Dynamical charts for irrationally indifferent
fixed points of holomorphic functions




Complex Dynamics
f: C — C Rational map or f : C — C Polynomial n
2 n
2o z21=f(20) = 2o=f"(21) —~ ... = zo=f"(20)=f o -0 f(z)
Dichotomy in Phase space (z-plane)

C=F(f)UJ(F)
where F'(f) = Fatou set (tame part), J(f) = Julia set (chaotic part)

For f polynomial,
K(f) ={z€C:{f"(2)}>2, bounded } filled Julia set

L(Gh ) — 8K ( ) = {z { f” 0 18  not equlcontlnuous near z}




A few examples (f.(z) = 2% + ¢ with various ¢’s)

Well-understatood if f is hyperbolic: all critical points are attracted

to attracting periodic orbits, or equivalently f is expanding on J(f).

Then the Julia set is locally connected and the dynamics of J(f) can
- be described as a quotient (factor) of z — 2% on {




Local dynamics near irrationally indifferent fixed points

Irrationally indifferent fixed point of a holomorphic function

f(z) =e?™z 4+ 22 + ..., a e RNQ

The fixed point is linearizable if and only if it is locally (holomorphically)

conjugate to a rotation. “

Problem: What is the local dynamics when the fixed pt is not linearizable?




Theorem: If f(z) = e*™*z + 22 and the rotation number « is an
irrational number of high type, i.e.

1
a =+ . (a; € N, a; > N large)

a1:|:

1
a2:|:—

then the Julia set J(f) contains an invariant subset A such that
0, critical pt € A and A ~ {0} consists of (disjoint) continuous hairs
(like the Julia set of exponential map).




Return map and renormalization

= D

(first return map of f) after rescaling

— 0 ® e (s it eere = 19)
Renormalization
high iterates of [ <«—— fewer iterates of R f

fine orb1t structure for f e large scale 0rb1t structure for R f




Feigenbaum-Coullet-Tresser for unimodal maps

f 12 Rf=go(f*|ls)og™"

e
e

I =10,1] s Gl A B L

- Hyperbolic fixed point or hyperbolic



Fatou coordinates ® 4y /rep and the Horn map FEy, for fo(z) =z+ 2%+ ..
fo(z):z+a2z2+... Fo(w) =w+ 1+ o(1)

near oo
near 0

T(w)=w+1 Tw)=w+1
Efo (Z) = Dyitr © (I);e; (I)(fo(Z)) T (I)(Z) S



Perturbation  f(0) = €™, a small |arga| < T

first return map

\

E; depends continuously on f

(after a suitable normalization)



Near-parabolic renormalization

first return map = C . {0}
- C/7

’ glue Exp'(z
&

. _ = exp( 27mz
uniformize

R [ can be defined when f(z) = e*™®z + ... is a small perturbation of
z+a2° + ... (a2 #0) and |arg a| < 7/4.

almost like w — e 2™ R f

A= —% coordinate

S
|

E:cp#

271'22:




Theorem (Inou & S.): If « is an irrational number of sufficiently
high type, then for f(2) = e*™z+ 22, the sequence of near-parabolic
renormalizations

fs Rf, R°f, R°f, ...

are well-defined and these functions R"™f belong to a certain pre-
compact class of functions. Each R™f has a unique critical point in
its domain of definition and the critical points are inherited between
the levels of renormalization.




Dynamical charts

Open sets U; (z € I ) Wthh cover a punctured nbd of ﬁxed pt

i Seckt
%



Successive renormalizations = refinements of dynamical charts

s R f
‘_)-_)

Rf ¥

\
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Construction of dynamical charts

Q) Q,(:l) S0 Q,i”)k o Q,S’f*,;?knknﬁ i

each Q/(C?)IQ . 18 isomorphic to truncated checkerboard pattern Qgrn they are glued via O~ ¢

Ar = ﬂ U Q(nzﬁ | ks.....k, 1S aninvariant set containing the critical
n=0 (k1,....kn)EAn, orbit  “maximal hedgehog”



Theorem For each (ki,ko,...) € Ay (set of admissible sequences

of indices), the intersection [ ., Q;??lil ., 1s asimple arc ending at
0. (hair) The maximal hedgehog A is the union of arcs which are
disjoint except at O.

Proof by successive (cut-off) Iterating exponential(-like) maps is

homotopies just like in the necessary to understand quadratic
case of exponential maps polynomials!






