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1 Introduction

Patterns are everywhere in nature [9, 5, 3, 4] and have yet been systematically studied for barely
a century [25]. Turing’s pioneering work [26] established a profound mathematical basis for pattern
forming phenomena, featuring the start of the systematical and still on-going research on the dynamics
of pattern forming systems within the mathematical community. The application of dynamical systems
techniques in evolutionary PDEs, initially developed as methods to solve problems arising in delayed
differential equations and generalized to be applicable to general evolutionary PDEs by mathematicians
including J. K. Hale and D. Henry in 1970’s-1980’s [18, 14], has become one of the main tools in this
field.

The mathematical illustration of the formation mechanisms of patterns is concerned primarily with
the existence of solutions representing patterns, their defects and their interfaces, together with their
qualitative properties, such as linear and nonlinear stability, instabilities, bifurcations, etc. In this
particular lecture notes, we focus on the existence of patterns, their defects and interfaces in infinite
domains. As for the stability aspect, we refer to the excellent pieces [22, 6] and also Margaret’s lecture
notes for this workshop.

2 Infinite domains VS finite domains

A natural question is: In real world, almost all the physical systems are of finite scales, then why
do we bother to even talk about infinite domains? Well, for patterns “away from boundary”, the
intrinsic structure is the “ideal patterns” in the corresponding infinite domain, which gives rise to the
existence of patterns in bounded domains; see [27] for a rigorous treatment. To illustrate the intuition,
a prototype example is the second order ODE,

ug = u(l — u),

which admits a homoclinic orbit and a family of periodic orbits within the homoclinic orbit, correspond-
ing respectively to the “ideal pattern” on the whole real line and the periodic patterns in periodic finite
intervals,


http://math.bu.edu/keio2014/talks/Beck.pdf
http://math.bu.edu/keio2014/talks/Beck.pdf

3 Examples

In this section, we utilize two examples to show the procedure of extracting “ideal patterns” from
finite-domain patterns spotted in nature and science.

Example 3.1 (grain boundaries in the Rayleigh-Bénard convection [23]) The Rayleigh-Bénard
convection is the phenomenon when the temperature difference between two plates overcomes the vis-
cosity of the fluid in between, there is an onset of instability, yielding convection rolls, together with its
defects. One of the defects is the so-called grain boundaries; see Figure 3.1.
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Figure 3.1: As a terminology initially from solid state physics(left), grain boundaries(middle, right) are one of
the basic defects(middle) observed in the Rayleigh-Bénard convection.

To study grain boundaries, the model here is the Swift-Hohenberg equation on the whole plane,
ou = —(1 4+ A)u + pu — u, (3.1)

where u(t, z,y) depends on (x,y) € R? and time t € R, and p is a real parameter. Simple bifurcation
analysis shows the existence of solutions uy(kx;k,u) which are spatially periodic u,(&;k, p) = up (€ +
215k, p), and even in & for u > 0, small. We refer to these stationary periodic patterns as roll solutions
and denote rotated roll patterns as

uf (@, y; k) = uc(k(z cos p — ysinp); k, p), (3:2)

with ¢ € [0,27).

Grain boundaries are stationary solutions to (3.1), that are asymptotic to roll solutions of different ori-
entation as x — +oo. In the simplest case that we shall be interested in, here, they possess an additional
reflection symmetry r — —x and periodic in y. This can be seen as a mazximal symmetry assumption
for a grain boundary, since the pattern imposed by asymptotic roll solutions with different angles ac-
comodates such a reflection symmetry and periodicity. In all, assuming y-direction wavenumber k and
rescaling y, the grain boundary solutions satisfy

—(1+ 92 + k?02)*u+ pu — u® = 0,
U(l’,y + 27T) = U(.’I},y), U(—Sl?,y) = U(Sl?,y), (33)

liny o0 [ugh (2, y) — ui? (2, y; k)| = 0.



Example 3.2 (pearling in the amphiphilic morphology [21]) Amphiphilic materials are typically
small molecules which contain both hydrophilic and hydrophobic components. This class of materials
includes surfactants, lipids, and block copolymers. Their propensity to spontaneously assemble network
morphologies, such as bilayers, pores, micelles, pearled partterns, end-caps and junctions, has drawn
scientific attention for more than a century, [1]. We study pearled patterns here; see Figure 3.2.
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Figure 3.2: (top left) primitive membranes [8]; (top middle) diblock copolymer [28]; (top right) diblock copolymer
[19]; (bottom) Copolymers [7]

Models of amphiphilic miztures, such as [24] and [13], have been proposed. The functionalized Cahn-
Hilliard (FCH) free energy; see [20, 12, 10], is a special case of these earlier models that supports stable
network morphologies. In FCH model, extended pearled solutions can be viewed as small-amplitude
modulations to stationary extended bilayers; see [21, 11, 17] for details.

4 Toolbox

To rigorously prove the existence of patterns in infinite domains, we briefly introduce the “spatial dy-
namics” toolbox. The primary idea is to recast the original PDE into an infinite-dimensional dynamical
system by viewing one of the spatial variable as the new “time variable”, which is reduced to an ODE
system by a center manifold reduction. A normal form analysis usually follows to reveal the local
dynamics of the reduced ODE system near the bifurcation. Pattern solutions typically corresponds to



particular solutions such as equilibria, periodic solutions, etc, in the normal form system. Persistence

arguments may be applied to push the results back to the whole reduced ODE system. For spatial dy-

namics, see [23, 21, 16] for concrete examples; For center-manifold-reduction and normal form analysis,

see the excellent book [15] and the fantastic paper [2].
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