadrants. We refer to

Figure 13 for the interpretation of the curves shown here: the segments of the curves Γj that coincide with

bifurcations are highlighted; otherwise, we use the same line style as in Figure 13, but the curve is thin and

black. Small amplitude localized solutions bifurcate into the parameter region below Γ0 and Γa provided that also

ω ą ωβ :“ µ{β. The dark salmon shaded regions indicate the numerically observed existence region for localized

solutions with monotone tails; the light green shaded regions indicate the existence region for localized solutions

with oscillatory tails. Solutions bifurcating from Γ0 are observed to develop oscillatory tails for γ ă γa (with

the notation of (4.1)). In parameter regions Q1, Q2, and Q4, all localized solutions terminate in a stationary

one-dimensional front at Γ˚. In Q3, Γ˚ ends at the curve Γd; the termination of solutions for parameter values

to the left of Γd in Q3 is not well understood. Stable oscillons were found in between two saddle nodes in a small

subset of Q2.
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linearization about linearization about
u = 0

upper!
branch

lower!
branch

do not exist

upper branch

u±
unif

u = u±
unif

Γ0

Γa

Γb

Γd

Γ∗

u(r)

r

αω < αωα

αω > αωα

Figure 13: Color and line style legend for the various bifurcation curves shown in Figure 12 in the pω, γq plane.

The insets for Γ0, Γa, Γb, and Γd represent the spatial eigenvalues of the linearization of (3.16) at r “ 8 about

either u “ 0 or u “ u˘
unif . The spatial eigenvalues are shown for the parameter regions indicated; for parameter

values in the opposite parameter region, the spatial spectra should be rotated by 90 degrees. The inset for Γ˚
depicts a representative solution profile along the curve Γ˚.
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β α µ z :“ αp1 ´ β2q ´ 2β

Q1 10.0 0.5 10.0 ´69.5

Q2 2.5 ´2.0 0.5 5.5

Q3 2.5 ´2.0 ´0.5 5.5

Q4 0.5 10.0 ´5.0 6.5

Table 1: Values of the fixed parameters for our numerical computations in each region.

The requirement µ ą αω and γ ă
a
µ2 ` ω2 is the spatial eigenvalue condition discussed above. One can

show that signpµ ´ ωβq equals the sign of the leading-order nonlinear term in an appropriate center-manifold

reduction of (3.16) near � “ 0. Therefore, the condition µ ă ωβ ensures that the bifurcation from the curve

γ0pω, µq “
a
µ2 ` ω2 is subcritical and leads to localized patterns. The subcriticality plays a key role in the

analysis.

Our numerical results are summarized in Figure 12 below. We use the parameter values shown in Table 1 to

explore several 2-parameter slices of the 5-dimensional parameter space. For each bifurcation curve Γj , we also

define γ “ γj “ γjpωq such that

pω, γjq P Γj for all other parameters fixed. (4.1)

For example, γ “ γ0 means that pω, γ0q P Γ0. We refer the reader to [9] for more details.

13



References

[1] H. Arbell and J. Fineberg. Temporally harmonic oscillons in Newtonian fluids. Phys. Rev. Lett. 85 (2000)

756–759.

[2] J. Burke, A. Yochelis and E. Knobloch. Classification of spatially localized oscillations in periodically forced

dissipative systems. SIAM J. Appl. Dyn. Sys. 7 (2008) 651–711.

[3] P. Coullet and K. Emilsson. Strong resonances of spatially distributed oscillators: A laboratory to study

patterns and defects. Physica D 61 (1992) 119–131.

[4] E. Doedel and B. Oldeman. AUTO07p: continuation and bifurcation software for ordinary differential

equations. Technical report, Concordia University, 2009.

[5] C. Elphick, G. Iooss and E. Tirapegui. Normal form reduction for time-periodically driven differential

equations. Phys. Lett. A. 120 (1987) 459–463.

[6] R. Hoyle. Pattern Formation. An Introduction to Methods. Cambridge University Press, Cambridge, 2006.

[7] O. Lioubashevski, Y. Hamiel, A. Agnon, Z. Reches and J. Fineberg. Oscillons and propagating solitary

waves in a vertically vibrated colloidal suspension. Phys. Rev. Lett. 83 (1999) 3190–3193.

[8] K. McQuighan. Oscillons near Hopf bifurcations of planar reaction diffusion equations. Ph.D. thesis, Brown

University, 2014.

[9] K. McQuighan and B. Sandstede. Oscillons in the planar Ginzburg–Landau equation with 2:1 forcing. Under

review. http://math.bu.edu/people/kmcquigh/papers/CGL_SSO.pdf (2014).

[10] V. Petrov, Q. Ouyang and H. Swinney. Resonant pattern formation in a chemical system. Nature 388 (1997)

655–657.

[11] B. Sandstede and D. Lloyd. Using auto for stability problems. Lecture notes from workshop on “The

stability of coherent structures and patterns”. http://www.dam.brown.edu/people/sandsted/auto/

auto-tutorial.pdf (2012).

[12] M. Shats, H. Xia and H. Punzmann. Parametrically excited water surface ripples as ensembles of oscillons.

Phys. Rev. Lett. 108 (2012) 034502.

[13] P. Umbanhowar, F. Melo and H. Swinney. Localized excitations in a vertically vibrated granular layer.

Nature 382 (1996) 1942–1945.

[14] V. Vanag and I. Epstein. Stationary and oscillatory localized patterns, and subcritical bifurcations. Phys.

Rev. Lett. 92 (2004) 128301.

[15] V. Vanag and I. R. Epstein. Localized patterns in reaction–diffusion systems. Chaos 17 (2007) 037110.

[16] V. Vanag, L. Yang, M. Dolnik, A. Zhabotinsky and I. Epstein. Oscillatory cluster patterns in a homogeneous

chemical system with global feedback. Nature 406 (2000) 389–391.

[17] V. Vanag, A. Zhabotinsky and I. Epstein. Oscillatory clusters in the periodically illuminated, spatially

extended Belousov–Zhabotinsky reaction. Phys. Rev. Lett. 86 (2001) 552–555.

[18] J. Wu, R. Keolian and I. Rudnick. Observation of a non-propagating hydrodynamic soliton. Phys. Rev. Lett.

52 (1984) 1421–1424.

[19] H. Xia, T. Maimbourg, H. Punzmann and M. Shats. Oscillon dynamics and rogue wave generation in

Faraday surface ripples. Phys. Rev. Lett. 109 (2012) 114502.

14



[20] A. Yochelis, J. Burke and E. Knobloch. Reciprocal oscillons and nonmonotonic fronts in forced nonequilib-

rium systems. Phys. Rev. Lett. 97 (2006) 254501.

15


