
Existence of pearled patterns in the planar
functionalized Cahn-Hilliard equation

Qiliang Wu
A joint work with Keith Promislow

Michigan State University

BU/KeioU Workshop, Boston University, Sep 19, 2014



Outline

1 Introduction: pearled patterns and FCH model

2 Main result: existence of pearled bilayers in 2D FCH

3 Proof: spatial dynamics & degenerate 1:1 resonance

4 Outlook: multicomponent FCH systems



Pearling patterns

Primitive membranes[Szostak et al, 11’] Diblock copolymer[Hayward et al, 08’]
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examples throughout this paper and elsewhere;39 how-
ever, none are as conspicuous as those depicted in this
blend. These beadlike deformations occur with a char-
acteristic periodicity, which appears to be damped in
the long central portions of the cylinders. Short cylinders
with one and two beads can be seen in Figure 8A (short
and long arrow, respectively). Cylinders with one, two,
and three undulations are marked in Figure 8A. Figure
8B show branched portions of a cylindrical micelle with
quantized undulations apparently dictating the arm

lengths. Multiple undulating branches in Figure 8C
highlight the localization of such features near the
junctions and ends. These aggregates are stable, as
heating the sample to 50 °C for a few days did not
produce any noticeable change in the assembled mor-
phologies. A comparison of OB9-1/OB1-3 shown in
Figure 4B and OB9-1/OB1-5 presented in Figure 8
shows a transition from mainly spherical micelles to
mainly cylindrical micelles over a very narrow composi-
tion range.

Blends around wPEO*. Recently, we discovered
network formation in aqueous dispersions of OB9-4
(wPEO ) 0.34 and NPB ) 170) (see Figure 9A). As a part
of the present study, we attempted to mimic this
network structure by blending OB9 diblock copolymers
with greater (wPEO > 0.34) and lesser (wPEO < 0.34)
compositions. For example, we blended equimolar mix-
tures of OB9-1 and OB9-6, resulting in an average
composition of !wPEO ) 0.34", identical to OB9-4. To our
surprise this premixed blend self-assembles into a
potpourri of delicate looking objects with bilayer, cylin-
drical, and complex junction structural elements, fre-
quently mixed within individual moieties. These un-
usual structures are evident in all the cryo-TEM images
taken from this mixture; Figure 9C displays many of
the prevalent features. Perhaps the most striking is the
octopus (or jelly fish)-like micelles, which are composed
of a flat bilayer with protruding cylindrical micelles
along the edges. These octopus-like entities are common,
although they occur with a variable number of cylindri-
cal arms. Several examples are shown in Figure 10
containing 4, 5, 6, 7, 8, 9, 10, and 14 arms attached to
the flat central portion. In all these octopus-like ag-
gregates the cylindrical arms are symmetrically dis-
tributed along the circumference of the central flat
bilayer as is evident in Figures 9C and 10. Occasionally,
these objects appear to be folded on a side with the
cylindrical arms protruding from a hemispherical bi-
layer cap. Obviously, the confinement created by the

Figure 8. Cryo-TEM images from mixture OB9-1/OB1-5
depicting undulations and distended spherical end caps on
wormlike cylindrical micelles. Short cylinders with an undula-
tion (short arrow) and two undulations (long arrow) and
cylinder ends with one, two, and three beads are marked
correspondingly in (A). Panels B and C show branching with
quantized undulations fixing the segment length between
junctions. Two types of hyperbolic (saddle) surfaces character-
ize these morphologies (see Figure 13).

Figure 9. Cryo-TEM micrographs from three dispersions with identical compositions, !wPEO ) 0.34"; the molecular weight
distribution broadens from A to B to C. (A) A network fragment from OB9-4, a single component dispersion. This picture is
reproduced from ref 7. (B) Blend OB9-11/OB9-15. A bimodal distribution of component compositions (wPEO ) 0.39 and 0.30) breaks
the network. (C) A broader distribtion (wPEO ) 0.24 and 0.42, OB9-6/OB9-1) produces a variety of morphologies including vesicles,
wormlike micelles, and a new type of hybrid particle referred to as an octopus. Two of these objects, comprised of cylindrical arms
radiating from a single bilayer, are evident in this image, one with 11 and one with 4 arms.
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D. Bendejacq et al.: Pearling instabilities in water-dispersed copolymer cylinders 89

Fig. 5. TEM characterization of the intermediaire UC structure. (a) Micrograph of the annealed specimen c {wp = 0.05,
αB/A = 0.25, CS = 1.37} showing micron-long, multi-layered assemblies formed by aligned, sphere-looking objects, “pearls”,
appearing in light grey with a darker outer rim. It can be noticed (especially between the two arrows) that the pearls contained
in two adjacent pearling cylinders are out-of-phase, as can be expected if epitaxy exists between the initial hexagonal phase
of cylinders, and the final cubic phase of individual spheres. (b) TEM micrograph of the annealed specimen b {wp = 0.05,
αB/A = 0.25, CS = 0.34} showing pearling cylinders, with characteristic wavelength of the instability of ca. 48 nm. (c) Sketch
of the TEM micrograph (b) with the interpretation of the contrast in terms of a core-shell structure.

Although this might look like an assembly of packed, in-
dividual spheres, it is important to note that these pearls
are somewhat ordered, and aligned in a single direction.
Moreover, the fact that these pearls remain aggregated on
a micron-large scale, strongly suggests that they are not
individual, separate entities, but that they are linked to
each other. Figure 5b confirms this picture, as it captures
an isolated object made of slightly elongated pearls, not
completely detached from each other. This “pearling cylin-
der” appears in dark grey with a darker outer rim, over a
light background. It now seems natural to conclude that
the alignment visible in Figure 5a is simply reminiscent
of the initial cylinder axis: as a single cylinder is undergo-
ing the transition, the spheres created remain aligned onto
the initial cylinder axis. We schematically represent this
interpretation in Figure 5c. Considering that PAA is elec-
tronically denser than PS, the object visible in Figure 5b
can be understood as the photograph of a PS core sur-
rounded by an outer collapsed (i.e. dry) PAA shell. This
interpretation can be quantitatively confirmed. In the di-
rection perpendicular to the axis of the pearling cylin-
der, the drops have a radius of RM = 11.9 nm, which is
noticeably larger than either the initial radius of the PS
cylinders prior to annealing, or the final radius of the PS
spheres when the C → S transition has been completed.
Therefore, the visible object cannot be the PS core only.
For a core-shell micelle with a PS spherical core of radius
RS = 8.5 nm, the aggregation number g = 4πR3

S/3NCVS,

where NC = 44 is the number of styrene segments in the
core-forming PS block and VS = 0.166 nm3 is the volume
of a styrene, is found equal to 350 approximately. From
this, one can readily deduce the radius RM expected in
the dry state for the entire core-shell PS/PAA micelle, as
its total volume must obey 4πR3

M/3 = g(NCVS+NbVAA),
where Nb = 163 is the number of acrylic acid segments
in the PAA block and VAA = 0.081 nm3 is the volume of
an acrylic acid segment on the basis of PAA density given
in reference [3]. We compute that the micelle should have
a collapsed radius RM = 12.0 nm, in excellent agreement
with the measured outer radius of the pearling cylinder.

TEM therefore provides direct evidence that the UC
structure is actually made of undulated cylinders. It is
worth pointing out that, as is obvious from Figure 5a, in
particular in the region between the two arrows, the pearls
in two adjacent pearling cylinders are out-of-phase, as can
be expected if epitaxy exists between the initial hexago-
nal phase of cylinders, and a final cubic (BCC) phase of
individual spheres. Water-dispersed amphiphilic diblock
copolymers appear to share common traits with the melt
case, as far as the mechanics of a C → S structural transi-
tion goes. The structure of undulated cylinders, interme-
diate between cylinders and individual spheres, indeed re-
sembles the transitory structure proposed, and indirectly
observed, for the C → S transition with diblock copoly-
mers in the melt state [4,15–17]. This transition, pre-
dicted to appear due to the propagation of out-of-phase,
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Fig. 5. TEM characterization of the intermediaire UC structure. (a) Micrograph of the annealed specimen c {wp = 0.05,
αB/A = 0.25, CS = 1.37} showing micron-long, multi-layered assemblies formed by aligned, sphere-looking objects, “pearls”,
appearing in light grey with a darker outer rim. It can be noticed (especially between the two arrows) that the pearls contained
in two adjacent pearling cylinders are out-of-phase, as can be expected if epitaxy exists between the initial hexagonal phase
of cylinders, and the final cubic phase of individual spheres. (b) TEM micrograph of the annealed specimen b {wp = 0.05,
αB/A = 0.25, CS = 0.34} showing pearling cylinders, with characteristic wavelength of the instability of ca. 48 nm. (c) Sketch
of the TEM micrograph (b) with the interpretation of the contrast in terms of a core-shell structure.

Although this might look like an assembly of packed, in-
dividual spheres, it is important to note that these pearls
are somewhat ordered, and aligned in a single direction.
Moreover, the fact that these pearls remain aggregated on
a micron-large scale, strongly suggests that they are not
individual, separate entities, but that they are linked to
each other. Figure 5b confirms this picture, as it captures
an isolated object made of slightly elongated pearls, not
completely detached from each other. This “pearling cylin-
der” appears in dark grey with a darker outer rim, over a
light background. It now seems natural to conclude that
the alignment visible in Figure 5a is simply reminiscent
of the initial cylinder axis: as a single cylinder is undergo-
ing the transition, the spheres created remain aligned onto
the initial cylinder axis. We schematically represent this
interpretation in Figure 5c. Considering that PAA is elec-
tronically denser than PS, the object visible in Figure 5b
can be understood as the photograph of a PS core sur-
rounded by an outer collapsed (i.e. dry) PAA shell. This
interpretation can be quantitatively confirmed. In the di-
rection perpendicular to the axis of the pearling cylin-
der, the drops have a radius of RM = 11.9 nm, which is
noticeably larger than either the initial radius of the PS
cylinders prior to annealing, or the final radius of the PS
spheres when the C → S transition has been completed.
Therefore, the visible object cannot be the PS core only.
For a core-shell micelle with a PS spherical core of radius
RS = 8.5 nm, the aggregation number g = 4πR3

S/3NCVS,

where NC = 44 is the number of styrene segments in the
core-forming PS block and VS = 0.166 nm3 is the volume
of a styrene, is found equal to 350 approximately. From
this, one can readily deduce the radius RM expected in
the dry state for the entire core-shell PS/PAA micelle, as
its total volume must obey 4πR3

M/3 = g(NCVS+NbVAA),
where Nb = 163 is the number of acrylic acid segments
in the PAA block and VAA = 0.081 nm3 is the volume of
an acrylic acid segment on the basis of PAA density given
in reference [3]. We compute that the micelle should have
a collapsed radius RM = 12.0 nm, in excellent agreement
with the measured outer radius of the pearling cylinder.

TEM therefore provides direct evidence that the UC
structure is actually made of undulated cylinders. It is
worth pointing out that, as is obvious from Figure 5a, in
particular in the region between the two arrows, the pearls
in two adjacent pearling cylinders are out-of-phase, as can
be expected if epitaxy exists between the initial hexago-
nal phase of cylinders, and a final cubic (BCC) phase of
individual spheres. Water-dispersed amphiphilic diblock
copolymers appear to share common traits with the melt
case, as far as the mechanics of a C → S structural transi-
tion goes. The structure of undulated cylinders, interme-
diate between cylinders and individual spheres, indeed re-
sembles the transitory structure proposed, and indirectly
observed, for the C → S transition with diblock copoly-
mers in the melt state [4,15–17]. This transition, pre-
dicted to appear due to the propagation of out-of-phase,

Copolymers[Bendejacq et al,05’]



FCH: Cahn-Hilliard expansion
For amphiphilic mixtures: added higher derivatives to the classical
Cahn-Hilliard energy [Teubner, Strey, 87’; Gompper, Schick, 90’]

F(u) :=
�

Ω
f (u) + ε2A(u)|∇u|2 + ε2B(u)∆u +

�0� �� �
C(u) (ε2∆u)2 dx .

For the primitive A of A, replace A(u)∇u with ∇A(u) and integrate by
parts

F(u) :=
�

Ω
f (u) + (B(u)− A(u))ε2∆u + C(u)(ε2∆u)2 dx ,

Complete the square

F(u) :=
�

Ω

1
2� �� �

C(u)
�
ε2∆u −

W �(u)
� �� �
A − B

2C

�2
+

P(u)
� �� �

f (u)− (A − B)2

C(u)
dx .



FCH: stabilization of equilibria of Cahn-Hilliard energy
Consider the functionalized Cahn-Hilliard energy

FCH =

�

Ω

1
2

�
ε2∆u − W �(u)

�2 − ε
�1

2
η1ε

2|∇u|2 + η2W (u)
�
dx , (1)

in a large bounded domain Ω.

[Frank Morgan, Riemannian Geometry, 98’]

Unstable equilibrium in CH
⇓

Potential stable equilibrium in FCH

• The square term stabilizes all the
equilibria of CH energy, including the
saddle points.

• The small functionalized term selects
stable equilibria.



Functionalized Cahn-Hilliard equation(FCH)

The FCH, ut = ∆ δFCH
δu , that is,

ut = ∆
��

ε2∆− W ��(u) + εη1
��
ε2∆u − W �(u)

�
+ εηdW �(u)

�
(2)

is a gradient flow, preserving mass with zero-flux boundary condition.

ε–width of interfaces.
W–non-degenerate double-well potential.
η1–interfacial parameter(amphiphilicity).
η2–pressure parameter.
ηd = η1 − η2.
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Pearling: bifurcation of bilayers along interfaces

We look for pearled solutions to the stationary 2D FCH

(∆− W ��(u) + εη1) (∆u − W �(u)) + εηdW �(u) = εγ. (3)

Bilayers–symmetric pulse profiles along interfaces(single layer: front).
Pearled patterns–small amplitude modulations of bilayer width.



FCH: extended flat bilayer solutions

Lemma (Existence of extended flat bilayers)
Fix η1, ηd , γ = O(1) ∈ R. Assume ε > 0 sufficiently small, there exists
a flat bilayer solution–a homoclinic solution ub(r) to the ODE

� d2

dr2 − W ��(u) + εη1
� � d2

dr2 u − W �(u)
�

+ εηdW �(u) = εγ.

[A. Doelman, G. Hayrapetyan, K. Promislow, and B. Wetton, 14’]

• ub(r) = u0(r) +O(ε), where u0 is the
homoclinic orbit to urr − W �(u) = 0.

• L0 := ∂2
r − W ��(u0) admits only one

positive eigenvalue, denoted as λ0.



FCH: spectral analysis

Linearizing the rescaled stationary 2D FCH in the extended plane,
�
∂2

r −W ��(u)+ε2∂2
τ +εη1

��
∂2

r u−W �(u)+ε2∂2
τu

�
+ηdW �(u) = εγ, (4)

at the bilayer ub gives the linearized operator

L :=
δ2F
δu2 (ub) = (L0 + ε2∂2

τ )
2 +O(ε).



FCH: pearled solutions

Pearled solutions–a tangential periodic modulation of the flat bilayer
solution ub on the plane R2. More precisely, symmetric extended
pearled solutions up are solutions to






�
∂2

r − W ��(u) + ε2∂2
τ + εη1

��
∂2

r u − W �(u) + ε2∂2
τu

�
+ ηd W �(u) = εγ,

limr→±∞ |u(x , r)− u∞| = 0, τ ∈ R,
u(−τ, r) = u(τ, r), u(τ + Tp, r) = u(τ, r), (τ, r) ∈ R2,

(5)

where u∞ and Tp are constants to be determined.



Assumption—existence of extended pearled solutions

Assumption

We assume that
(i) W is a fixed non-degenerate double well potential.
(ii) There are two primary parameters

α0 :=
1

4λ2
0

�

R
(W ���(u0)L0u0 − ηdW ��(u0))ψ

2
0dr > 0,

β0 :=
1

4λ2
0

�

R
(W ���(u0)L0u0 − ηdW ��(u0))ψ

2
1dr �= 0,

(6)

where �
L0ψ0 = λ0ψ0, L0ψ1 = 0,
�ψ0�L2 = �ψ1�L2 = 1.

Remark
Basically, α0 = c1γ + c2ηd , β0 = c3γ + c4ηd , where cj ’s depend only
upon the shape of the well.



Main result I–existence of extended pearled solutions

Theorem (existence of extended pearled flat bilayers)
Fix η1, ηd , γ = O(1) ∈ R. Under the Assumption, there exist ε0,κ0 > 0
such that, for any ε ∈ (0, ε0], up to translation, the stationary 2D-FCH,
�
∂2

r − W ��(u) + ε2∂2
τ + εη1

� �
∂2

r u − W �(u) + ε2∂2
τu

�
+ εηdW �(u) = εγ,

admits a smooth 1-parameter family of extended pearled solutions,
up(τ, r ; 4

√
ε,
�
|κ|) with period Tp( 4

√
ε,
�

|κ|), parameterized by
κ ∈ [−κ0,κ0]. In fact, we have

up = ub(r ; γ) + 2
�

ε|κ|
4
√
α0

cos
�

2π
Tp

τ

�
ψ0(r) +O

�
ε(
√
ε+

�
|κ|)

�
,

Tp =
2πε√
λ0

�
1 −√

α0ε+O
�
ε(1 +

√
κ)
��

,

u∞ = lim
r→∞

ub(r ; γ),
(7)

where the error is in the L∞(R2)-norm.



Main result II–existence of extended pearled solutions
Theorem (existence of extended pearled circular bilayers)
Fix η1, ηd = O(1),R0 ∈ R. Under the Assumption, there exist
ε0,κ0 > 0 and γ(ε) such that, for any ε ∈ (0, ε0], up to translation, the
stationary 2D-FCH in the infinite stripe (θ, r) ∈ R× R/2πZ,

�
∂2

r − W ��(u) +
ε∂r

R0 + εr
+

ε2∂2
θ

(R0 + εr)2
+ εη1

��
∂2

r u − W �(u) +
ε∂r u

R0 + εr
+

ε2∂2
θu

(R0 + εr)2

�
+ εηd W �(u) = εγ.

admits a discrete family of extended pearled solutions,
up(τ, r ; 4

√
ε,
�
|κj |) with period Tp( 4

√
ε,
�
|κj |), parameterized by

{κj}j∈I ⊂ [−κ0,κ0]. In fact, we have

up = ub(r ; γ) + 2
�

ε|κ|
4
√
α0

cos
�

2π
Tp

τ

�
ψ0(r) +O

�
ε(
√
ε+

�
|κ|)

�
,

Tp =
2πε

R0
√
λ0

�
1 −√

α0ε+O
�
ε(1 +

√
κ)
��

∈ {2π
n

| n ∈ Z\{0}},

u∞ = lim
r→∞

ub(r ; γ),
(8)

where the error is in the L∞(R2)-norm.



Remark–existence of extended pearled solutions

• The results are in unbounded domains – both flat and circular
bilayers.

• For the flat bilayers, for each value of γ, we get a one-parameter
family of pearled solutions in terms of κ.

• For the circular bilayer, we have only one value of γ, and we get
an countable family of pearled bilayers, parameterized by
κj = κj(ε,R0).

• Note that for a physical system containing a single amphiphilic
material, the parameter η1, η2 and ε are fixed.

• According to the Theorem I, the FCH admits a two-parameter
family of pearled flat bilayers, parameterized by γ and κ.

• According to the Theorem II, there is an interesting tuning of the
radius and the discrete parameter κ. For fixed R0, the family has
distinct amplitudes, but quite similar periods, which arises from the
degenerate 1:1 degeneracy.



Parameters–κ and γ

• κ– an ε−3/2-scaled first integral in the degenerate 1:1 resonance.
• γ–the far-field state.

Large bounded domains retain the results[Sandstede et al, 11’].
• κ-tuned by period; γ–fixed by mass conservation.
• The influence of κ:

• second order on the period–O(ε2�|κ|);
• first-order on the amplitude–O(

�
|κ|).

• For pearled circular bilayers, the periods satisfy

2π
Tp

= O(1 +
�
|κ|+ R0

ε
) ∈ Z+.

Thus, the tuning is O(ε) in R0 and O(1) in κ. Consequently,
small changes in R0 have a huge influence on κ, and thus on the
pearling amplitude but not the period.



Pearling bifurcation as α0 → 0

Consider the FCH with fixed ε. Recall the pearled solution

up = uh(r) + 2
�
ε|κ|

4
√
α0

cos
�

2π
Tp

τ

�
ψ0(r) +O

�
ε(
√
ε+

�
|κ|)

�
.

The degenerate 1 : 1 resonance shows that
√
ε0κ0 <

α0

2|α2|
,

where α2 is generically nonzero. Therefore, we have

lim
α0→0

2
�
ε|κ|

4
√
α0

cos
�

2π
Tp

τ

�
ψ0(r) = 0.

That is to say, up to leading order, for fixed ε, the amplitude of the
pearling dies out as α0 → 0. This fact indicates that this degenerate
bifurcation retains some supercritical characteristics.
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Idea of the proof

The proof can be summarized into the following steps:
• Rewrite the PDE (4),
�
∂2

r −W ��(u)+ε2∂2
τ +εη1

��
∂2

r u−W �(u)+ε2∂2
τu

�
+ηdW �(u) = εγ,

as an infinite-dimension dynamical system via spatial dynamics,
• Reduce the PDE (4) to an ODE system via center manifold

reduction,
• Obtain the normal form of the reduced ODE system,
• Find transformed pearling solutions in the degenerate 1:1

resonance normal form,
• Show persistence of pearling solutions in the full ODE via an

implicit-function-theorem argument on a Poincaré map.



Spatial dynamics

We rewrite (4) as an infinite-dimension dynamical system.
• View τ as the “time” variable and apply the rescaling t =

√
λ0
ε τ

• Let U := (u, ut ,Lbu + λ0utt , (Lbu + λ0utt )t ),

• Linearize the PDE (5) around the bilayer ub.
U̇ = L(ε)U + F(U, ε), (9)

where

L(ε) =





0 1 0 0
−

1
λ0

Lb 0 1
λ0

0
0 0 0 1

−
1
λ0

V 0 −
1
λ0

(Lb + εη1) 0




,F(U, ε) =





0
0
0

−
1
λ0

F



 .

and Lb := ∂rr + W ��(ub), V := εηd W ��(ub)−
�
∂2

r ub − W �(ub)
�

W ���(ub), F is the
nonlinear term. Note that L : Y → X is colsed, where
X = H3(R)× H2(R)× H1(R)× L2(R), Y = H4(R)× H3(R)× H2(R)× H1(R).



Center manifold reduction
The center manifold reduction is based on the spectral analysis of
L� := L(0) ∼ (L0 + λ0∂tt)2.
Spectrum: σ(L�) = {λ ∈ C | d(λ, µ) = (µ+ λ0λ2)2 = 0, µ ∈ σ(L0)}
Imaginary spectrum: σ(L�) ∩ iR = {0,±i}.
Center manifold reduction of (9) to a reversible ODE system:

dUc

dt
=PcL(ε)(Uc +Ψ(Uc , ε)) + PcF(Uc +Ψ(Uc , ε)). (10)

• (10) is an 8th-order system.
• Uc is the projection of U onto

the center subspace.
• �Ψ(Uc , ε)�Y = O((|ε|�Uc�+ �Uc�2).

• 0 is geo. 1 & alg. 4.
• ±i is geo. 1 & alg. 2.



Normal form

The normal form(NF) of the reduced ODE (10), up to cubic terms, is





Ċ1 = i(1 + ω1ε)C1 + C2 + P3,1(C),

Ċ2 = −α0εC1 + i(1 + ω1ε)C2 + P3,2(C)

Ḋ1 = D2,

Ḋ2 = D3,

Ḋ3 = D4,

Ḋ4 = ω3εD1 + ω4εD3 + P3,8(C).

(11)

with higher order terms

O

�
ε2
�C�+ ε�C�

2 + �C�
4
�
.

• P3,j(C) are homogeneous polynomials of degree 3 in C.
• Equations for C1 and C2 omitted.
• The normal form gains an extra symmetry–the rotational

symmetry, related to time-translation invariance.



Invariant subspace & 1:1 resonance

Invariant subspace SI = {C | Dj = 0, j = 1, 2, 3, 4}
In SI , the NF (11) becomes the pearling normal form (PNF)






Ċ1 = i(1 + ω1ε)C1 + C2 + iC1
�
α7C1C̄1 + α8i(C1C̄2 − C̄1C2)

�
,

Ċ2 = i(1 + ω1ε)C2 + iC2
�
α7C1C̄1 + α8i(C1C̄2 − C̄1C2)

�
+

C1
�
−α0ε+✘✘✘✘α1C1C̄1 + iα2(C1C̄2 − C̄1C2)

�
,

(12)

admitting a degenerate1:1 resonance[G. Iooss, M. Pérouème 93’].
• 1:1 resonance typically occurs in reversible and Hamiltonian

systems, where the spectrum is symmetric with respect to both
axies, thus a co-dim 1 bifurcation.

• Two symmetries ⇒ two first integrals(Noether’s theorem)

K =
i
2
(C1C2 − C1C2), H = |C2|

2 + (−α0ε+ 2α2K )|C1|
2.

• For fixed K and H, ODE (12) ⇒ a 2nd order ODE.

(
du1

dt
)2 = 4fH,K (u1) := 4

�
(−α0ε+ 2α2K )u2

1 + Hu1 − K 2
�
, (13)

where u1 = |C1|
2.



1:1 resonance dynamics

Lemma (degenerate 1:1 resonance)

For sufficiently small ε > 0,
(i) α0 < 0 , the PNF system (12) has no periodic solutions.
(ii) α0 > 0, the PNF system (12) possesses a family of periodic

orbits, depending on κ := ε−3/2K , admitting the form
Cp

1 (t , θ;
√
ε,
�
|κ|) =

�
ε|κ|r1ei(ωt+θ),

Cp
2 (t , θ;

√
ε,
�
|κ|) = sgn(κ)iε

�
|κ|r2ei(ωt+θ),

(14)

where





r1(
√
ε,
�
|κ|) = (α0 − 2α2

√
εκ)−1/4,

r2 = 1
r1
,

ω = 1 + ω1ε+ sgn(κ)
√
εr2

2 + α7ε|κ|r2
1 + 2α8ε3/2κ.

(15)



Outline

1 Introduction: pearled patterns and FCH model

2 Main result: existence of pearled bilayers in 2D FCH

3 Proof: spatial dynamics & degenerate 1:1 resonance

4 Outlook: multicomponent FCH systems



Outlook: Multicomponent FCH systems
Milnikov condition↔traveling speed↔intrinsic curvature
The multicomponent FCH energy is

F(u) =
�

Ω
|ε2∆u −∇uW (u) + εP(u)|2 + ...dx (16)

To make (16) of order O(ε2), we want to solve the ODE system

urr + εH(s)ur −∇uW (u) + εP(u) = 0. (17)

If the ε = 0 problem has an asymmetric homoclinic, we need to tune
the Melnikov parameter b0 to obtain persistence, that is,

urr + εb0ur −∇uW (u) + εP(u) = 0. (18)

Plugging the difference between (26) and (18) into (16) and take the
sharp interface limit gives an intrinsic curvature type term

�

Γ
a(H − H0)

2 + ...ds

Canham-Helfrich sharp interface energy for a codim-one interface
�

Γ
a(H − H0)

2 + b + cK ds

• H = k1 + k2–mean curvature; K = k1k2–Guassian curvature.
• Non-zero intrinsic curvature H0 �= 0 requires asymmetry between

the two sheets of lipids in order to produce a desired curvature,
and this requires different composition of lipids, and asymmetry
in the vector density.



Thank You!
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