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1 Review of numerical continuation [11]

See the lecture notes [11] for more details. We are interested in problems of the form
U =FU;p) UeR" uR
where p is a parameter. For example, consider
up = —p+u?,ueR, (1.1)

Suppose that we are interested in steady state solutions to (1.1). One can easily see that such solutions satisfy

u? = u. Thus,

{ T/ =0
o DNE u<0
Thus, steady state solutions depend on the parameter pu.

The idea behind continuation is to try to use information about known solutions to find “nearby” solutions. This
is possible by the implicit function theorem. For example, to find steady state solutions to equation (1.1), we
look for zeros of the function f(u;u) := u? — p. Suppose that we know the exact solution u = u* for a fixed
@ = p*; then it must be true that f(u*; u*) = 0. One can easily check that f, (u*; u*) # 0 provided u # 0; thus,
by the implicit function theorem, there exists function g(u) for p near p* so that f(g(u); 1) = 0. The curve g(u)
is the curve of equilibria in parameter space; see Figure 1. This means that to perform numerical continuation

we need a method of finding zeros of functions.

1.1 Newton’s method

Consider f#(u) := f(u;p) with u fixed. We assume for convenience that f : R — R. We are interested in finding
the value of u so that f#(u) = 0. We take as our initial guess ug := v* where f(u*;u*) =0 and p is very close
to p*. Then our next guess u; is computed by finding the intersection of the tangent line to f* at ug with the

u = 0 axis; see Figure 2. In particular,

f(uo)
fu(u()).

Uy = Ug —



Figure 1: Ewistence of equilibrium solutions for u near p*. The curve of such solutions is given by g(u), where

g(p) exists due to the implicit function theorem.

\

Figure 2: Step 1 of Newton’s method to find zeros of f*(u).

One then repeats the process to find successive guesses for ueq:

Un+1 = Up —

and one can show that u,, — .y as n — o0.

For numerical continuation, the procedure is as follows. We are interested in computing the curve of parameter-
dependent equilibria {U : F(U) = 0} where U = (u,p). We assume that we know one point on the curve
U* = (u*, u*). We compute the tangent to the curve of equilibria at U* by finding {V; : Fy(U*)V, = 0}. We
take a small step h « 1 along this tangent space; this is our initial guess for Newton’s method. We then perform
Newton’s method on the subspace which is perpendicular to the tangent space {U : (U —U*,V,) = h,||Vi|| = 1}.
See Figure 3.

A very good numerical continuation package exists known as AUTOO07p [4].

2 Our problem: Experimental observation of oscillons [8]

The motivation for this talk is oscillons: spatially localized, temporally oscillating structures that emerge from

a uniform background state in parametrically forced nonlinear systems.

Oscillons were first observed in an experiment performed by Umbanhowar et al. using granular media [13]. In that
work, the researchers filled a 127 mm diameter circular disk with an approximately 3 mm thick layer of bronze
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Figure 3: Using Newton’s method for numerical continuation. The blue curve is the curve of parameter dependent
equilibria, which we would like to find. We assume that we know one point on this curve U*. We perform Newton’s
method on the subspace {U : (U — U* Vi) = h, ||Vk|| = 1} with U = U* + hVy, ||Vk|| = 1, as our initial guess.

spheres. The bronze spheres were approximately 0.15-0.18 mm in diameter, so that the layer was approximately
17 spheres thick. The circular disk was then placed on a vibrating table and subjected to vertical vibrations.
Oscillating heaps of beads were seen to emerge for certain values of the forcing frequency and amplitude. These
heaps were seen to oscillate between a heap and a crater at half the forcing frequency; see Figure 77. The

oscillons were observed in a variety of arrangements; see Figure 4.

Oscillons were subsequently observed in a variety of experimental settings including Newtonian fluids [1, 12, 18,
19], chemical reactions [10, 15, 17], and colloidal suspensions [7]. In chemical reactions, oscillons have also been
observed in autonomous systems [14] and in systems subjected to global feedback [16]. The frequency of the
pattern oscillation is often close to the forcing frequency or half the forcing frequency, and we refer to these

patterns as 1:1 and 2:1 resonance oscillons, respectively. See Figure 5 for some examples.

3 2:1 forced complex Ginzburg—-Landau equation

We model the systems in which oscillons have been observed with the 2:1 forced complex Ginzburg-Landau
(CGL) equation. We first explain the derivation and relevance of this equation to our problem. We then review
known results on the 2:1 forced CGL in one space dimension; we are interested in the planar case.

3.1 Derivation [8]

We illustrate the derivation of the forced CGL for general forced systems by studying this issue in the context
of forced reaction—diffusion systems. The details of this derivation are shown as part of [8]. We summarize the

main ideas. We consider a periodically forced parameter dependent reaction—diffusion system
uy = Au+ flu;v) + TeZ¥ 4 e R™, (3.1)

with T, , v € R. We assume f(0;v) = 0 for all v so that equation (3.1) supports the homogeneous rest solution
u(z,t) = 0. It has been argued, see for instance [3, 5], that the 2:1 forced complex Ginzburg-Landau (CGL)

equation

Ap = (1 +ia)AA + (—p +iw)A — (1 +iB)|A|?PA +vA, AeC (3.2)
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Figure 4: Top view of various arrangements of oscillons in a granular system. The system was illuminated from
above so that the bright spots correspond with heaps and the dark spots correspond with craters. The time between

the panels in Figures a-c is one forcing period. Figure taken from [18, Figure 3J.

is a modulation equation for (3.1) near a supercritical Hopf bifurcation of the rest state u = 0. In other words,
A(X,T) captures the “slow” dynamics of the envelope for a carrier wave evolving on the fast time scale ¢; see

Figure 6. If the slow and fast scales could be completely separated, then one could write
u(t; X, T) = eA(X, T)e'™, (3.3)

with X := ex and T := ¢%t. The 2:1-ratio between the oscillation frequency of the forcing in (3.1) to that of the
ansatz (3.3) is consistent with experimental findings. In equation (3.2), a, 8, p, w, v € R are real parameters
which can be obtained from the original equation (3.1). In this section we use a multiple scales analysis to
formally derive (3.2) as the amplitude equation for (3.1). We remark that since the ansatz (3.3) explicitly factors
out the time oscillations, oscillons correspond with localized steady state solutions to (3.2); i.e., spatially localized
solutions to

0=(1+ia)AA+ (—pu +iw)A — (1 +iB)|A|?A +vA, AeC.

3.1.1 Hypotheses
We assume that the unforced reaction—diffusion system
ue(x,t) = DAu(z,t) + f(u(z,t);v), uweR™ zeR" (3.4)

supports a homogeneous rest solution u(x,t) = ug so that f(ug,v) = 0 for all v; without loss of generality, we

assume ug = 0. We assume that f is smooth in both v and v so that we can Taylor expand
flu,v) = fu(0;0)u + No[u, u] + Na[u,u,u] + f,(0;0)v + fu, (0;0)ur + ... (3.5)

where Ny[...] and Nj[...] are the appropriate bilinear and trilinear forms. In what follows, we consider only
isotropic solutions to (3.4) so that we can take n = 1 without loss of generality.
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(a) Newtonian fluid. The left panel is the time sequence for a

single oscillon. The right two panels represent two different (b) Belousov-Zhabotinsky chemical reaction.
configurations of oscillons at a single snapshot in time. Figure Time between panels equals the forcing pe-
taken from [1, Figures 1 and 2]. riod. Figure taken from [15, Figure 2].
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(c) Colloidal suspension. The time sequence for three different configurations are shown: a single
oscillon, a pair of oscillons, and an oscillon triad. Two full driving periods are shown for

each sequence. Figure taken from [7, Figure 1].

Figure 5: Oscillons observed in other materials.

We furthermore assume that v = 0 is a stable solution of (3.4) for v > 0 and that it undergoes a supercritical
Hopf bifurcation as v is decreased through zero. This last assumption is necessary so that equation (3.4)
supports temporally oscillating solutions. In other words, we assume that the curves A = AL (k;v) which satisfy
d(As(k;v),ik;v) = 0 cross the imaginary axis with nonzero speed at A = tiwg, wg # 0, as v is decreased through
zero. See Figure 7. In the above,

d(\, ©;v) := det[©*D + f,(0;v) — \], ©€C (3.6)

is the dispersion relation associated with dju = Lu, where L(v) := DA + f,(0;v), is the linearization of
the unforced reaction—diffusion equation (3.4) about u = 0. The crossing of the essential spectrum through
the imaginary axis leads to what is known as a Hopf bifurcation; this bifurcation can lead to either a stable

(supercritical) or an unstable (subcritical) limit cycle. We assume that the cycle is stable; see Figure 8.
Lastly, we assume A\ = tiwg are simple eigenvalues for f,,(0;0)vy = Avg.

Under these hypotheses we add near 2:1 resonant forcing to (3.4) for v =: €2/i small
w(z,t) = DAu(z, ) + f(u(z,t), i) + 2qvedi@o—<d)t (3.7)

The parameters fi, ¥ and @ are real and bounded. The vector v € R™ allows the amplitude of forcing to be
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Figure 6: Representation of the slow versus fast time scales in the multiple scales expansion. The solid teal line

represents the carrier wave u(xz,t); it evolves over the fast time scale t. The dotted navy line represents the

solution envelope A(X,T); it evolves over the slow time scale T := €2t.
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Figure 7: Essential spectrum for L, the unforced reaction—diffusion equation, linearized about w = 0. We assume

that the essential spectrum of L crosses the imaginary axis with nonzero speed as v is decreased through zero.

different for each system variable. The scalings v = €2[i, €27, and €2 are necessary for consistency in the

scaling.

3.1.2 Multiple scales expansion set-up

We use a multiple scales expansion to model the evolution of small amplitude solutions to (3.7). This idea is
explained further in, for example, [6, Chapter 7]. We define X := ex and T := €?t. As shown in Figure 6, X and
T capture the solution envelope as it evolves over the “long” space and “slow” time scales. We assume that the
evolution of u on each time or space scale is independent of the other scales, i.e., u = (z,t; X, T) = a(x,t)A(X,T).

Since X and T depend implicitly on x and ¢, respectively, the derivatives in (3.7) become

0 0
ou(z, t; X, T) — 6—1; + 62% = uy + Eup (3.8a)
and
0? 0?
Au(z, t; X, T) — I i A Ayu+ EAxu.

o0x? 0X2
On the short space scale Ayu = 0; we therefore write u = u(¢; X,T) and the spatial Laplacian operator A

becomes
Au(t; X,T) — 2 Axu. (3.8b)

One can see from the derivatives (3.8) that the relative scaling of X and T ensures that both slow variables affect

u over the same scale O(1/€?).



(a) Supercritical Hopf bifurcation, ¢1 < 0. (b) Subcritical Hopf bifurcation, c1 > 0.

Figure 8: Supercritical versus subcritical Hopf bifurcation. Plotted is the radius of the cycle r versus the parameter
v. The zero solution exists for all v. A limit cycle with r > 0 bifurcates at v = 0; it exists for either posilive
or negative v, depending on the sign on ci1. Solid lines represent stable solutions whereas dotted lines represent

unstable solutions.

We plug the Taylor expansion (3.5) and derivatives (3.8) into equation (3.7) to get
uy — fu(0;0)u = — 2up + €DAxu + No[u,u] + Na[u, u, u]
+ € fun (0;0)ufi + ... + qveiwote=2wT (3.9)
Next, we expand solutions to (3.9) near u = 0
uw(t; X, T) = euy (X, T) + ug(t; X, T) + 3us(t; X, T) + c.c + O(e?). (3.10)
We match terms in (3.9) at successively higher orders in .
O(e): Loup =0 (3.11a)
O(e?) : Loug = Nafuy, ur] + Fue*@ore” 2wl (3.11b)
O(e?) : Louz = —0puy + DAxuy + 2No[uy, us] + N3[uy, ur, ui] + afo,ug (3.11¢)
where Ly := 0; — f,(0;0) is defined as a map
Lo+ L2([0,2m/wol/~) — L2([0, 27 /wo]/~),

with dom(Lo) = H([0, i—’;]/~) In equations (3.11), the expressions f2 and f0, are shorthand for the Taylor
expansion vector f,(0;0) and matrix f,,(0;0), respectively.

3.1.3 Matching

We first solve (3.11a). By hypothesis the only nontrivial solutions to Lov(t) = 0 are linear combinations of
elwotyy and e “oty,. Hence, u; = A1(X, T)e*0tvg + c.c. with A;(X,T) € C, and where A; is unknown. We can
similarly solve the for uy using the O(e?) terms. At O(e®) we use the expressions for u; and ug in combination
with the Fredholm alternative to find that A;(X,T) must satisfy

O Aqvg - wo ={AXA1D110 + ﬁAlfS,,vo
+ AP Ay (= 4Nz [vo, (f) ™ Na[vo, o] ]
+ 2N, [UO, (2wl — fg)*lNg[vo,vo]] + 3N3[UO,UO,%])
+ 27417247 Ny [y, (fO — 2iwe]) 0]} - wo, (3.12)

where vy and wg are eigenvectors corresponding with £y and Eg, respectively; they are unique by hypothe-

sis.

We remark that there exists appropriate coordinate transformations to turn (3.12) into the 2:1 forced complex
Ginzburg-Landau equation

Ar = (1 +ia)Ax A+ (—p +iw)A — (1 +iB)|A]*A + ~A. (3.13)
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Figure 9: Localized solutions to equation (8.15). The dotted line represents u = 0.

3.2 Review of results in 1 spatial dimension [2]
As discussed above, the 2:1 forced complex Ginzburg-Landau (CGL) equation
up = (1 +ia)Au + (—p + iw)u — (1 +i8)|u?*uv + i@, ueC (3.14)

captures the dynamics of small amplitude oscillatory solutions. Thus, oscillons correspond with steady state so-

lutions to (3.14). In this section, we review known results for the steady state CGL in one space dimension
0= (1 +ia)uzs + (—p +iw)u — (1 +if)|ul*u+~a, ueC, reR (3.15)

from [2]. We remark that in equations (3.14) and (3.15) we have used u as the amplitude variable, rather than

A as in equation (3.2); this is for consistency with our notation throughout the remainder of these notes.

It was shown in [2] that (3.15) supports two types of localized solutions. The first localized solution, referred
to as a standard oscillon, can be thought of as a homoclinic orbit connecting to the trivial background state
u = 0 in the limits x — 400 as shown in Figures 9a-9b. The second localized solution, referred to as a reciprocal
oscillon, can be thought of as a homoclinic orbit connecting to a nontrivial background state u_ .. # 0 in the
limits * — +00 as shown in Figures 9¢-9d. Reciprocal oscillon solutions to the CGL were originally reported
in [20]. In both cases, the localized solution may have monotone or oscillatory tails. We omit discussion of the
reciprocal oscillons for brevity.

Since the planar radially symmetric steady state CGL
0=(1+ia) (u + “7) +(—pt iw)u — (1 +i8)|uf?u + a (3.16)

reduces to the one-dimensional case (3.15) in the far field » = o0, we expect that the bifurcation curves in one
space-dimension may hold for the planar CGL. Therefore, we use the bifurcation curves for the one-dimensional
CGL! as a starting point for our planar analysis, but with the caution that the results may not be the same. In
the remainder of this chapter we review the relevant results from [2]. We remark, however, that it is not always
true that the 1-dimensional results carry over to two dimensions; one therefore still needs to be precise in the
analysis.

3.2.1 Spatial eigenvalue analysis

The bifurcation curves for the one-dimensional CGL were computed in [2] using a spatial eigenvalue analysis.

We seek nontrivial solutions to the linearization of (3.15) about some homogeneous solution 4 = upem of the

IWe remark that [2] uses p instead of —u; therefore, all bifurcation curves are flipped across the p = 0 plane relative to ours.
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Figure 10: Possible spatial eigenvalue arrangements for the bifurcation of localized solutions. Spatial eigenvalues

collide on the imaginary axis and then move away.

form U = e*i%U, where U := (Re(u),Im(u)) and U; is the eigenvector associated with spatial eigenvalue ;.
The linearization will be of the form

0= AU + CU, (3.17)

where the matrix C := C(upom) € R? depends on the solution wupem. Localized solutions may bifurcate as
small-amplitude solutions from a homogeneous state u = unom only if the (3.17) has spatial eigenvalues {k;}
with Re(k;) = 0 for some j. Furthermore, localized solutions bifurcate into the parameter region where these
spatial eigenvalues move away from the imaginary axis: this ensures that the stable and unstable manifolds are
as high dimensional as possible. Equation (3.17) has four spatial eigenvalues since there are two space derivatives
and U € R?; these eigenvalues obey the symmetry k — —k due to the Laplacian. Thus, there are two cases to

consider, as shown in Figure 10.

(i) On the bifurcation curve k1 = ky = 0 and ks = —ks = m € R. Localized solutions bifurcate into the region
where k1 and ks split along the real axis of the complex plane; see Figure 10a. This bifurcation gives rise
to localized solutions with monotone tails (Figures 9a and 9c).

(ii) On the bifurcation curve ky = ky = ks = k4 = im with m € R. Localized solutions bifurcate into the region
where k; split away from the imaginary axis so that {k;} niR = ¢J; see Figure 10b. This bifurcation results
in standard oscillons with oscillatory tails (Figures 9b and 9d).

The difference between the standard oscillons (Figures 9a and 9b) and reciprocal oscillons (Figures 9¢ and 9d)

is that the linearization (3.17) is computed using « = 0 and u = uyni # 0, respectively.

3.2.2 Standard oscillon bifurcation curves

The linearization of (3.15) about u =0

0= + , (3.18)

has four spatial eigenvalues which satisfy
(1+ Dk + 2(aw — pw)k? + p? + w? — 42 = 0. (3.19)

In Figure 11 we illustrate the spatial eigenvalues k, plotted in the complex plane, for various values of w and ~.
The two bifurcation cases are as follows:
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Figure 11: Plotted is the (u,v)-plane with «, B, and w fized. The inlays are the spatial eigenvalues associated
with the linearization of (3.15) about uw = 0 plotted in the complex plane. There are two bifurcation cases to
consider: (i) into the region below 'y (purple dashed line) for p > aw, and (i) into the region below I'y (green
dash-dotted line) for p < aw. Non-trivial uniform solutions ufnif emerge at a fold bifurcation at Ty (maroon

dotted line); the fold curve Ty intersects T'o at p = fw where u 0.

unif

Uynif =

(i) Define
Lo = {(1,7) v = Vp? + w?},

set iy, 1= aw + %2, and pick 7, so that (gm,¥m) € To. Then, with

(/1'77) = (:u’mufym - 62)a

k1 2 split into O(e) eigenvalues along the real axis, whilst k3 4 ~ +m, as shown in Figure 11. Thus, standard
monotone oscillons may bifurcate for p > aw into the region below the curve T'y.
(ii) Define
Toi={(w,7): (1+a*)y? = (w+ap)?},

set 1= aw — m72, and pick v, so that (fm,¥m) € T'a. Then, with

(,Uar)/) = (,um;'}/m - 52)a
k; = £0(e) £ i(m + O(e)),

as shown in Figure 11. Thus, standard oscillatory oscillons may bifurcate for u < aw into the region below
the curve I',.

We remark that in [2] it was found that localized solution of either type only bifurcate provided that also p < fw.
The same condition remains true in the planar case; it is related to a subcriticality condition.

4 Our numerical results in 2 spatial dimensions [9]

We first remark that we have proven the existence of small amplitude localized solutions in two spatial dimensions
in [9]. We omit a detailed review of this result since this lecture focuses on numerical methods to find solutions
far from onset.

Theorem 1 Fir aw < p < fw and let v = A/pu? + w? — 2. Then there is an ¢y > 0 so that (3.16) has a

nontrivial stationary localized radial solution of amplitude O(€) for each € € (0,¢€p).

10
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Figure 12: Ezpected existence regions of standard oscillons in each of the parameter quadrants. We refer to
Figure 13 for the interpretation of the curves shown here: the segments of the curves I'; that coincide with
bifurcations are highlighted; otherwise, we use the same line style as in Figure 13, but the curve is thin and
black. Small amplitude localized solutions bifurcate into the parameter region below I'o and Iy provided that also
w > wg := p/B. The dark salmon shaded regions indicate the numerically observed existence region for localized
solutions with monotone tails; the light green shaded regions indicate the existence region for localized solutions
with oscillatory tails. Solutions bifurcating from Ty are observed to develop oscillatory tails for v < 7o (with
the notation of (4.1)). In parameter regions Q1, Q2, and Qu, all localized solutions terminate in a stationary
one-dimensional front at I'x. In Qs, I'sx ends at the curve I'gq; the termination of solutions for parameter values
to the left of T'q in Q3 is not well understood. Stable oscillons were found in between two saddle nodes in a small
subset of Q2.

11
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Figure 13: Color and line style legend for the various bifurcation curves shown in Figure 12 in the (w,) plane.
The insets for T'o, I'a, T's, and T'q represent the spatial eigenvalues of the linearization of (3.16) at r = o0 about
either u =0 or u = ufnif. The spatial eigenvalues are shown for the parameter regions indicated; for parameter

values in the opposite parameter region, the spatial spectra should be rotated by 90 degrees. The inset for I'y
depicts a representative solution profile along the curve I's.
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Jé; « I z:=a(l - %) —28

Q1 10.0 0.5 10.0 —69.5
Q- 2.5 —2.0 0.5 5.5
Qs 2.5 —2.0 —0.5 5.5
Q4 0.5 10.0 —5.0 6.5

Table 1: Values of the fized parameters for our numerical computations in each region.

The requirement g > aw and 7 < 4/p? + w? is the spatial eigenvalue condition discussed above. One can
show that sign(u — wf) equals the sign of the leading-order nonlinear term in an appropriate center-manifold
reduction of (3.16) near ¢ = 0. Therefore, the condition y < w/ ensures that the bifurcation from the curve

Yo(w, ) = A/p? + w? is subcritical and leads to localized patterns. The subcriticality plays a key role in the
analysis.

Our numerical results are summarized in Figure 12 below. We use the parameter values shown in Table 1 to
explore several 2-parameter slices of the 5-dimensional parameter space. For each bifurcation curve I';, we also
define v = y; = 7;(w) such that

(w,vj) €T; for all other parameters fixed. (4.1)

For example, v = 79 means that (w,v0) € I'y. We refer the reader to [9] for more details.

13
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