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We study ergodic optimization. For any diffeomorphism, measures with

maximum total exponent can be defined. In order to define this notion,

we begin with introducing the notation. Let M be a compact smooth Rie-

mannian manifold without boundary. It is also assumed to be connected.

Let T be a C1-diffeomorphism. Consider a compact T -invariant set Λ. We

denote by M (T,Λ) the space of all T -invariant Borel probability measures

supported on Λ equipped with the weak-∗ topology. We say that Λ is a basic

set of T if Λ is isolated and hyperbolic for T and T |Λ : Λ→ Λ is topologically

transitive. We recall that Λ is isolated for T if there exists an open neigh-

borhood U of Λ such that Λ =
⋂
i∈Z

T i(U) holds. Let DT (x) be the derivative

of T at x ∈ M . We denote by J(T )(x) the Jacobian of T at x ∈ M , that is,

the absolute value of the determinant of DT (x).

In ergodic optimization, invariant Borel probability measures maximizing

the integral of a given function are mainly considered. In our study, those of

a specific function are investigated. Now we define measures with maximum

total exponent.

Definition 1 A measure ν ∈ M (T,Λ) is called a measure with maximum

total exponent on Λ for T if

∫
log J(T )(x)dν(x) ≥

∫
log J(T )(x)dµ(x)
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holds for any measure µ ∈ M (T,Λ). Let L (T,Λ) denote the set of all

measures with maximum total exponent on Λ for T .

That is, we are interested in T -invariant Borel probability measures max-

imizing the integral of the function log J(T ). By virtue of the Oseledec theo-

rem, we see that
∫

log J(T )(x)dµ(x) is equal to the integral of the sum of all

Lyapunov exponents of T with respect to µ. This is the reason why we use

the term ’measure with maximum total exponent’. T is a C1-diffeomorphism,

so the function log J(T ) is continuous on M . In addition, the space M (T,Λ)

is compact, so the set L (T,Λ) is not empty, that is, there exists at least one

measure with maximum total exponent on Λ for T .

The following theorem is the main result.

Theorem 1 Let T : M → M be a C1-diffeomorphism with a basic set Λ.

Then there exists a C1-neighborhood U of T such that a generic element S

in U satisfies the following properties.

(1) S has a unique measure with maximum total exponent on the continuation

ΛS =
⋂
i∈Z

Si(U) of Λ for S.

(2) Any measure with maximum total exponent on ΛS for S has zero entropy.

(3) Any measure with maximum total exponent on ΛS for S is fully supported

on ΛS.

Next, we state one more result obtained from Theorem 1. To this end,

we give further definitions. Let Ω(T ) be the nonwandering set of T . We say

that T is C1-Ω-stable if for any element S in some C1-neighborhood of T ,

there exists a conjugacy map from Ω(S) to Ω(T ). From the definition, we see

that the totality of C1-Ω-stable Cr-diffeomorphisms is open in the space of

2



all Cr-diffeomorphisms. It is known that every C1-Ω-stable diffeomorphism

satisfies Axiom A. Therefore, by virtue of Smale’s spectral decomposition

theorem, if T is C1-Ω-stable, then there exist a finite number of disjoint

basic sets Λ1, . . . ,Λn of T such that Ω(T ) =
n⋃

i=1
Λi. We call each Λi a Smale

basic set. Then, applying Theorem 1 to each Smale basic set, we can obtain

local properties about measures with maximum total exponent not only on

a Smale basic set but also on M . But, in fact, we can obtain the following

theorem.

Theorem 2 Each of the following properties is generic in C1-Ω-stable C1-

diffeomorphisms.

(1) There exists a unique measure with maximum total exponent on M .

(2) Any measure with maximum total exponent on M has zero entropy.

(3) Any measure with maximum total exponent on M is fully supported on

one of the Smale basic sets.

That is, we can obtain not only local properties but also global properties

about measures with maximum total exponent on M . On the other hand,

for C1-Ω-stable diffeomorphisms with higher regularity, we have the following

theorem.

Theorem 3 Let r ≥ 2. Then any measure with maximum total exponent

on M for a generic C1-Ω-stable Cr-diffeomorphism is not fully supported on

every Smale basic set unless the basic set itself is a periodic orbit.

That is, a generic C1-Ω-stable Cr-diffeomorphism has never measures

with maximum total exponent on M satisfying the properties in Theorem 2.
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Now, we consider these theorems from a viewpoint of ergodic optimiza-

tion. In 2006, O. Jenkinson have introduced the following definition.

Definition 2 Let X denote a compact metrizable space. Let T : X → X be

a continuous map. Let f : X → R be a continuous function. Then a measure

ν ∈ M (T,X) is called an f -maximizing measure if

∫
fdν ≥

∫
fdµ

holds for any measure µ ∈ M (T,X).

Under this definition, O. Jenkinson proved the following theorem.

Theorem 4 Let T : X → X be a transitive and hyperbolic continuous map

with local product structure. Then a generic continuous function has a unique

maximizing measure of full support.

Although Theorem 4 holds, the following problem raised by O. Jenkinson

is an open problem.

Problem Let T : X → X be any transitive and hyperbolic continuous

map with local product structure. Find an explicit example of a continuous

function with a unique maximizing measure of full support.

That is, O. Jenkinson says that it is difficult to give a concrete function

satisfying the property in Theorem 4. In this problem, if X is a compact man-

ifold and T is a C1-diffeomorphism, then Theorem 2 gives a partial answer.

In fact, a compact manifold M itself is a basic set for any transitive Anosov

diffeomorphism, and the totality of transitive Anosov diffeomorphisms is an
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open subset of C1-Ω-stable diffeomorphisms. So we have the following corol-

lary.

Corollary 1 For a generic transitive Anosov diffeomorphism T : M → M ,

log J(T ) is a function required in Problem.

But, from the proof of Theorem 3, we see that not only for a generic

but also for an arbitrary transitive Anosov C2-diffeomorphism T : M → M ,

log J(T ) has never a unique maximizing measure of full support. So we have

no answer to Problem for maps with higher regularity. Finally, we state a

theorem giving a partial answer to Problem for expanding maps with higher

regularity on the circle.

Theorem 5 Let r ≥ 1. Then for a generic Cr-expanding map on the circle,

the r-th differential is a function required in Problem.
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