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1 Introduction

A tiling is a cover of Rd by tiles such as polygons that intersect only on their borders.
Many interesting tilings lack translational symmetry; that is, if T is one of such tilings
and T + x = T then x = 0. However, they often have “almost translational symmetry”;
for example, they are repetitive, that is, for any finite subset P ⊂ T there exists R > 0
such that for any x ∈ Rd there is y ∈ Rd with P + y ⊂ T ∩ B(x,R). Here B(x,R) is the
open ball with its center x and radius R and T ∩ S = {T ∈ T | T ⊂ S} for any S ⊂ Rd.
This repetitively means that, although the translate T − x is not equal to T , they may be
almost equal around the origin.

Limit-peiorid tilings (Definition 3.4) seem to have high degree of translational symme-
try; they are limits of unions of symmetric patches. In this note we prove, on the other
hand, if a tiling is from substitution the expansion factor of which is irrational Pisot, the
situation is converse: there are no symmetric sub-patch in it.

2 Preliminaries

This section is for preliminaries. For details see [5].

2.1 Definition of Tiling

Throughout the article we write Z>0 = {1, 2, . . .} and Z≥0 = {0, 1, 2, . . .}. If S is a set,
cardS denotes its cardinality. If (X, ρ) is a metric space, x ∈ X and r > 0, we write the
open ball of radius r with its center x by B(x, r). For a metric space (X, ρ) and S ⊂ X, its
diameter is by definition diamS = sup{ρ(x, y) | x, y ∈ S}. For a topological space X and
its subset A, its closure, interior, and boundary are denoted by A,A◦, ∂A, respectively.

Definition 2.1. Take d ∈ Z>0 and fix it. A tile of Rd is a subset of Rd which is nonempty,
open and bounded.

A patch of Rd is a set P of tiles of Rd such that, if S, T ∈ P and S ̸= T , then S∩T = ∅.
For a patch P, its support is the subset

∪
T∈P T of Rd and denoted by suppP.
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A patch P is called a tiling if suppP = Rd.

Remark 2.2. In the literature, a tile is defined in various ways. For example, it is defined
as (1) a subset of Rd which is homeomorphic to a closed unit ball of Rd ([1]), (2) a closed
polygonal subset of Rd ([9]), or (3) a subset of Rd which is compact and equal to the closure
of its interior ([3]).

In all these definitions tiles are defined as compact sets. However we can do the same
argument regarding tilings by considering the interiors of tiles. This way has one virtue.
Often in tiling theory one has to consider labels for tiles, so that one can distinguish tiles of
the same shape. If we deal with interiors, instead of compact sets, we can remove different
points from two copies of the same tile, so that we can distinguish these two tiles by their
“punctures” and do not need to consider labels separately.

Definition 2.3. For a patch P and a vector x ∈ Rd, define a translate of P by x via
P + x = {T + x | T ∈ P}. We set P1 ∼t P2 if there is x ∈ Rd such that P1 + x = P2.

Definition 2.4. A tiling T is said to be sub-periodic if there is x ∈ Rd \ {0} such that
its translate by x coincide with itself, that is, T + x = T . Otherwise a tiling is said to be
non-periodic. A tiling T of Rd is said to be periodic if there is a basis {b1, b2, . . . , bd} of Rd

such that T + bi = T for all i.

Example 2.5 (Square tiling). For any dimension d ∈ Z>0, a tiling Ts = {(0, 1)d + v | v ∈
Zd} is called Square tiling. This is an example of periodic tiling.

Definition 2.6. Given a tiling T , a patch P is T -legal if there is x ∈ Rd such that
P + x ⊂ T .

Next we introduce an important concept in tiling theory, which is called FLC (Definition
2.8).

Definition 2.7. For a patch P and a subset S ⊂ Rd, set P ∩ S = {T ∈ P | T ⊂ S}.

Definition 2.8. A tiling T has finite local complexity (FLC) if for any R > 0 the set
{T ∩B(x,R) | x ∈ Rd}/∼t is finite.

2.2 Tiling Space and Tiling Dynamical Systems

To study the nature of tilings, researching corresponding continuous hulls and tiling dy-
namical systems is useful. Let ∥ · ∥ be the standard norm of Rd.

Definition 2.9. The set of all patches of Rd is denoted by Ω(Rd).

First we define a metric on Ω(Rd), which is based on a well-known idea: to regard
two patches close if, after small translation, they precisely agree on a large ball about the
origin.
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Recall that for a patch P and S ⊂ Rd, we set P ∩ S = {T ∈ P | T ⊂ S}. For two
patches P1,P2 of Rd, set

∆(P1,P2) =

{
0 < r <

1√
2
|there exist x, y ∈ B(0, r) such that

(P1 + x) ∩B(0,
1

r
) = (P2 + y) ∩B(0,

1

r
)

}
.

Then define

ρ(P1,P2) = inf(∆(P1,P2) ∪ { 1√
2
}). (1)

Proposition 2.10. The metric space (Ω(Rd), ρ) is complete.

Proof. Take a Cauchy sequence (Pn)n∈Z>0 . We may assume

ρ(Pn,Pn+1) <
1

2n

holds for each n ∈ Z>0. For any n ∈ Z>0 there are xn, yn ∈ B(0, 1
2n ) such that

(Pn + xn) ∩B(0, 2n) = (Pn+1 + yn) ∩B(0, 2n).

Set zn =
∑∞

k=n(xk − yk). Then ∥zn∥ < 1
2n−2 . Set

Qn = (Pn ∩B(0, 2n − 1)) + zn

for each n ∈ Z>0. For any n ∈ Z>0 we have Qn ⊂ Qn+1 and P =
∪∞

n=1Qn is a patch.
Also, one can show that if n < m, Qm+1 ∩ B(0, 2n) = Qm ∩ B(0, 2n). From this we can
show

P ∩B(0, 2n−1) = (Pn + zn) ∩B(0, 2n−1).

and P = limPn.

Definition 2.11. For a tiling T , its continuous hull is ΩT = {T + x | x ∈ Rd} (the closure
in Ω(Rd) with respect to the tiling metric defined above).

Proposition 2.12. If a tiling T has FLC, then its continuous hull ΩT is compact.

We then introduce cylinder sets, which form a basis for the relative topology of the
metric topology on certain continuous hulls.
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Definition 2.13. Take a tiling T , a T -legal patch P and an open neighborhood U of 0 in
Rd. Set

CT (U,P) = {S ∈ ΩT | there is x ∈ U such that P + x ⊂ S}.

Lemma 2.14. For any tiling T , the topology generated by

{CT (U,P) | P: finite T -legal patch and U : open neighborhood of 0 in Rd}

is weaker than the relative topology of the metric topology.

Lemma 2.15. If a tiling T has finite tile type, then the set

{CT (U,P) | P: finite T -legal patch and U : open neighborhood of 0 in Rd}

generates the relative topology of metric topology on ΩT .

Next we introduce a sufficient condition for the tiling dynamical system to be minimal.
Recall that a dynamical system Rd ↷ Ω, where Ω is a compact Hausdorff space, is minimal
if any of its orbits is dense in Ω.

Definition 2.16. A subset S ⊂ Rd is relatively dense in Rd if there is R > 0 such that for
any x ∈ Rd, we have B(x,R) ∩ S ̸= ∅.
Definition 2.17. A tiling T is repetitive if for any finite patch P ⊂ T , the set {x ∈ Rd |
P + x ⊂ T } is relatively dense in Rd.

Remark 2.18. In literature repetitivity is defined in various ways. For example, a tiling
T may defined to be repetitive if for any compact K ⊂ Rd, there is a compact set K ′ ⊂ Rd

such that whenever x1, x2 ∈ Rd there is y ∈ K ′ with (T +x1)∩K = (T +x2+ y)∩K. For
FLC tilings of finite tile type, this condition and our definition of repetitivity are equivalent.
Definition 2.17 also coincides with the definition in [8].

Lemma 2.19. Let T be a tiling of Rd of finite tile type. If T is repetitive, then the
associated tiling dynamical system is minimal.

2.3 Eigenfunctions for tiling dynamical systems

Recall that for locally compact abelian group G and T = {z ∈ C | |z| = 1}, a continuous
group homomorphism χ : G → T is called a character.

Definition 2.20. Let G be a locally compact abelian group and X be a compact space.
Assume G acts on X continuously. Then we call a continuous function f : X → C a
continuous eigenfunction if there is a character χ : G → T such that f(g · x) = χ(g)f(x)
holds for any g ∈ G and x ∈ X. We call this character χ the eigencharacter.

Definition 2.21. For a ∈ Rd, let χa be the character of Rd defined by χa(x) = e2πi⟨a,x⟩,
where ⟨·, ·⟩ is the standard inner product of Rd. Every character of Rd is of this form. If
G = Rd in Definition 2.20, and χa is the eigencharacter of an eigenfunction f , a is called
the eigenvalue for f .
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2.4 Substitution Rules

Here we introduce substitution rule, which generates interesting examples of tilings.

Definition 2.22. A substitution rule is a triple (A, λ, ω) where,

• A is a finite set of tiles that contain the origin,

• λ is a real number greater than 1, and

• ω is a map from A to

{P | P is a patch and any T ∈ P is a translate of a member of A}

such that

suppω(P ) = λP

for each P ∈ A.

Elements of A are called proto-tiles of the substitution. The number λ is called the
expansion factor of substitution. The map ω, called substitution map, is a map obtained
by first expanding each proto-tile and then decomposing it to obtain a patch consisting of
translates of proto-tiles.

Definition 2.22 is for substitution with the group Rd. One can also consider a substitu-
tion rule for a closed subgroup of Rd ⋊O(d) bigger than Rd, for example Radin’s pinwheel
tiling ([6]). We do not deal with such substitutions in this article. One can also consider
substitution rules with expansion maps, in place of expansion factors (see for example [7]).
An expansion map is a linear transformation of Rd the eigenvalues of which lie all outside
the closed unit disc of C. We do not deal with such substitutions either.

We extend the substitution map ω to translates of proto-tiles by

ω(P + x) = ω(P ) + λx (2)

for each P ∈ A and x ∈ Rd. For any patch P consisting of translates of proto-tiles, set
ω(P) by

ω(P) =
∪
T∈P

ω(T ).

The above extension (2) is justified by the fact that ω(P) is again a patch.

Definition 2.23. Let (A, λ, ω) be a substitution rule. A tiling T consisting of proto-tile
A is called a fixed point of a substitution (A, λ, ω) if ω(T ) = T .

Definition 2.24. A substitution rule (A, λ, ω) is repetitive if there is K > 0 such that for
any P, P ′ ∈ A there is x ∈ Rd with P ′ + x ∈ ωK(P ).

Definition 2.25. A substitution rule has FLC if

{ωn(P ) ∩B(x,R) | P ∈ A, n ∈ Z>0, x ∈ Rd}/∼t

is finite for all R > 0.
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3 Main Results

Theorem 3.1 ([7]). Let T be a repetitive fixed point of a primitive substitution. Assume
T has FLC. Then the associated tiling dynamical system (ΩT ,Rd) is not mixing.

The proof of this theorem uses a fact that, given any T -legal patch P, a return vector
x and large n ∈ Z>0, there are “many” translates of the patch P ∪ (P + λnP) in the tiling
T , in a certain sense. Here a return vector is a vector x ∈ Rd such that there exists T ∈ T
with T + x ∈ T , and λ > 1 is the expansion factor of the substitution. For any tile T ∈ T ,
the number

lim
N→∞

card{translate of P ∪ (P + λnx) in λNT}
Lebesgue measure of λN (T )

is estimated from below. Here a property of distribution of patches implies a property of
the dynamical system (ΩT ,Rd).

In this talk we show a converse implication; we show from a property of the dynamical
system (ΩT ,Rd) a property of distribution of patches.

Theorem 3.2 ([8]). Let T be a repetitive, non-periodic fixed point of a primitive FLC
substitution. Let the expansion factor of the substitution rule be θ. Then there exists a
basis {b1, b2, . . . , bd} of Rd such that any vectors from

Z[θ−1]b1 + · · ·+ Z[θ−1]bd

are eigenvalues.

Using this we can prove the following.

Theorem 3.3. Let T be a non-periodic repetitive fixed point of a primitive FLC substitution
the expansion factor of which is irrational Pisot. Then for any T -legal non-empty finite
patch P and x ∈ Rd \ {0}, there exists N ∈ Z>0 such that, the patch

∪N
n=0(P + nx) is not

T -legal.

Proof. We only sketch the idea of the proof when P is large enough. The proof for the
general case is obtained by combining this with self-similarity of the tiling. For x ̸= 0
take an eigenfunction f with eigenvector a such that ⟨x, a⟩ ∈ R \ Q. For this f , if P
is large enough, T \ f(CT ({0},P)) is an nonempty open set. For this P we prove the
theorem. There is N > 0 such that, for any z ∈ T there exists n ∈ {0, 1, . . . , N} with
e2πi⟨nx,a⟩z ∈ T\f(CT ({0},P)). If S ∈ ΩT , there is n ∈ {0, 1, . . . , N} such that f(S−nx) /∈
f(CT ({0},P)). This means that P + nx ̸⊂ S and we have proved

∪N
n=0(P + nx) is not

T -legal.

The situation is contrary to the one in limit-periodic tilings.
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Definition 3.4. A patch P of Rd is translational-symmetric if there is a lattice Λ in Rd

such that P + x = P for any x ∈ Λ. A tiling T is said to be limit-periodic if there is a
translational-symmetric patches P1,P2, . . . such that T = limN→∞

∪N
n=1 Pn.

For limit-periodic tilings, there are an abundance of infinite sequence of patches. For
examples of limit-periodic tilings, see [2].

Note also that by the following theorem there are arbitrary long finite sequences in
tilings.

Theorem 3.5 ([4]). Let T be a FLC tiling with local isomorphism property. Let P be
a subset of T such that suppP is bounded. Take a finite subset F of Rd and an open
neighborhood U of 0 in Rd. Then there is n ∈ Z>0 and zf ∈ U for each f ∈ F such that,
the patch

∪
f∈F (P + nf + zf ) is T -legal.

Corollary 3.6. Let T be a repetitive fixed point of a primitive FLC substitution the ex-
pansion constant of which is a Pisot number. Let P be a T -legal patch, x ∈ Rd, n ∈ Z>0

and U be an open neighborhood of 0 ∈ Rd. Then there are y ∈ Rd and m ∈ Z>0 such that,
mx− y ∈ U and

∪n
i=0(P + iy) is T -legal.

Proof. This follows from Meyer property of the tiling.

References

[1] Jared E. Anderson and Ian F. Putnam, Topological invariants for substitution tilings
and their associated C∗-algebras, Ergodic Theory Dynam. Systems 18 (1998), no. 3,
509–537. MR 1631708 (2000a:46112)

[2] Michael Baake, Robert V. Moody, and Martin Schlottmann, Limit-(quasi)periodic point
sets as quasicrystals with p-adic internal spaces, J. Phys. A 31 (1998), no. 27, 5755–
5765. MR 1633181 (99f:82061)

[3] Nicolas Bedaride and Arnaud Hilion, Geometric realizations of two dimensional substi-
tutive tilings, arxiv:1101.3905v4 [math.gt].

[4] R. de la Llave and A. Windsor, An application of topological multiple recurrence to tiling,
Discrete Contin. Dyn. Syst. Ser. S 2 (2009), no. 2, 315–324. MR 2505641 (2010c:37026)

[5] Yasushi Nagai, Distribution of patches in tilings and spectral properties of corresponding
dynamical systems, arXiv:1409.2645.

[6] Charles Radin, The pinwheel tilings of the plane, Ann. of Math. (2) 139 (1994), no. 3,
661–702. MR 1283873 (95d:52021)

[7] Boris Solomyak, Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems 17
(1997), no. 3, 695–738. MR 1452190 (98f:52030)

7



[8] , Eigenfunctions for substitution tiling systems, Probability and number
theory—Kanazawa 2005, Adv. Stud. Pure Math., vol. 49, Math. Soc. Japan, Tokyo,
2007, pp. 433–454. MR 2405614 (2010b:37037)

[9] Michael F. Whittaker, C∗-algebras of tilings with infinite rotational symmetry, J. Op-
erator Theory 64 (2010), no. 2, 299–319. MR 2718945 (2011m:46127)

8


