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Large-Scale Load-Balancing Networks

Load-Balancing Network

Load Balancing Algorithm:

How to assign incoming jobs to servers to achieve good
performance with low computational cost?
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Large Scale Load-Balancing Networks

Appear in:

supermarket

server farms

distributed memory machines

hash tables
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Routing Algorithm: Supermarket Model

Common Load Balancing Algorithms

• Joins the Shortest Queue not feasible for large N

• SQ(d) algorithm:
− chooses d queues out of N , uniformly at random
− joins the shortest queue among the chosen d
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Exponential Service Distribution

Supermarket model for exponential service time

Steady-State Queue Length Probabilities:

S` = Pss{a typical queue length ≥ `}

1 2 3 4 5

10−1

100
Exponential Service Distribution

S l

random routing (d=1)
Supermarket (d=2)

l
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Supermarket model for exponential service time

Steady-State Queue Length Probabilities:

S` = Pss{a typical queue length ≥ `}
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Power of Two Choices
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Large-Scale Stochastic Networks

Typically,

stochastic networks are too complex

not amenable to exact analysis

should look for approximate solutions

natural approximation for large-scale networks:

number of servers (N) → ∞
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Asymptotic Analysis

Approach 1: Mean-Field Method (cavity method)

local representation Yi

given an environment U , compute Yi = F (U)

prove asymptotic independence as N →∞ (propagation of chaos)

solve the distributional fixed-point equation
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Asymptotic Analysis

Approach 2: ODE Method

Y

Y Y
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Markovian (global) representation Y (N) = F (Y
(N)
1 , ..., Y

(N)
N )

establish limit theorems for Y (N)
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Hydrodynamic Approximation

  process-level 
convergence

state variable (scaled)

fluid limit
(evolution equation)

Y (N)(∞) ≈ Ny∗ + o(N)
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Hydrodynamic Approximation

  process-level 
convergence

convergence
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stability of the limit

stability of N-server network

state variable (scaled) steady state distribution

fluid limit
(evolution equation)
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Exponential Service Time

Analysis of SQ(d) algorithm:

To compute the transition probabilities:

routing probabilities are to be computed

to compute these probabilities, one needs the empirical
distribution of queue lengths SN = (SN

1 , S
N
2 , ...)

SN
` = # of queues with length of at least `.

SN
1 = 5

SN
2 = 4

SN
3 = 2

SN
4 = 1

SN
5 = 0
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Exponential Service Time

When service time distribution is exponential [Vvedenskaya et. al. 96]:

The empirical queue length {SN
` (t); ` ≥ 1, t ≥ 0} is Markovian

Convergence as N →∞ proved using Kurtz’s theorem

The limit process is a solution to a sequence of ODEs

Steady state queue length distribution is obtained by the fixed
point of the ODE sequence

The following results are obtained:

if d = 1: P (XN (∞) > `)→ cλ`.

if d ≥ 2: P (XN (∞) > `)→ λ(d
`−1)/(d−1)

Power of two Choices: double-exponential decay for d ≥ 2
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How about General Service Time Distributions?

Goal: To extend the result for general service distribution

Almost nothing was known 5 years ago

Mathematical Challenge:

{SN
` } is no longer Markovian

need to keep track of more information: how long each job has
been in service (ages)
No finite dimensional common state space for Markovian
Representations

Partial results by [Bramson-Lu-Prabhakar ’13] using the cavity
method

Our Approach:

New representation: Interacting Measure-valued Processes

Reza Aghajani ODE and PDE Methods for Analysis of Large-Scale Load-Balancing Networks



How about General Service Time Distributions?

Goal: To extend the result for general service distribution

Almost nothing was known 5 years ago

Mathematical Challenge:

{SN
` } is no longer Markovian

need to keep track of more information: how long each job has
been in service (ages)
No finite dimensional common state space for Markovian
Representations

Partial results by [Bramson-Lu-Prabhakar ’13] using the cavity
method

Our Approach:

New representation: Interacting Measure-valued Processes

Reza Aghajani ODE and PDE Methods for Analysis of Large-Scale Load-Balancing Networks



How about General Service Time Distributions?

Goal: To extend the result for general service distribution

Almost nothing was known 5 years ago

Mathematical Challenge:

{SN
` } is no longer Markovian

need to keep track of more information: how long each job has
been in service (ages)
No finite dimensional common state space for Markovian
Representations

Partial results by [Bramson-Lu-Prabhakar ’13] using the cavity
method

Our Approach:

New representation: Interacting Measure-valued Processes

Reza Aghajani ODE and PDE Methods for Analysis of Large-Scale Load-Balancing Networks



Interacting Measure-Valued Processes Representation

ν`: unit mass at the ages of jobs in servers with
queues of length at least ` .

at least one job
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Interacting Measure-Valued Processes Representation

ν`: unit mass at the ages of jobs in servers with
queues of length at least ` .

age

age

at least two jobs
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Interacting Measure-Valued Processes Representation

ν`: unit mass at the ages of jobs in servers with
queues of length at least ` .

age

age

age

at least three jobs
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Interacting Measure-Valued Processes Representation

ν`: unit mass at the ages of jobs in servers with
queues of length at least ` .

age

age

age

age

at least four jobs
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Interacting Measure-Valued Processes Representation

ν`: unit mass at the ages of jobs in servers with
queues of length at least ` .

age

age

age

age

age

at least five jobs
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Interacting Measure-Valued Processes Representation

ν`: unit mass at the ages of jobs in servers with
queues of length at least ` .

age

age

age

age

age

inspired by [Kaspi-Ramanan’11]
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Dynamics of Measure-Valued Processes

I. when no arrival/departure is happening, the masses move to the
right with unit speed.
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I. when no arrival/departure is happening, the masses move to the
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Dynamics of Measure-Valued Processes

II. Upon departure from a queue with ` jobs,

the corresponding mass departs from all νj , j ≤ `
a new mass at zero is added to all νj , j ≤ `− 1

exactly l customers

D`: cumulative departure process from servers with at least ` jobs before
departure.
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Dynamics of Measure-Valued Processes

III. Upon arrival a queue with `− 1 jobs right before arrival,

if ` = 1, a mass at zero joins ν1

if ` ≥ 2, the mass corresponding to the age of job in that particular server is
added to ν`

exactly l-1 customers

R` : routing measure process
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Hydrodynamics Equations

The following equations describe fluid limit of ν(N):

〈f, ν`(t)〉 =〈f(·+ t)
Ḡ(·+ t)

Ḡ(·)
, ν`(0)〉+

∫
[0,t]

f(t− s)Ḡ(t− s)dD`+1(s)

+

∫ t

0

〈f(·+ t− s) Ḡ(·+ t− s)
Ḡ(·)

, η`(s)〉ds (1)

for every f ∈ Cb[0,∞), and

〈1, ν`(t)〉 − 〈1, ν`(0)〉 = D`(t) +

∫ t

0

〈1, η`(s)〉ds−D`(t), (2)

with

D`(t) =

∫ t

0

〈h, ν`(s)〉ds (3)

η`(t) =

{
λ(1− 〈1, ν1(t)〉2)δ0 if ` = 1,
λ〈1, ν`−1(t) + ν`(t)〉(ν`−1(t)− ν`(t)) if ` ≥ 2.

(4)

Equations (1)-(4) are called Hydrodynamics Equations.
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Main Result

Theorem

Let {ν(N)(t) = (ν
(N)
` (t))`; t ≥ 0} be the measure-valued representation for

the N-server system with initial condition ν(N)(0). If for some ν`(0)

1 arrival process E(N) is a renewal process with rate λN , and λN/N → λ,

2 service distribution G has mean 1 and density g,

3 for every ` ≥ 1, ν
(N)
` (0)/N → ν`(0),

then
1

N
ν(N) → ν,

where ν is the unique solution to the hydrodynamics equations
corresponding to ν(0).

Proof sketch.

show the tightness of the sequence { 1
N
ν(N)}.

show that every sub-sequential limit solves the age equation.

show that the hydrodynamics equations have a unique solutions
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A PDE representation

If one is only interested in S`(t) = 〈1, ν`(t)〉,

〈1, ν`(t)〉 =〈 Ḡ(·+ t)

Ḡ(·)
, ν`(0)〉+

∫
[0,t]

Ḡ(t− s)dD`+1(s)

+

∫ t

0

〈 Ḡ(·+ t− s)
Ḡ(·)

, η`(s)〉ds (5)

define {fr(x) = 1−G(x+r)
1−G(x) ; r ≥ 0} and

Z`(t, r) = 〈fr, ν`(t)〉.

Then, we have D`(t) = −
∫ t

0
∂rZ`(s, 0)ds.
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Hydrodynamic PDEs

Hydrodynamic PDEs:

Z = (Z`) satisfies the following countable set of PDEs

∂tZ`(t, r)− ∂rZ`(t, r) = −G(r)∂`+1Z(t, 0) + λ(t)(Z`−1(t, 0) + Z`(t, 0))

×(Z`−1(t, r)− Z`(t, r))

for ` ≥ 1, with initial conditions (Z`(0, ·); ` ≥ 1).

countable number of interacting equations

non-linear

non-standard: boundary condition appears as the external force

Theorem

If h is bounded, then hydrodynamic PDEs have a unique solution in a
suitable subspace of C1

b [0,∞)N.

challenge: infinite set of inter-dependent PDEs.
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Hydrodynamic PDEs

Hydrodynamic PDEs:
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Main Results

The solution to the Hydrodynamic PDEs can be used to approximate
the queue length probabilities as well as other quantities such as the
virtual waiting time.

Theorem

Under Assumptions of Theorem 1,

lim
N→∞

P
{
X(N),1(t) ≥ `,X(N),2(t) ≥ k

}
= Z`(t, 0)Zk(t, 0),

where {Z`; ` ≥ 1} is the unique solution to the hydrodynamic PDEs.
Moreover,

lim
N→∞

E
[
W (N)(t)

]
=

∑
`≥2

Z`(t, 0)2 +
∑
`≥1

[Z`(t, 0) + Z`+1(t, 0)]

×
∫ ∞
0

[Z`(t, r)− Z`+1(t, r)] dr.
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Simulation Result

We can numerically solve the PDE, and obtain:

fraction of busy servers:

fraction of servers with queue length at least 2

Plots for network of 500 servers.
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Simulation Results

We can numerically solve the PDE, and obtain:

Virtual waiting time
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The actual mean waiting time is also well-approximated by the
same quantity obtained from PDEs.
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Implication of Results

Example: Backlog Recovery

Intermittently, jobs experience long waiting times due to a backlog

How long would it take for the network to get rid of the backlog?

Relaxation Time: the time when virtual waiting time drops to
half .
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Observation: For the infinite-variance (heavy tail) service distribution,
the network gets rid of the backlog faster!
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Implication of Results

Comparison with equilibrium result for Pareto service
distribution:

Bramson-Lu-Prabakar ’13: when considering tail probabilities
in equilibrium, finite variance is favorable.

Our Observation: when considering the mean virtual waiting
time in network recovering form a backlog, infinite variance is
favorable.

Using the PDE, we observed an nonintuitive behavior of the
load-balancing network

The PDE provides more efficient alternative to simulations in
order to address network optimization and design questions.
Generating these kind of graphs with simulation would take
much longer
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Conclusion

We introduced a framework to analysis the load balancing algorithm,
featuring

Hydrodynamics limit which captures transient behavior

Applicable for general service distributions

Applicable for more general time varying arrival processes

For Exponential service distribution:

limit process is characterized by a solution of a sequence of ODEs

For General service distribution:

limit process is characterized by a solution of a sequence of PDEs

Equilibrium distributions are characterized by the fixed point of the
PDEs.
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