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We consider random dynamical systems. One of the purposes to study dynamical systems is
to describe nature. Since nature has a lot of random terms, it seems natural to consider random
dynamical systems. Recently, many new phenomena of random dynamical systems which cannot
hold in the usual iteration dynamical systems are found and investigated. Such phenomena are
called “randomness-induced phenomena” or “noise-induced phenomena”.

In this presentation, we consider the dynamics of semigroups of complex polynomial maps
on the Riemann sphere Ĉ := C ∪ {∞} ∼= S2, where the semigroup operation being the functional

composition, and the associated random dynamical systems on Ĉ. The motivations to study random
complex dynamical systems are as follows. (1) One of the most important and popular subjects
in the study of dynamical systems is the polynomial dynamics on R. In polynomial dynamics, it
is important to consider not only real initial values but also complex initial values, to investigate
the detail of polynomial dynamics. Combining this idea and that of random dynamical systems, it
seems natural to consider “random complex dynamical systems”. (2) The second motivation
to study random complex dynamics is “Newton’s method” to find roots of complex polynomial

f(z). In this case, we consider the iteration of rational function R(z) = z − f(z)
f ′(z) . In Newton’s

method, we sometimes use computers, and since computers have error terms, it seems natural to
consider random iterations of rational functions. (3) Third motivation to study random complex
dynamics is the study on group actions on complex manifolds. It is related to algebraic geometry,
low dimensional topology (e.g. the actions of mapping class groups of Riemann surfaces on some
complex manifolds), Painlevé equations, etc. Random complex dynamics on the Riemann sphere
might be a prototype of these kind of subjects.

Let P := {f : Ĉ → Ĉ | f is a polynomial map, deg(f) ≥ 2} endowed with distance η which is

defined as η(f, g) := supz∈Ĉ d(f(z), g(z)), where d denotes the spherical distance on Ĉ ∼= S2. Also,

we have P ∼= ∪∞
d=2Pd (disjoint union), where Pd := {f ∈ P | deg(f) = d} ∼= (C \ {0})× Cd. (Note

that a complex polynomial f : C → C is regarded as a polynomial map f : Ĉ → Ĉ by setting
f(∞) := ∞.)

Note that P is a semigroup where the semigroup operation being functional composition. We
say that a non-empty subset G of P is a polynomial semigroup if G is a subsemigroup of P.

Let Cpt(P) be the space of all non-empty compact subsets of P endowed with Hausdorff distance
dH , which is defined as

dH(K,L) := max{sup
a∈K

inf
b∈L

η(a, b), sup
b∈L

inf
a∈K

η(a, b)}.
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Definition 0.1 ([1]). We say that an element Γ ∈ Cpt(P) is mean stable if there exist non-empty

open subsets U, V of Ĉ with ♯(Ĉ \ U) ≥ 3 and a positive integer n such that

• V ⊂ U ,

• for each (γ1, . . . , γn) ∈ Γn, we have γn ◦ · · · γ1(U) ⊂ V , and

• for each z ∈ Ĉ, there exists an element (α1, . . . , αm) ∈ Γm for some m ∈ N such that
αm ◦ · · · ◦ α1(z) ∈ U.

Also, we say that a polynomial semigroup GΓ generated by Γ (i.e., GΓ := {γ1 ◦ · · · ◦ γm | m ∈
N, ∀γj ∈ Γ} is mean stable if Γ is mean stable.

For each Borel probability measure τ on P, we consider the i.i.d. random dynamical system
on Ĉ associated with τ (i.e., the random dynamical system on Ĉ such that at every step we choose

a map h ∈ P according to τ). This gives us a Markov chain with phase space Ĉ such that the

transition probability p(x,A) from x ∈ Ĉ to a Borel subset A of Ĉ is equal to τ({h ∈ P | h(x) ∈ A}).
We have the following.

Theorem 0.2 ([1, 2]). Let Γ ∈ Cpt(P) be mean stable. Let τ be a Borel probability measure on P
with supp τ = Γ, where supp τ denotes the topological support of τ (Note that for each A ∈ Cpt(P),
there exists a Borel probability measure ρ on P with supp ρ = A.) We consider the i.i.d. random

dynamical system on Ĉ associated with τ. Then we have all of the following statements.

(1) (Negativity of Lyapunov exponents) There exists a negative constant c with the fol-
lowing property (∗).

(∗) For each z ∈ Ĉ, there exists a subset Az of PN with (⊗∞
n=1τ)(Az) = 1 such that for

each γ = (γ1, γ2, . . . , ) ∈ Az, the Lyapunov exponent

χ(γ, z) := lim
n→∞

1

n
log ∥D(γn ◦ · · · ◦ γ1)(z)∥

along the sequence γ of polynomials starting with the initial value z exists and

χ(γ, z) ≤ c < 0.

Here, Df(z) denote the complex derivative of f at z and ∥ · ∥ denotes the norm of the

derivative with respect to the spherical metric on Ĉ ∼= S2.

(2) There exists a subset B of PN with (⊗∞
n=1τ)(B) = 1 such that for each γ = (γ1, γ2, . . . , ) ∈ B,

the Julia set Jγ of the sequence γ of polynomials, which is defined as

Jγ := {z ∈ Ĉ | ∀ nbd U of z, {γn ◦· · ·◦γ1 : U → Ĉ}∞n=1 is not equicontinuous on U w.r.t. d},

satisfies Leb2(Jγ) = 0, where Leb2 denotes the 2-dimensional Lebesgue measure on Ĉ.

(3) The i.i.d. random dynamical system on Ĉ associated with τ behaves well on the Banach

space C(Ĉ) of all continuous complex-valued functions on Ĉ endowed with supremum norm

∥ · ∥∞. More precisely, there exist a non-empty finite dimensional subspace Uτ of C(Ĉ)
and a continuous projection πτ : C(Ĉ) → Uτ such that for each φ ∈ C(Ĉ), we have that

∥Mn
τ (φ − πτ (φ))∥∞ → 0 as n → ∞, where Mτ : C(Ĉ) → C(Ĉ) is an operator defined by

Mτ (ψ)(z) :=
∫
P ψ(h(z))dτ(h) for each ψ ∈ C(Ĉ) and z ∈ Ĉ.

Theorem 0.3 ([2]). Let MS := {Γ ∈ Cpt(P) | Γ is mean stable}. Then MS is an open dense
subset of Cpt(P).
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The following is an open problem.

Problem 0.4. (Open Problem.) Let m ∈ N with m ≥ 2. Let

MSm := {(f1, . . . , fm) ∈ Pm | {f1, . . . , fm} is mean stable}.

Then, is MSm an open dense subset of Pm ? (Remark: at least we know that MSm is an open
subset of Pm.)

Remark 0.5. If MSm is an open dense subset of Pm for each m ∈ N with m ≥ 2, then it gives
us another proof of Theorem 0.3.

Remark 0.6. For each f ∈ P, the set {f} is not mean stable, since we always have that the Julia
set J(f) of f is not empty, and the dynamical system generated by f on J(f) is chaotic. Thus
Theorems 0.2, 0.3 illustrate randomness-induced phenomena of random dynamical systems
(phenomena in random dynamical systems which cannot hold in the usual iteration dynamics of
a single map). Note that in random complex dynamical systems, there are a lot of randomness-
induced phenomena (see [1, 2]). The phenomena in Theorems 0.2, 0.3 are due to the (automatic)
cooperation of many kinds of maps in one system so that they make the chaos of the averaged
system disappear, even though the iteration dynamical system generated by each map of the system
has a chaotic part (and each sequence of maps in the system has a chaotic part) . This is called
the “cooperation principle”.

Problem 0.7. (1) Find many randomness-induced phenomena in random complex dynamical
systems.

(2) Find many randomness-induced phenomena in random real dynamical systems.

(3) Compare the difference between the phenomena between random real dynamical systems and
random complex dynamical systems.

Note that in random real dynamical systems, there are many examples of robust chaoticity.

Remark 0.8. We also remark that regarding the random complex dynamical systems, even if the
chaos disappears in the C0 sense, the chaos (or some kind of complexity) may remain in the C1

sense. More precisely, under certain conditions, there exists a constant 0 < α0 < 1 such that

(1) for each α with 0 < α < α0, the system behaves well on the Banach space Cα(Ĉ) of all

α-Hölder continuous functions on Ĉ endowed with α-Hölder norm ∥ ·∥α (i.e., the iterations of

Mτ on Cα(Ĉ) satisfy a similar situation as in statement (3) of Theorem 0.2 with (C(Ĉ), ∥·∥∞)

replaced by (Cα(Ĉ), ∥ · ∥α), but

(2) for each α with α0 < α < 1, the system does not behave well on the Banach space Cα(Ĉ)
(e.g. there exists an element φ ∈ Cα(Ĉ) such that ∥Mn

τ (φ)∥α → ∞ as n→ ∞).

Thus, regarding random (complex) dynamical systems, we have

gradation between chaos and order.

This is a new concept regarding random dynamical systems and it seems me very important to
study it.

Problem 0.9. Study gradation between chaos and order regarding random dynamical systems
which look “mild” and find the hidden complexity of the systems. Also, classify such systems
in terms of the quantities which indicate the gradation between chaos and order (like α0 in the
above).

The following example illustrates the gradation between chaos and order.
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Example 0.10 ([1, 2]). (Devil’s coliseums.) Let g1(z) = z2 − 1, g2(z) = z2

4 and let f1 :=

g1 ◦ g1, f2 := g2 ◦ g2. Let τ =
∑2

j=1
1
2δfj and we consider the random dynamical system on Ĉ

associated with τ. That is, we consider the random dynamical system on Ĉ such that at every
step we choose f1 with probability 1/2 and we choose f2 with probability 1/2. It turns out that

{f1, f2} is mean stable. For each initial value z ∈ Ĉ, let T∞(z) be the probability of tending to

∞ starting with the initial value z. Then, for each φ ∈ C(Ĉ) such that φ is 1 around ∞ and 0 in
{z ∈ C | |z| ≤ 4}, we have T∞(z) = limn→∞Mn

τ (φ)(z) (uniform convergence), T∞,τ is a Hölder

continuous function on Ĉ and T∞,τ varies precisely on the Julia set of the polynomial semigroup
G = {fin ◦ · · · ◦ fi1 | n ∈ N, ∀ij ∈ {1, 2}} generated by {f1, f2}, which is a thin fractal set. It turns
out that in this case, there exists an α0 with 0 < α0 ≤ 1/2 such that the statements of Remark 0.8
hold. The function T∞,τ can be regarded as a complex analogue of the devil’s staircase
(the Cantor function) (see Figure 1) or Lebesgue’s singular functions (see Figure 2).

The function T∞,τ : Ĉ → [0, 1] is called a “devil’s coliseum”. For the figures of the Julia set of
semigroup G = ⟨f1, f2⟩ generated by {f1, f2} and the graph of T∞,τ , see Figures 3, 4, 5.

The reason why we can regard T∞.τ as a complex analogue of the devil’s staircase or Lebesgue’s
singular functions is as follows. For each x ∈ R, let h1(x) = 3x, h2(x) = 3x − 2 and we consider

the random dynamical system on R (or R̂ := R ∪ {±∞}) such that at every step we choose h1
with probability 1/2 and we choose h2 with probability 1/2. Let T+∞(x) be the probability of
tending to +∞ starting with the initial value x ∈ R. Then it turns out that T+∞|[0,1] is equal
to the devil’s staircase. For the figure of the graph of T+∞|[0,1], see Figure 1. Similarly, let
k1(x) = 2x, k2(x) = 2x − 1 and and p ∈ (0, 1) with p ̸= 1/2. We consider the random dynamical
system on R such that at every step we choose k1 with probability p and choose k2 with probability
1 − p. Let T+∞,p(x) be the probability of tending to +∞ starting with the initial value x ∈ R.
Then it turns out that T+∞,p|[0,1] is equal to the Lebesgue’s singular function with parameter p.
For the graph of T+∞,p|[0.1], see Figure 2.

Figure 1: The graph of the devil’s staircase (Cantor function)
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Figure 2: The graph of Lebesgue’s singular function
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Figure 3: The Julia set of polynomial semigroup G = ⟨f1, f2⟩ generated by {f1, f2}, where g1(z) :=
z2−1, g2(z) := z2/4, f1 := g21 , f2 := g22 .We have that {f1, f2} is mean stable and dimH(J(G)) < 2.

Figure 4: The graph of T∞,τ , where τ =
∑2

i=1
1
2δfi with the same fi as in Figure 3. T∞,τ

is continuous on Ĉ. The set of varying points of T∞,τ is equal to J(G) in Figure 3. A“devil’s
coliseum” (A complex analogue of the devil’s staircase).

Figure 5: Figure 4 upside down. A “fractal wedding cake”.
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