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Primitive membranes[Szostak et al, 11] Diblock copolymer[Hayward et al, 08'] Diblock copolymer[Bates et al, 04']
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FCH: Cahn-Hilliard expansion

For amphiphilic mixtures: added higher derivatives to the classical
Cahn-Hilliard energy [Teubner, Strey, 87’; Gompper, Schick, 90°]

>0

Flu) = /Q () + 2A(U) VUl + 2B(u)Au + T(0) (2 Au)? d.

For the primitive A of A, replace A(u)Vu with VA(u) and integrate by
parts

_ / f(u) + (B(u) — A(u))2Au + C(u)(2Au) dx,

Complete the square

W' (u) P(u)
% —N—
A—B|\2 A— B)?
/C( 2Au— e ) ] Ay - ¢ C(u)) dx.
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FCH: stabilization of equilibria of Cahn-Hilliard energy

Consider the functionalized Cahn-Hilliard energy

1 ) 1
]-'CH:/QE (2Au — W'(u))® ~[ElGme*|Vul + e W(u))dx, (1)

in a large bounded domain €.

Unstable equilibrium in CH
Potential stable equilibrium in FCH

e The square term stabilizes all the
equilibria of CH energy, including the
saddle points.

e The small functionalized term selects
stable equilibria.
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[Frank Morgan, Riemannian Geometry, 98']



Functionalized Cahn-Hilliard equation(FCH)

The FCH, uy = A%Ze that s,

U = A((52A — W'(u) + em) (2Du — W'(1)) + eng W'(u)) 2)

is a gradient flow, preserving mass with zero-flux boundary condition.
W(u)
/ e—width of interfaces.

\ [ W-non-degenerate double-well potential.
U > ni—interfacial parameter(amphiphilicity).

neo—pressure parameter.
Nad ="M — N2
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Pearling: bifurcation of bilayers along interfaces

We look for pearled solutions to the stationary 2D FCH
(A — W'(u) +en) (Au— W' (U)) + engW'(u) = ev. (3)

L

Q,and I,

O, and I,

Bilayers—symmetric pulse profiles along interfaces(single layer: front).

Pearled patterns—small amplitude modulations of bilayer width.
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FCH: extended flat bilayer solutions

Lemma (Existence of extended flat bilayers)

Fix n1,nq,7 = O(1) € R. Assume ¢ > 0 sufficiently small, there exists
a flat bilayer solution—a homoclinic solution u,(r) to the ODE

d2 d?
(g2 = W'(U) +em)| (24— W(u) [+ engW' () = 7.

[A. Doelman, G. Hayrapetyan, K. Promislow, and B. Wetton, 14’]

(Lo)
o U(r) = up(r) + O(e), where up is the
homoclinic orbit to u, — W'(u) = 0.
h o Lo:= 0% — W' (up) admits only one
positive eigenvalue, denoted as Ap.
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FCH: spectral analysis

Linearizing the rescaled stationary 2D FCH in the extended plane,
(02 — W (u)+20% +em) (Pu— W' (u) +e20%u) +ng W' (u) = e, (4)

at the bilayer u, gives the linearized operator

2
L 0°F

=z (th) = (Lo 4 £202)? |+ O(e).
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FCH: pearled solutions

Pearled solutions—a tangential periodic modulation of the flat bilayer

solution w, on the plane R2. More precisely, symmetric extended
pearled solutions u, are solutions to

M/ 400 |U(X, F) — Uso| = 0,7 €ER, (5)

(02 — W"(u) + €202 + enq) (02u — W' (u) + szaiu) +ngW'(u) = ev,
u(—7,r) = u(r, ), u(t + Tp,r) = u(r,r), (7, 1) € R2,

where U, and T, are constants to be determined.




Assumption—existence of extended pearled solutions

Assumption

We assume that
(i) W is afixed non-degenerate double well potential.
(i) There are two primary parameters

! / (W' (uo)Lotio — ng W' (o)) y&dr > 0,
R

ap

- 2
o ©
Bo = e /R (W (uo)Lotio — ngW" (o)) yidr # 0,
where
{ﬁowo = Aoto, Loty =0,
[tolle = 2 = 1.
Remark

Basically, ag = ¢1v + Gong, Bo = 37y + Cang, Where ¢;’'s depend only
upon the shape of the well.



Main result I-existence of extended pearled solutions

Theorem (existence of extended pearled flat bilayers)

Fix n1,mq,7 = O(1) € R. Under the Assumption, there exist g, ko > 0
such that, for any ¢ € (0, ], up to translation, the stationary 2D-FCH,

(02 — W' (u) + 202 + emy) (0Fu — W' (u) + €20%u) + eng W' (u) = &7,

admits a smooth 1-parameter family of extended pearled solutions,

Up(T, 1; v/e, \/|K|) with period T,(v/z, \/|k|), parameterized by
K € [—ko, Ko]. In fact, we have

Up = Up(r;y) + 2%C05 (2p )%() +O<€(\/5+\/W)),
2me

= T2 [1 = v + 0 1+ V)

e = i 0(12),

where the error is in the L>(R?)-norm.



Main result ll—existence of extended pearled solutions

Theorem (existence of extended pearled circular bilayers)

Fix n1,mg = O(1), Ry € R. Under the Assumption, there exist
€0, ko > 0 and ~(e) such that, for any € € (0, 9], up to translation, the
stationary 2D-FCH in the infinite stripe (6,r) € R x R/27Z,

e0r 5285 edru ezagu

(af —w ) +

>+ =nq) (afu — W (u) +

) + endW’(u) = €.

4
Ry +er  (Ry + er) Ry +er  (Ry +en?

admits a discrete family of extended pearled solutions,

Up (T, r; /e, \/|kj|) with period T,(v/e, \/|j|), parameterized by
{Kj}jer C [—ko, ko). In fact, we have

Uy = (i) + 2% cos (i}) volr) |+ 0 (<(vZ +V/IRD)

2me 2m
T = B [1 = Vaoe + 0 (e(1 + V)] € {—- [ n € Z\{0}},
Uso = NiM u(r; ),
(8)
where the error is in the L>(R?)-norm. ATE
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Remark—existence of extended pearled solutions

e The results are in unbounded domains — both flat and circular
bilayers.

o For the flat bilayers, for each value of v, we get a one-parameter
family of pearled solutions in terms of «.

e For the circular bilayer, we have only one value of v, and we get
an countable family of pearled bilayers, parameterized by
ﬂj = Hj({-?, Ro)

» Note that for a physical system containing a single amphiphilic
material, the parameter 7, 2 and ¢ are fixed.

e According to the Theorem |, the FCH admits a two-parameter
family of pearled flat bilayers, parameterized by v and «.

e According to the Theorem Il, there is an interesting tuning of the
radius and the discrete parameter «. For fixed Ry, the family has
distinct amplitudes, but quite similar periods, which arises from the
degenerate 1:1 degeneracy.



Parameters—x and ~

o rx—an e~3/2-gcaled first integral in the degenerate 1:1 resonance.
o ~—the far-field state.

Large bounded domains retain the results[Sandstede et al, 11°].
e r-tuned by period; y—fixed by mass conservation.
e The influence of «:

« second order on the period—O(c?/||);
o first-order on the amplitude—-O(+/|x|).

e For pearled circular bilayers, the periods satisfy

2 R
T oo+ \/|n|+?O)EZ+.

Thus, the tuning is O(e) in Ry and O(1) in k. Consequently,
small changes in Ry have a huge influence on «, and thus on the

pearling amplitude but not the period. MICHIGAN STATE

UNIVERSITY



Pearling bifurcation as a9 — 0

Consider the FCH with fixed . Recall the pearled solution

Uy = Un(r) + 2\{\/6;’? cos <27Z;T> Yo(r) |+ 0O (5(ﬁ+ \/M)) .

The degenerate 1 : 1 resonance shows that
Qg
<o
VEORO < Bl

where ay is generically nonzero. Therefore, we have

. Velg| 2r _
al(!TO 2 T cos (-7 Po(r)|=0.

p
That is to say, up to leading order, for fixed ¢, the amplitude of the
pearling dies out as oy — 0. This fact indicates that this degenerate
bifurcation retains some supercritical characteristics. MICHIGAN STATE
UNIVERSITY
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Idea of the proof

The proof can be summarized into the following steps:
o Rewrite the PDE (4),

(02 — W (u) +c202 +eny) (02u— W' (u) +£202u) +ng W' (u) = e,

as an infinite-dimension dynamical system via spatial dynamics,

e Reduce the PDE (4) to an ODE system via center manifold
reduction,

e Obtain the normal form of the reduced ODE system,

e Find transformed pearling solutions in the degenerate 1:1
resonance normal form,

e Show persistence of pearling solutions in the full ODE via an
implicit-function-theorem argument on a Poincaré map.



Spatial dynamics

We rewrite (4) as an infinite-dimension dynamical system.

e View 7 as the “time” variable and apply the rescaling t = Vo,

€

o Let U:= (u,ur, Lou+ Nousr, (Lpu + XoUn)t),
e Linearize the PDE (5) around the bilayer w,.

U=1L(s)U+F(U,e), (€)
where
0 1 0 0 0
1 1
—=Lp, 0 5= 0 0
L(E) = A(U) 0 )(\')0 1 7]F(U7€) = 9
f%ov 0 *)\Lo(l:b+€771) 0 _To]:

and Ly := 9r + W (), V 1= engW" (u,) — (82w, — W' (w,)) W (), F is the
nonlinear term. Note that L : y — x is colsed, where

X = H3(R) x H?(R) x H'(R) x L3(R), Y = H*(R) x H3(R) x H?(R) x H'(R).



Center manifold reduction

The center manifold reduction is based on the spectral analysis of
L, :=1L(0) ~ (Lo + AoOy)?.

Spectrum: o(L,) = {A € C | d(\, 1) = (1t + AoN?)? = 0, € 0(Lo)}
Imaginary spectrum: o(L,) N iR = {0, +i}.

Center manifold reduction of (9) to a reversible ODE system:

8 Bl () (Us + V(U ) + PF(Us + V(U <)) (10)
o(lLx)
A=-n A A=n

(10) is an 8th-order system.
2 e U, is the projection of U onto
the center subspace.
[W(Ue,€)lly = O((lell| Uell + [|Uell?).
Ois geo. 1 & alg. 4.

+iis geo. 1 & alg. 2.
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Normal form

The normal form(NF) of the reduced ODE (10), up to cubic terms, is
C1 = 1(1 +W1E)C1 +CZ+P3,1(C)7

:Cg = —apeCy +i(1 +w16)Cg +733’2(C)

Dr= Dy, (11)
D, = Ds,

Dy = Dy,

D4 = wzeDy 4+ wyeDy + 7)3,8(0)-
with higher order terms

o(<2licll + £[ICI? + CII*).

» P3j(C) are homogeneous polynomials of degree 3 in C.
« Equations for C; and C omitted.

e The normal form gains an extra symmetry—the rotational
symmetry, related to time-translation invariance.



Invariant subspace & 1:1 resonance

Invariant subspace S, ={C | D;=0,j=1,2,3,4}
In S, the NF (11) becomes the pearling normal form (PNF)

Cz = i(1 + wye)Co + iC%[Oz7C1 61 + O_égi(CLéz — 61 Cz)] + (12)
Cy [—ape + o567Cy +iaa(C1C2 — C1G2)]
admitting a degenerate1:1 resonance[G. looss, M. Pérouéme 93’].

e 1:1 resonance typically occurs in reversible and Hamiltonian
systems, where the spectrum is symmetric with respect to both
axies, thus a co-dim 1 bifurcation.

e Two symmetries = two first integrals(Noether’s theorem)

{C1 = i(1 +wie)Cy + Co +iC [a7C1 Cy + agi(C1 Co — C1 Go)],

K= %(01?27?102), H = |Col? + (—age + 2a2K)|Cy 2.

e For fixed K and H, ODE (12) = a 2nd order ODE.

(B2 = 4t (1n) = 4 [(~aoe +202K)0R + Hur K], (13)

where vy = |Gy 2. MICHIGAN STATE
UNIVERSITY



1:1 resonance dynamics

Lemma (degenerate 1:1 resonance)

For sufficiently small ¢ > 0,
(i) ap < 0, the PNF system (12) has no periodic solutions.

(i) ag > 0, the PNF system (12) possesses a family of periodic
orbits, depending on  := £~3/2K, admitting the form

Cp(t 9\[ \/l? _\/7r1ei(wt+9)
CO(t,0;\/z,\/|k|) = sgn(k)ie\/|k|relH0)]
where

r(ve VIk]) = (a0 — 2azv/Er) 714,

_ 1
rZ*Ea

w =1+ wie + sgn(k)Vers + aze|k|r? + 2age®/ 2.

(15)

MICHIGAN STATE
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Outlook: Multicomponent FCH systems

Milnikov condition<»traveling speed+«intrinsic curvature
The multicomponent FCH energy is

Flu) = /Q AU — VyW(u) + cP(U)P + ...dx (16)

To make (16) of order O(£2), we want to solve the ODE system
Uy, + eH(s)u, — VyW(u) 4+ eP(u) = 0. (17)
If the £ = 0 problem has an asymmetric homoclinic, we need to tune
the Melnikov parameter by to obtain persistence, that is,
U, + ebou, — VyW(u) 4+ eP(u) = 0. (18)

Plugging the difference between (26) and (18) into (16) and take the
sharp interface limit gives an intrinsic curvature type term

/a(H — Hp)? +..ds

.
Canham-Helfrich sharp interface energy for a codim-one interface

MICHIGAN STATE
/a(H—Ho)2+b+chs UNIVERSITY
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Thank You!
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