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Abstract

It has been shown that large conductance potassium (BK) current tends to promote bursting in
pituitary cells. This requires fast activation of the BK current, otherwise it is inhibitory to burst-
ing. In this work we combine theoretical (geometric singular perturbation theory), experimental
(dynamic clamp) and numerical (AUTO) methods to understand why the BK activation must be
fast in order to promote bursting.

1 Introduction

The electrical activity of pituitary cells regulates diverse functional characteristics such as the release
of prolactin, growth hormone and ACTH in lactotrophs, somatotrophs and corticotrophs, respec-
tively. One pattern of electrical activity commonly seen in pituitary cells is pseudo-plateau bursting,
which consists of alternating periods of small-amplitude oscillations (SAOs) in the active (depolar-
ized) phase followed by silent phases during which repolarization occurs (Figure 1(a)).
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Figure 1: Pseudo-plateau bursting (a) recorded in an unstimulated GH4C1 lacto-somatotroph cell line and (b)
generated by a deterministic mathematical model. Insets: magnified view of a single burst.

Pituitary cells express a variety of ion channels and establishing the role of any given channel
type is difficult. One example where the function of the ion channel is clear is the role of large
conductance potassium (BK) channels in the spiking/bursting activity of pituitary cells [8]. In [10], it
was demonstrated experimentally that fast-activating BK channels promote bursting in pituitary cells.
The primary aim of this work is to understand why BK activation must be fast to promote bursting.

Two common mechanisms for bursting are canard dynamics and slow passage through a dynamic
Hopf bifurcation [2]. In these notes, we analyze a pituitary cell model and show that both canard and
Hopf mechanisms are possible, depending on parameter values. We then describe the dynamic clamp
experiments that were performed to test our theoretical predictions.

2 The Mathematical Model

We consider a mathematical model that provides a minimal description of the electrical activity and
calcium dynamics in pituitary cells [10]. There are three voltage-gated currents (ICa, IBK , IK), a
calcium-gated current, ISK , and a leak current, IL. The state variables are the membrane potential V
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of the cell, activation variables n and b for the K and BK channels, respectively, and the intracellular
calcium concentration c. Their dynamics are governed by the evolution equations

Cm
dV

dt
= −(ICa + IBK + IK + ISK + IL),

τBK
db

dt
= b∞(V )− b,

τn
dn

dt
= n∞(V )− n,

dc

dt
= −fc(αICa + kcc),

(1)

where the ionic currents are given by

ICa = gCam∞(V )(V − VCa), IBK = gBKb(V − VK), IK = gKn(V − VK),
ISK = gSKs∞(c)(V − VK), IL = gL(V − VL),

and the steady state functions are given by

x∞(V ) =
[
1 + exp

(
Vx − V
sx

)]−1

, s∞(c) =
c2

c2 + k2
s

,

where x ∈ {m, b, n}. Standard parameter values are listed in Table 1. All parameters are set at these
standard values unless stated otherwise.

Cm 0− 10 pF gCa 2 nS VCa 60 mV Vm −20 mV sm 12 mV
gK 1.5 nS VK −75 mV Vn −5 mV sn 10 mV τn 30 ms
gSK 2 nS ks 0.4 µM gBK 0− 1 nS Vb −20 mV sb 2 mV
τBK 2− 10 ms gL 0.2 nS VL −50 mV fc 0.01 α 0.0015 µMfC−1

kc 0.12 ms−1 1 1 1 1 1 1 1 1

Table 1: Standard parameter values for the 4D pituitary cell model

2.1 Fast-Activating BK Channels Promote Bursting

Using AUTO [3], the bifurcation structure of (1) was calculated with τBK as the principal continua-
tion parameter (Figure 2(g)). For large τBK (i.e. slow activation), the system is spiking (panel (a)).
As τBK is decreased, the system generates bursts (panels (b)–(d)), which have sensitive dependence
to τBK . Decreasing τBK rapidly increases the number of SAOs and decreases their amplitude. For
sufficiently small τBK , we observe damped oscillations followed by a plateau in the active phase
(panel (e)). Further decreases in τBK only intensify the damping effect and the oscillatory behaviour
gives way to a flat plateau (panel (f)).

The time traces in Figure 2 show that the amplitude and number of small oscillations in the bursts
changes very rapidly under τBK variations. Changes in the other system parameters however can
alter the bifurcation structure. Figure 3(e) shows an example of how a change in gBK dramatically
alters the bifurcation structure of (1). The number and amplitude of the SAOs in the bursting rhythms
for this parameter set have little variation under τBK variations.

Figures 2 and 3 hint at the notion that (in addition to τBK) gBK is a crucial factor in shaping
the electrical activity. In [11], simulations show that there exists some kind of threshold conductance
that divides the system into 2 kinds of behaviour. Above threshold, the system exhibits extreme
sensitivity to τBK . Below threshold, the system is virtually insensitive to τBK . This suggests that the
mechanism that generates the bursts is somehow different above and below threshold. We would like
to understand why in some instances τBK is so crucial in shaping the bursting trajectories whilst in
others it has virtually no influence.
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Figure 2: (a) τBK = 10 ms, (b) τBK = 7 ms, (c) τBK = 5.8 ms, (d) τBK = 5.3 ms, (e) τBK = 4 ms and (f)
τBK = 1 ms. (g) Bifurcation structure with respect to τBK for Cm = 5 pF and gBK = 0.5 nS.

3 Geometric Singular Perturbation Analysis

Geometric singular perturbation theory (GSPT) [4, 5] is an analytic technique for slow/fast systems
that combines asymptotic theory with dynamical systems techniques. We first show that (1) is a
slow/fast problem. By introducing dimensionless time variable t = ktts and suitable scalings, we
rewrite (1) as

ε1
dV

dts
=

Cm

ktgref

dV

dts
= f1(V, b, n, c),

ε2
db

dts
=
τBK

kt

db

dts
= b∞(V )− b ≡ f2(V, b),

dn

dts
=
kt

τn
(n∞(V )− n) ≡ g1(V, n),

dc

dts
= −ktfckc

(
α

kc
ICa + c

)
≡ g2(V, c),

(2)

where kt = τn is a reference time scale, gref = O(1) nS is a typical conductance scale and

f1(V, b, n, c) := −g−1
ref (ICa + IBK + IK + ISK + IL).

From (2), V has time constant Cm/gref = 1 ms for Cm = 5 pF and gref = 5 nS. Meanwhile,
b has timescale τBK = 5 ms. The gating variable n is slower with timescale τn = 30 ms, whilst
c is substantially slower with timescale (fckc)−1 > 800 ms. To formalize the timescale separation,
we introduce the small parameters ε1 ≡ Cm/(ktgref) and ε2 ≡ τBK/kt, which measure the relative
speeds of V and b to n, respectively. Although it is not clear whether or not V and b operate on similar
timescales, it is clear that both V and b are substantially faster than (n, c). Thus, (2) is singularly
perturbed with fast variables (V, b), slow variables (n, c) and small parameters (ε1, ε2).
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Figure 3: Time traces and bifurcation structure of (1) for Cm = 5 pF and gBK = 0.1 nS. In (a), τBK = 10 ms,
(b) τBK = 7 ms, (c) τBK = 4 ms and (d) τBK = 1 ms.

System (2) is currently described over the slow timescale ts. An equivalent description of the
dynamics can be obtained by rescaling time (ts = ε2 tf ) to give:

dV

dtf
=
ε2
ε1
f1(V, b, n, c),

db

dtf
= f2(V, b),

dn

dtf
= ε2 g1(V, n),

dc

dtf
= ε2 g2(V, c).

(3)

The next step is to take the singular limit to decompose (1) into simpler subsystems. The presence
of two small parameters naturally leads to the question of which limit to take. We make the a priori
assumption that V and b vary on similar timescales. As such, we take the double singular limit under
the stipulation that the relative speeds of V and b remain comparable. Formally, we assume that

lim
(ε1,ε2)→(0,0)

ε2
ε1

= r, (4)

where r = O(1) so that ε2 = r ε1. The (double) singular limit ε2 → 0 (and hence ε1 → 0) in (3)
leads to the 2D layer problem:

dV

dtf
= rf1(V, b, n, c),

db

dtf
= f2(V, b),

(5)

where n and c are parameters. The singular limit ε2 → 0 in (2) gives the 2D reduced problem:

0 = f1(V, b, n, c),
0 = f2(V, b),

dn

dts
= g1(V, n),

dc

dts
= g2(V, c).

(6)

4



The idea of GSPT is to combine the information from the 2D layer problem and the 2D reduced
problem in order to gain insight into the original 4D cell model (1).

3.1 The Layer Problem

The set of equilibria for the layer problem is a surface called the critical manifold:

S :=
{

(V, b, n, c) ∈ R4 : f1(V, b, n, c) = f2(V, b) = 0
}
. (7)

Since n and b enter linearly into f1 and f2, respectively, we can obtain a graph representation of S:

b = b∞(V ), n = − 1
gK

(
gCam∞(V )

V −VCa

V −VK
+ gBKb∞(V ) + gSKs∞(c) + gL

V −VL

V −VK

)
. (8)

The critical manifold S is typically a folded surface. The fold curves, L, of S are the set of points
where the layer problem undergoes a saddle-node bifurcation:

L := {(V, b, n, c) ∈ S : det Jr = f1V f2b − f1bf2V = 0} , (9)

where Jr is the Jacobian of (5). These fold curves divide S into attracting sheets, Sa, and repelling
sheets, Sr, where the notions of attraction and repulsion come from a linear stability analysis of (5).

The fold curves are of interest because they are points where Fenichel theory [4, 5] breaks down.
More generally, Fenichel theory breaks down in the neighbourhood of bifurcations of (5). Usually, the
interesting dynamics are localized around these non-hyperbolic regions. Another way that Fenichel
theory can break down is via a Hopf bifurcation of (5). The Hopf curves, H , of (5) are given by:

H := {(V, b, n, c) ∈ S : tr Jr = rf1V + f2b = 0} . (10)

For normally hyperbolic critical manifolds (i.e. the eigenvalues of (5) along S are uniformly bounded
away from the imaginary axis), Fenichel theory guarantees the persistence of locally invariant slow
manifolds S(ε1,ε2) of the fully perturbed problem (2) for sufficiently small perturbations.

According to (5), most initial conditions starting away from S will be drawn into one of the
attracting sheets of S. Once the trajectory is on S, (5) predicts trivial dynamics. At this point, the
slow processes dominate and the layer flow is no longer a suitable approximation of the dynamics.
As such, we must switch viewpoints and consider the slow dynamics via the reduced system.

3.2 The Reduced Problem

The reduced problem is a differential-algebraic system, consisting of algebraic equations that con-
strain the dynamics to S and differential equations that describe the slow motions along S. The
restriction of the flow of (2) to the invariant slow manifolds S(ε1,ε2) is a small smooth perturbation of
the slow flow along S.

To analyze the flow on a manifold, one must typically look at the flow in various coordinate charts.
To obtain evolution equations in all coordinate charts for the reduced problem (6), we take a total time
derivative of the algebraic constraints and rearrange to obtain: −J O

O I2

 d

dts


V
b
n
c

 =


f1ng1 + f1cg2

0
g1
g2

 , (11)

where J = Jr|r=1, O is the 2 × 2 zero matrix and I2 is the 2 × 2 identity matrix. Multiplying both
sides by the 4× 4 matrix diag (−adj(J), I2), where adj(J) is the adjoint of J , leads to: (det J) I2 O

O I2

 d

dts


V
b
n
c

 =


−f2b (f1ng1 + f1cg2)
f2V (f1ng1 + f1cg2)

g1
g2

 , (12)
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which describes the flow of the reduced problem on S in the coordinates (V, b, n, c). Since S has a
graph representation (8), we can use a single coordinate chart to describe the dynamics of (6):

det J
dV

dts
= −f2b (f1ng1 + f1cg2) ,

dc

dts
= g2,

(13)

where b and n are now specified by (8). The projection of the reduced system (13) highlights an
important fact: the reduced system is singular at the fold curves L. This singular term can be removed
by a time rescaling (dts = det J dtd) to give the desingularized system:

dV

dtd
= −f2b (f1ng1 + f1cg2) ≡ F (V, c),

dc

dtd
= det J g2.

(14)

Note that in regions where det J < 0, the time rescaling reverses the orientation of trajectories.
The desingularized system possesses special equilibria called folded singularities [12]. Folded

singularities, M , are points on the fold curve where F vanishes:

M := {(V, b, n, c) ∈ L : F = 0} . (15)

In the desingularized system, M is a set of equilibria. In the reduced system (13), folded singularities
are points where both sides of the V -equation vanish. This means there is potentially a cancellation
of a simple zero, i.e. dV/dts is finite and non-zero at a folded singularity. This allows trajectories to
cross L in finite time and move from Sa to Sr. Such solutions are called singular canards and their
persistence under small perturbations gives rise to complex dynamics [1]. There are three generic
types of folded singularities (based on the eigenvalues of the linearization of (14)): folded saddles,
folded nodes, and folded foci. Folded nodes are of particular interest.

4 Canard- and Hopf-Induced Bursts

Two distinct mechanisms for bursting are: canard dynamics and slow passage through a dynamic
Hopf bifurcation [2]. Canard dynamics are associated with the slow subsystem and have been found
in other neuroendocrine cell models to be the progenitor for the bursting behaviour. The slow passage
through a dynamic Hopf bifurcation can be observed when there is a Hopf bifurcation in the fast
subsystem that is unrelated to equilibria of the full system.

4.1 Canard Dynamics

Folded nodes can lead to counter-intuitive behaviour due to the indeterminate form for the V -equation
in (13). More specifically, it is possible for trajectories that reach the folded singularity to pass through
it with finite speed. This potential for trajectories to tunnel through the fold is the linchpin of the
argument for the burst generating mechanism in canard-induced MMOs. Here, we illustrate how this
tunnelling behaviour can lead to the small oscillations of a burst.

Figure 4 shows a singular orbit construction in which there is a folded node on the upper fold
curve L+. Associated to the folded node is a subset of the attracting manifold Sa called the funnel
of the folded node (grey shaded). The funnel is bounded by L+ and by the strong canard γ0, which
is the unique trajectory tangent to the strong eigendirection of the folded node. Every trajectory that
lands inside the funnel region is inevitably drawn into the folded node and is thus a singular canard.

According to canard theory, such a singular periodic orbit will perturb to a bursting orbit for
sufficiently small perturbations O(ε2). Moreover, the SAOs occur in a neighbourhood of the folded
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Figure 4: Singular orbit construction in the case of canard-induced bursts for gBK = 0.1 nS and r = 1. There
is a folded node on L+ and the fast up-jump of the singular orbit returns it to the funnel (shaded region).

node (Figure 5). Furthermore, the maximal amplitude of these SAOs is O(
√
ε2). The rotational

behaviour in a neighbourhood of the folded node arises from geometric properties of invariant slow
manifolds. We refer to [1, 12] for details. Figure 5 shows how the singular canard orbits perturb to
bursts for fixed ratio r and various perturbations ε2.
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Figure 5: Canard-induced bursts for gBK = 0.1 nS, r = 1 and (a)Cm = 0.5 pF, τBK = 0.5 ms (b)Cm = 2 pF,
τBK = 2 ms and (c) Cm = 5 pF, τBK = 5 ms (cf. Figure 4). The left panels show the singular (ΓF ∪ ΓS) and
non-singular orbits in the (V, c) plane. The right panels show the associated time courses.

4.2 Slow Passage Through A Dynamic Hopf Bifurcation

Canard-induced bursts arise from the canard dynamics associated with folded node singularities in (6)
and provide one burst generating mechanism. Another mechanism for bursting is the slow passage
through a dynamic Hopf bifurcation [6]. The major difference from the canard case is that there is
now a curve of (subcritical) Hopf bifurcations H on S.

In Figure 6, it is clear thatH occurs at a more depolarized voltage level than L+. This means Sr is
now enclosed by H and L−. Since the upper attracting sheet of S terminates at H , the corresponding
singular orbit must jump at H , where the stability changes. In the full system trajectory however,

7



there is a substantial delay before the trajectory oscillates and jumps to the lower attracting manifold
(Figure 6(a)). This delay is mainly observed for small perturbations O(ε2). For larger perturbations,
the delay is less substantial and the SAOs are observed on both sides of the Hopf curve.
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Figure 6: Hopf-induced MMOs for gBK = 0.5 nS, r = 1.2 and (a) Cm = 0.5 pF, τBK = 0.6 ms (b)
Cm = 2 pF, τBK = 2.4 ms and (c) Cm = 5 pF, τBK = 6 ms. Note: Cm and τBK are chosen so that r = 1.2.

The flow of (1) in a neighbourhood of H can be understood in very simple terms. For ε2 = 0,
(n, c) are fixed parameters. For ε2 6= 0, n and c are slow variables that drift through the vicinity ofH .
As the trajectory approachesH from Sa, the eigenvalues λ of (5) are complex with (increasing) nega-
tive real part. Exponential contraction of the system means that the trajectories become exponentially
close to Sa. As the trajectory passesH over to Sr, Reλ crosses zero and becomes positive. However,
the trajectories are not immediately repulsed. The expansion required to counteract the accumulative
contraction on Sa is the cause for the observed delay. The slower the trajectories drift through the
Hopf H , the longer the delay. Conversely, if ε2 increases, the passage through H speeds up. Conse-
quently, trajectories spend less time on Sa and hence less time is required on Sr to counterbalance
the contraction.

The amplitude and number of SAOs is related to the size of the perturbation (i.e. to the amount of
time spent in a neighbourhood of H). For small perturbations, the passage through H is slow and the
trajectories are exponentially attracted to Sa. As such, the small oscillations are only visible when the
repulsion along Sr overwhelms the accumulative contraction on Sa and the trajectory jumps away.
When ε2 is increased, the attraction to Sa is weaker and the oscillatory behaviour is easier to observe.
Moreover, Reλ increases through zero. As such, the SAOs have decreasing amplitude on Sa and
increasing amplitude on Sr.

4.3 Damped Oscillations & Plateauing

The amount and type of contraction along the slow flow on Sa shapes the trajectories. When the
eigenvalues λ of (5) along slow orbit segments on Sa are real, trajectories are attracted (or repelled)
along nodes of (5). When λ is complex, the attraction (or repulsion) occurs along foci of (5), resulting
in oscillatory behaviour in the full system trajectory. A key parameter that influences the amount and
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type of contraction along Sa is the ratio r of fast timescales. Figure 7 shows the effect of varying r
on the bursts1.
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Figure 7: The eigenvalues of (5) along ΓS regulates the type of bursting pattern. Singular and non-singular
orbits are shown for Cm = 5 pF, gBK = 0.5 nS and (a) τBK = 10 ms (r = 2), (b) τBK = 7 ms (r = 1.4),
(c) τBK = 5.8 ms (r = 1.16), (d) τBK = 5.3 ms (r = 1.06), (e) τBK = 4 ms (r = 0.8) and (f) τBK = 1 ms
(r = 0.2). The inset in (e) shows the second degenerate node and switch from complex to real eigenvalues.
Note the shifted scale on Re λ in (f). The parameters were chosen to correspond to those in Figure 2.

Each panel of Figure 7 shows 2 plots. In the main plot, the singular orbit (red and blue) together
with the full system trajectory Γ (black) are shown. In the adjacent plot, Reλ evaluated along the slow
orbit segment ΓS on Sa is shown. In panel (a), the eigenvalues on the stable top sheet are initially real
and negative. As the reduced flow brings the trajectory towards the Hopf curve, λ becomes complex.
However, this region of complex eigenvalues is short lived. As a result, Γ has insufficient time to
oscillate and we observe a spike. In panel (b), the region of complex λ is more extensive, which
provides Γ just enough time to perform one small oscillation before jumping away. As r is decreased,
the region of complex eigenvalues becomes more extensive (panels (c) and (d)), resulting in more
SAOs.

As r decreases further, H moves closer to L+. Eventually, H and L+ coalesce resulting in a
double zero eigenvalue, i.e. a Bogdanov-Takens (BT) bifurcation, of (5). Before the BT bifurcation
when Sr is enclosed by H and L−, the eigenvalues of (5) along ΓS are initially real (at the landing
point after the fast up-jump). The slow flow moves the singular orbit through a degenerate node of
(5) and λ becomes complex and remains so until the singular orbit reaches the Hopf curve. In the full
system trajectory, this is seen as oscillatory behaviour with decreasing amplitude.

After the BT bifurcation, H disappears and Sr is enclosed by L+ and L−. The eigenvalues of
(5) along ΓS are initially real and the slow flow moves the orbit through a degenerate node of (5)
where the eigenvalues become complex. The difference this time is that ΓS passes through another
degenerate node and λ becomes real once again (panels (e) and (f)). This second degenerate node

1Variations in r (which only appears in the fast subsystem) have no effect on the singular canards which are associated
with the slow subsystem.
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is born at the BT bifurcation and moves away from L+ to more depolarized voltage levels as r is
decreased. ΓS on the upper sheet of Sa can be decomposed into 3 parts:

1. An ‘upper’ part (between the landing point of the fast up-jump and the first degenerate node of
(5)): manifests in the full system as a monotone decrease to more hyperpolarized V .

2. A ‘middle’ part (between the degenerate nodes): corresponds to decaying oscillations.

3. A ‘lower’ segment (between the second degenerate node and L+): corresponds to a plateau
phase of the full system orbit, where there is only monotone contraction and the SAOs die out.

Smaller ratios r move the second degenerate node to more depolarized V levels, which causes greater
damping of the SAOs (compare panels (e) and (f)). Thus, variations in the ratio r can convert the full
system trajectory from spiking to bursting to plateauing.

5 Experimental Work

We have demonstrated the existence of canard- and Hopf-induced bursts in (1). The question is
whether or not they are observed experimentally. A simple test to distinguish between canard- and
Hopf-induced bursts is to inject artificial BK current (via dynamic clamp) into a cell and vary τBK .
Based on our analysis, we expect (for fixed Cm) the canard-induced bursts to have weak response to
τBK variations, whilst the Hopf-induced bursts should have extreme sensitivity to τBK variations.
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Figure 8: Effect of τBK variations in dynamic clamp experiments. (a) τBK = 10 ms: the cell is spiking.
(b), τBK = 7 ms: the time course is a mixture of spikes and bursts. (c), τBK = 5 ms: the cell is bursting.
(d), τBK = 2 ms: the electrical activity consists of plateau patterns. (e) Summary of the behaviour of the
amplitude of the SAOs in five different cells. The gBK values for the red, blue, green, olive and purple curves
are gBK = 0.5, 1.6, 2, 0.5, 1 nS, respectively. The blue curve (gBK = 1.6 nS) corresponds to the cell in panels
(a) to (d). Panel (f) shows the same figure for the model (1) with Cm = 5 pF, gK = 3.2 nS and gBK = 0.5 nS.

The dynamic clamp technique is an electrophysiological technique whereby a current, computed
from mathematical models, is injected into a cell to simulate dynamic processes [7]. The current of
interest in our case is IBK = gBKb(V − VK). In order to update the BK activation variable b and
driving force V − VK , information on the voltage V is required. In the dynamic clamp technique,
rather than using a model for V , the voltage is recorded in real time from the cell and used in calcu-
lations. Thus, the computer calculates the model IBK using V from the cell, then injects the model
current into the cell. This two-way interaction is done rapidly, at average time steps of 54 µs.

In Figure 8, we show evidence for Hopf-induced bursts in pituitary cells. Panels (a) to (d) show
the effect of varying τBK for fixed gBK . For BK current injected with τBK large, the cell is spiking

10



(panel (a)). By decreasing τBK , we observe bursting interspersed with the spiking activity (panel (b)).
Further decreasing τBK reliably converts the electrical activity to bursting (panel (c)). Moreover, the
amplitude of the SAOs decreases with τBK . For sufficiently small τBK , the small oscillations are
virtually non-existent and the electrical activity is plateauing (panel (d)). These observations are
consistent with the prediction that for Hopf-induced bursts, decreasing τBK switches the activity
from spiking to bursting to plateauing (Figure 7).

Figures 8 (e) and (f) quantify how changing τBK affects the electrical activity in the dynamic
clamp experiments and in (1), respectively. We refer to [11] for details. The main result is that
the model predicts the trends observed experimentally. Namely, that fast BK activation generates
bursting with small oscillations that decrease in amplitude as τBK is decreased. The dynamic clamp
data provides direct evidence for the Hopf mechanism. Evidence for the canard-induced MMOs is
more elusive.
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