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Abstract. We develop a thermodynamic formalism for a strongly dissipative Hénon-like
map at the first bifurcation parameter at which the uniform hyperbolicity is destroyed by
the formation of tangencies inside the limit set. For any t ∈ R we prove the existence of
an invariant Borel probability measure which minimizes the free energy associated with a
non continuous geometric potential −t log Ju, where Ju denotes the Jacobian in the unstable
direction. Under a mild condition, we show that any accumulation point of these measures
as t → +∞ is a measure which minimizes the unstable Lyapunov exponent. We also show
that the equilibrium measures converge as t → −∞ to a Dirac measure which maximizes the
unstable Lyapunov exponent.

This is an excerpt from the paper [20].

1. introduction

A basic problem in dynamics is to describe how structurally stable systems lose their sta-
bility through continuous modifications of the systems. The loss of stability of horseshoes
through homoclinic bifurcations is modeled by a family of Hénon-like diffeomorphisms

(1) fa : (x, y) ∈ R2 7→ (1− ax2, 0) + b · Φ(a, b, x, y), a ∈ R, 0 < b ≪ 1.

Here, Φ is bounded continuous in (a, b, x, y) and C2 in (a, x, y). It is known [2, 8, 10, 18] that
there is a first bifurcation parameter a∗ = a∗(b) ∈ R with the following properties:

• a∗ → 2 as b → 0;
• the non wandering set of fa is a uniformly hyperbolic horseshoe for a > a∗ ;
• for a = a∗ there is a single orbit of homoclinic or heteroclinic tangency. If fa∗ preserves
orientation, the tangency is homoclinic. Otherwise it is heteroclinic. The tangency is
quadratic, and the family {fa}a∈R unfolds the tangency at a = a∗ generically.

The study of the map fa∗ opens the door to understanding the dynamics beyond uniform
hyperbolicity in dimension two. In this paper we advance the thermodynamic formalism for
fa∗ initiated in [15, 16]. We prove the existence of equilibrium measures for a family {φt}t∈R
of non continuous geometric potentials, and study accumulation points of these measures as
t → ±∞.

Write f for fa∗ . The non wandering set of f , denoted by Ω, is a compact f -invariant
set. Let M(f) denote the space of f -invariant Borel probability measures endowed with the
topology of weak convergence. For a potential function φ : Ω → R the minus of the free energy
Fφ : M(f) → R is defined by

Fφ(µ) = h(µ) +

∫
φdµ,

1
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where h(µ) denotes the entropy of µ. An equilibrium measure for the potential φ is a measure
µφ ∈ M(f) which maximizes Fφ, i.e.,

Fφ(µφ) = sup{Fφ(µ) : µ ∈ M(f)}.

The existence and uniqueness of equilibrium measures depends upon the characteristics of the
system and the potential. The family of potentials we are concerned with is

φt = −t log Ju t ∈ R,

where Ju denotes the Jacobian in the unstable direction which is defined as follows. For a
point x ∈ R2 let Eu

x denote the one-dimensional subspace of TxR2 such that

(2) lim sup
n→∞

1

n
log ∥Dxf

−n|Eu
x∥ < 0.

Since f−1 expands area, the one-dimensional subspace of TxR2 with this property is unique
when it makes sense. We call Eu

x the unstable direction at x and define Ju(x) = ∥Dxf |Eu
x∥.

It was proved in [15, Proposition 4.1] that Eu
x makes sense for all x ∈ Ω, and x ∈ Ω 7→ Eu

x is
continuous except at the fixed saddle near (−1, 0) where it is merely measurable.

Since the chaotic behavior of f is created by the (non-uniform) expansion along the unstable
direction, a good deal of information is obtained by studying the equilibrium measures for φt

and the associated pressure function t ∈ R 7→ P (t), where

P (t) = sup{Fφt(µ) : µ ∈ M(f)}.

The existence of equilibrium measures for φt was proved in [15] for all t ≤ 0, and for those
t > 0 such that P (t)/t is slightly bigger than − log 2. However, the arguments and the result
in [15] do not cover sufficiently large t > 0. Our first theorem complements this point.

Theorem A. Assume f preserves orientation. For any t ∈ R there exists an equilibrium
measure for φt.

For t in a large bounded interval, the uniqueness and some geometric/statistical properties
of equilibrium measures were established in [16]. It would be nice to prove the uniqueness for
all t ∈ R, including the orientation reversing case.

Since t represents the inverse of the temperature in statistical mechanics, t → ±∞ means
that the temperature goes to zero. Hence, it is natural to study accumulation points of
equilibrium measures for φt as t → ±∞. They represent the lowest energy states, and may
reflect the characteristics of the system.

The study of the behavior of the equilibrium measures as t → ±∞ is also related to the
ergodic optimization (See e.g. [5] and the references therein): given a continuous dynamical
system T acting on a compact metric spaceX, and a real-valued function ϕ onX, one looks for
T -invariant Borel probability measures which maximize the integral of ϕ. One way to do this
is by freezing the system: to consider a family {tϕ}t∈R of potentials and an associated family
{νt}t∈R of equilibrium measures, and to let t → +∞. If the topological entropy is finite and
the potential is continuous, then any accumulation point as t → +∞ maximizes the integral
of ϕ. For uniformly hyperbolic systems (or the subshift of finite type), the convergence has
been established for certain locally constant potentials [4, 12] as well as for a residual set of
continuous potentials [9, 11]. However, little is known for non hyperbolic systems.



LYAPUNOV OPTIMIZING MEASURES FOR HÉNON-LIKE MAPS AT THE FIRST BIFURCATION 3

An unstable Lyapunov exponent of a measure µ ∈ M(f) is a number λu(µ) defined by

λu(µ) =

∫
log Judµ.

Of interest to us are measures which optimize the unstable Lyapunov exponent. Since the
unstable Lyapunov exponent is not continuous as a function of measures, the existence of such
measures is an issue. We show that any accumulation point of the equilibrium measures for
φt = −t log Ju as t → ±∞ optimizes the unstable Lyapunov exponent.

Set
λu
m = inf{λu(µ) : µ ∈ M(f)}.

A measure µ ∈ M(f) is called Lyapunov minimizing if λu(µ) = λu
m. Let Q denote the fixed

point of f near (−1, 0), and δQ the Dirac measure at Q.

Theorem B. Assume f preserves orientation. Let {µt}t∈R be such that µt is an ergodic
equilibrium measure for φt for all t ∈ R. Then any accumulation point of {µt}t∈R as t → +∞
is δQ, or a Lyapunov minimizing measure. If (1/2)λu(δQ) ̸= λu

m, then any accumulation point
as t → +∞ is Lyapunov minimizing.

Since λu(δQ) → log 4 and λu
m → log 2 as b → 0, it is not easy to verify (1/2)λu(δQ) ̸= λu

m.
However, from a given family (1) of Hénon-like diffeomorphisms one can construct another
satisfying this condition by slightly perturbing the reminder term Φ.

It is worthwhile to compare Theorem B with the results of Leplaideur [13]. In this paper, he
studied an orientation preserving non-uniformly hyperbolic horseshoe map with three symbols,
with a single orbit of homoclinic tangency, introduced in [14]. Although this map is similar to
our f at a first glance, its equilibrium measures converge as t → +∞ to a Dirac measure which
maximizes the unstable Lyapunov exponent. He also proved the nonexistence of a measure
which minimizes the unstable Lyapunov exponent.

Since the uniqueness of Lyapunov minimizing measures of f is not known, it is important
to give a criterion for which one is “selected” in the limit t → +∞. The next theorem gives
a criterion in terms of entropy. A Lyapunov minimizing measure µ ∈ M(f) is called entropy
maximizing if

h(µ) = {h(ν) : ν ∈ M(f), h(ν) is entropy maximizing}.

Theorem C. Let f and {µt}t∈R be the same as in Theorem B. If (1/2)λu(δQ) ̸= λu
m, then

any accumulation point as t → +∞ is entropy maximizing.

We now turn to the case t → −∞. The next theorem holds regardless of the orientation of
the map f .

Theorem D. Let {µt}t∈R be such that µt is an ergodic equilibrium measure for φt for all
t ∈ R. Then µt converges to δQ as t → −∞.

It follows from a proof of Theorem D that δQ is the unique measure which maximizes the
unstable Lyapunov exponent. Apart from the uniqueness, the existence of such maximizing
measures follows from the result in [7].

A key ingredient for proofs of the theorems is a control of the derivatives in the unstable
direction. To this end we develop Benedicks-Carleson’s critical point approach [3] further. The
same strategy has been taken already in [15, 16], but substantial improvements are necessary
to treat all t > 0. The assumption on the orientation of the map f will be used to construct
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measures with small unstable Lyapunov exponent, and to estimate the pressure P (t) from
below.
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