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Local risk-minimization

Introduction to pricing theory

We consider a financial market with maturity T, which is composed of
one risky asset whose price is represented by a semimartingale S,
and one riskless asset with 0 interest rate.
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Introduction to pricing theory
We consider a financial market with maturity T, which is composed of

one risky asset whose price is represented by a semimartingale S,
and one riskless asset with 0 interest rate.

Consider a contingent claim F € L2(P).
For example, if F is a call option with strike price K, then F = (St — K)*.
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one risky asset whose price is represented by a semimartingale S,
and one riskless asset with 0 interest rate.

Consider a contingent claim F € L2(P).
For example, if F is a call option with strike price K, then F = (St — K)*.

Let &; (resp. ;) be the amount of units of the risky asset (resp. the risk-free asset)
an investor holds at time t € [0, T], respectively.
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Local risk-minimization

Introduction to pricing theory

We consider a financial market with maturity T, which is composed of
one risky asset whose price is represented by a semimartingale S,
and one riskless asset with 0 interest rate.

Consider a contingent claim F € L2(P).
For example, if F is a call option with strike price K, then F = (St — K)*.

Let &; (resp. ;) be the amount of units of the risky asset (resp. the risk-free asset)
an investor holds at time t € [0, T], respectively.
¢ := (&, 1) is called a strategy. The wealth is given as Vi(¢) = ¢ + &:St.
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Introduction to pricing theory

We consider a financial market with maturity T, which is composed of
one risky asset whose price is represented by a semimartingale S,
and one riskless asset with 0 interest rate.

Consider a contingent claim F € L2(P).
For example, if F is a call option with strike price K, then F = (St — K)*.

Let &; (resp. ;) be the amount of units of the risky asset (resp. the risk-free asset)
an investor holds at time t € [0, T], respectively.
¢ := (&, 1) is called a strategy. The wealth is given as Vi(¢) = ¢ + &:St.

@ is self-financing if Vi(¢) = Vo(g) + fy €sdSs.

Discrete time model
A self-financing strategy satisfies the following at each trading time n:

n + fnsn = Iln+1 + fn+1 Sn(= Vn(‘P))

In particular, we have Va(p) = Vo(p) + X, _, éxASk.
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Introduction to pricing theory (cont’d)

A market is called complete, if, for any F, we can find a ¢ € R and a predictable
process & satisfying

T
F=c+ f f,dS,.
0

The pair (¢, £) is called the perfect hedge of F.
Note that (¢, £) has a one-to-one corresponding to ¢ for self-financing strategies.
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Introduction to pricing theory (cont’d)

A market is called complete, if, for any F, we can find a ¢ € R and a predictable
process & satisfying

T
F=c+ f f,dS,.
0

The pair (¢, £) is called the perfect hedge of F.
Note that (¢, £) has a one-to-one corresponding to ¢ for self-financing strategies.

In this talk, we focus on hedging strategies for incomplete markets.

Instead of the perfect hedge, we consider a replicating strategy which is not
self-financing.
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Local risk-minimization

Risk minimization

Consider a strategy ¢ := (&, 17), which is not necessarily self-financing.
Define the cumulative cost process Ci(yp) as

Ci(¢) := Vi(p) _L £sdSs.
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Local risk-minimization

Risk minimization

Consider a strategy ¢ := (&, 17), which is not necessarily self-financing.
Define the cumulative cost process Ci(yp) as

Ci(¢) := Vi(p) _L £sdSs.

Define the risk process Ry(y) as

Rilp) = E|(Cr(o) - Cilo))*|7 -
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Local risk-minimization

Risk minimization

Consider a strategy ¢ := (&, 17), which is not necessarily self-financing.
Define the cumulative cost process Ci(yp) as

Ci(p) := Vi(y) - fo t«fsts.
Define the risk process Ry(y) as
Rilp) = E|(Cr(o) - Cilo))*|7 -
@ is said risk-minimizing if ¢ satisfies F = Vr(gp) and
R:(¢) < Ri(p) P-a.s.forevery t € [0, T]

for any strategy @ satisfying F = Vr ().
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Local risk-minimization

Local risk-minimization

Assumption 1

@ S is a special semimartingale with the canonical decomposition
S=5 + M+ A.
@ We can find a predictable process A such that dA = Ad{M).

@ The mean-variance trade-off process K; := fot I\id(M)s is finite,
that is, K is finite P-a.s.
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Local risk-minimization

Local risk-minimization (cont’d)

Definition
@ Os denotes the space of all R-valued predictable processes & satisfying
T T
E[f, £2d(My; + ([, 1£:dA)?] < oo.
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Local risk-minimization

Local risk-minimization (cont’d)

Definition
@ Os denotes the space of all R-valued predictable processes & satisfying
T T
E[f, £2d(My; + ([, 1£:dA)?] < oo.

@ An L2-strategy is given by a pair ¢ = (£, 1), where £ € @ and g is an
adapted process such that V(¢) := £S + n is a right continuous process
with E[V?(g)] < oo for every t € [0, T].

Note that &; (resp. 1;) represents the amount of units of the risky asset (resp.
the riskfree asset) an investor holds at time t.
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Local risk-minimization (cont’d)

Definition
@ Os denotes the space of all R-valued predictable processes & satisfying
T T
E[f, £2d(My; + ([, 1£:dA)?] < oo.

@ An L2-strategy is given by a pair ¢ = (£, 1), where £ € @ and g is an
adapted process such that V(¢) := £S + n is a right continuous process
with E[V?(g)] < oo for every t € [0, T].

Note that &; (resp. 1;) represents the amount of units of the risky asset (resp.
the riskfree asset) an investor holds at time t.

@ For F € L2(P), the process CF(y) defined by

t
Cl(¢) := Fly=n; + Vi() —f £5dS;s
0

is called the cost process of ¢ = (&, 1) for F.
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Local risk-minimization (cont’d)

Definition
@ Os denotes the space of all R-valued predictable processes & satisfying
T T
E[f, £2d(My; + ([, 1£:dA)?] < oo.

@ An L2-strategy is given by a pair ¢ = (£, 1), where £ € @ and g is an
adapted process such that V(¢) := £S + n is a right continuous process
with E[V?(g)] < oo for every t € [0, T].

Note that &; (resp. 1;) represents the amount of units of the risky asset (resp.
the riskfree asset) an investor holds at time t.

@ For F € L2(P), the process CF(y) defined by

t
Cl(¢) := Fly=n; + Vi() —f £5dS;s
0

is called the cost process of ¢ = (&, 1) for F.

@ An L2-strategy ¢ is said locally risk-minimizing strategy for F if Vr(¢) = 0
and CF () is a martingale orthogonal to M, that is, CF(¢)M is a martingale.
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Follmer-Schweizer decomposition

An F € L2(P) admits an FS decomposition if it can be described by

)
F=Fo+ [ gds+LE, (1)
0

where Fy € R, éF € © and LF is a square-integrable martingale orthogonal to M
with LOF =0.

"Schweizer, M.: Local Risk-Minimization for Multidimensional Assets and Payment Streams.
Banach Center Publ. 83, 213-229 (2008)
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Follmer-Schweizer decomposition

An F € L2(P) admits an FS decomposition if it can be described by

)
F=Fo+ [ gds+LE, (1)
0

where Fy € R, éF € © and LF is a square-integrable martingale orthogonal to M
with LOF =0.

Proposition 5.2 of Schweizer'

Under Assumption 1, LRM ¢ = (&, 1) for F exists if and only if F admits an FS
decomposition, and its relationship is given by

t
b=€ m=Fot [ €ldS L] - Flun-g/s.

"Schweizer, M.: Local Risk-Minimization for Multidimensional Assets and Payment Streams.
Banach Center Publ. 83, 213-229 (2008)
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Local risk-minimization

Minimal martingale measure (MMM)

As a result, it suffices to obtain a representation of £F in (1) in order to obtain LRM.
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Minimal martingale measure (MMM)

As a result, it suffices to obtain a representation of £F in (1) in order to obtain LRM.

A martingale measure P* ~ [P is called minimal if any square-integrable
P-martingale orthogonal to M remains a martingale under IP*.
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Minimal martingale measure (MMM)

As a result, it suffices to obtain a representation of £F in (1) in order to obtain LRM.

A martingale measure P* ~ [P is called minimal if any square-integrable
P-martingale orthogonal to M remains a martingale under IP*.

We define Z := &(— [ AdM), where &(Y) represents the stochastic exponential

of Y.
Note that Z is a solution to the SDE dZ; = —A\;Z;_d;.
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Minimal martingale measure (MMM)

As a result, it suffices to obtain a representation of £F in (1) in order to obtain LRM.

A martingale measure P* ~ [P is called minimal if any square-integrable
P-martingale orthogonal to M remains a martingale under IP*.

We define Z := &(— [ AdM), where &(Y) represents the stochastic exponential
of Y.
Note that Z is a solution to the SDE dZ; = —A\;Z;_d;.

Under Assumption 1, if Z is a positive square integrable martingale, then an MMM
P* exists with dP* = ZrdP.
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Local risk-minimization

Precedence research?

We consider a Lévy market as follows:

2Arai, T., Suzuki, R.: Local risk minimization for Lévy markets. International Journal of Financial
Engineering, 2, 1550015 (2015)
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Precedence research?

We consider a Lévy market as follows:

Assume that S is given by a solution to the following SDE:
dS; = S;_ |adt + BdW; + f y,,zﬁ(dt, dz)] , Sp>0,
Ro

where a, 8 and y are predictable processes.

Here, Wis a 1—dimensione£Brownian motion, N is a Poisson random measure,
v is its Lévy measure and N(dt, dx) = N(dt, dx) — v(dx)dt.

2Arai, T., Suzuki, R.: Local risk minimization for Lévy markets. International Journal of Financial
Engineering, 2, 1550015 (2015)
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Local risk-minimization

Precedence research (cont’d)

Under some assumptions, A. and Suzuki gave the following expression of locally
risk minimizing(LRM) strategy £F for claim F:

A
F ._ 0 1
£ = T + fm L y12(02)),

at
where A; 1= , Uy 1= /\,S,_B,, 01,2 = /\tS,_y,,z.

Sc(82 + [, 72, 1(d2)

Moreover,

. D
h —IEHD*[D,OF F[f D,ousdwﬂ”+f f 10 SXN]P(ds,dx)“T,_],

hlz i= Ep-[F(H;, - 1) + zH, Dy . FI7:-],

where H:‘z := exp{zD; . log Zr — log(1 — 6:.)}.
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Precedence research (cont’d)

However, we need to assume the following:
Assumption (A)
Q@ udle ]L,:]’z; and 2usD; ;us + z(Dy us)? € L2(g x P) for a.e. s € [0, T].
Q 6+ log(1-6) € L}?, and log(1 - 6) € L}
©Q For g-a.e. (s,x) € [0, T] X Rg, A5 x € (0,1) such that Osx < 1 — &.
Q Zr {Dt,O |Og ZT1{0,(z) + &:21-_11]1{{0(2)} € Lz(q X ]P)
@ F e D'?; and ZyD;;F + FD;,Zr + 2D, ;F - D; ,Zr € L2(q X PP).
Q FH; ,, H; D F € L'(P*) for g-a.e. (t,2) € [0, T] x R,
where H:‘z := exp{zD; . log Zr — log(1 — 6;;)}.
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Precedence Research (cont’d)

Deterministic coeffcients case

In the case where a, B, and y are given by deterministic functions satisfying the
following three conditions, if condition 5 in Assumption (A) and ZrF € L2(PP) are
satisfied, then &F is given as

. BtEp[DioFIF-] + fRo Ep-[2Dy - F15¢-]717v(d2)

&
S (8 + J, i(e2)

Conditions on «, B, and y

Q@ iz > —1,dtv(dz)-ae.

Q supypor(lad + B2 + [, yf’zv(dz)) < C for some C > 0.

@ We can find a positive number & such that

Ytz

2 2 <
B2+ [, 7}, v(d2)
Local risk-minimization for BNS models 19 August 2016 14/42
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Barndorff-Nielsen and Shephard models

@ Barndorff-Nielsen and Shephard models
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BNS models

In this talk, we calculate locally risk-minimizing (LRM) strategies for
Barndorff-Nielsen and Shephard (BNS) models 3:

t 1 t
S = Syexp {f (u - Eai) ds + fo osdW; +pH/u}.
0

where S > 0, p <0, u € R, 2 > 0, His a subordinator without drift, and

3Barndorff-Nielsen, O.E., Shephard, N.: Non-Gaussian Ornstein-Uhlenbeck based models and
some of their uses in financial econometrics. J.R. Statistic. Soc. 63, 167—241 (2001)
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BNS models

In this talk, we calculate locally risk-minimizing (LRM) strategies for
Barndorff-Nielsen and Shephard (BNS) models 3:

t 1 t
S = Syexp {f (u - Eai) ds + f osdW; +pH/u}.
0 0

where S > 0, p <0, u € R, 2 > 0, His a subordinator without drift, and

do? = —A0%dt + dHy, o2 >0.

3Barndorff-Nielsen, O.E., Shephard, N.: Non-Gaussian Ornstein-Uhlenbeck based models and
some of their uses in financial econometrics. J.R. Statistic. Soc. 63, 167—241 (2001)
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BNS models

In this talk, we calculate locally risk-minimizing (LRM) strategies for
Barndorff-Nielsen and Shephard (BNS) models 3:

t 1 t
S = Syexp {f (u - Eai) ds + fo osdW; +pH/u}.
0

where S > 0, p <0, u € R, 2 > 0, His a subordinator without drift, and
do? = —A0%dt + dHy, o2 >0.

pH,; represents leverage effect.

3Barndorff-Nielsen, O.E., Shephard, N.: Non-Gaussian Ornstein-Uhlenbeck based models and
some of their uses in financial econometrics. J.R. Statistic. Soc. 63, 167—241 (2001)
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BNS models (cont’d)

S is a solution to the following SDE:
ds; = S {adt + o dW; + f (e”™ — 1)N(dt, dx)} ,
0

where @ = p + [77(e” — 1)v(dx).
Here,

(Jr :=)Hy = fo B xN([0, t], dx) and N(dt, dx) = N(dt, dx) — v(dx)dt,

where v is the Lévy measure of J.
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BNS models (cont’d)

S is a solution to the following SDE:
ds; = S {adt + o dW; + f (e”™ — 1)N(dt, dx)} ,
0

where @ = p + [77(e” — 1)v(dx).
Here,

(Jr :=)Hy = fo B xN([0, t], dx) and N(dt, dx) = N(dt, dx) — v(dx)dt,

where v is the Lévy measure of J.
Note that o2 is represented as

t
o2 =eMo? + f e (=) gy,
0
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Main results

e Main results

Takuji Arai (Keil
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Main results

Assumption

Denote L; := log(S;/So) for t € [0, T], that is,

t 1 t
L = j(; (/,l - Eo‘i) ds + ﬁ asdWs + pd;.
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Main results

Assumption

Denote L; := log(S;/So) for t € [0, T], that is,

t 1 t
L,=fo (y-Ecri)ds+fo osdWs + pd;.

Assumption (BNS)

Q f01 xv(dx) + [~ exp{2(B(T) V |pl)x}¥(dx) < oo, where B(t) := =2 for

telo,T].
Q —%—= > -1, where G, := [;"(e** — 1)?v(dXx).

—1T 52
eTo+C,y
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Main results

Assumption

Denote L; := log(S;/So) for t € [0, T], that is,

t 1 t
L,=fo (,,-Ecri)ds+fo osdWs + pd;.

Assumption (BNS)
Q f01 xv(dx) + [~ exp{2(B(T) V |pl)x}¥(dx) < oo, where B(t) := =2 for
telo,T].
Q —%—= > -1, where G, := [;"(e** — 1)?v(dXx).

—1T 52
eTo+C,y

@ ltem 1 ensures [~ x?v(dx) < .
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Main results

Assumption

Denote L; := log(S;/So) for t € [0, T], that is,

t 1 t
L,=fo (,,-Ecri)ds+fo osdWs + pd;.

Assumption (BNS)
Q f01 xv(dx) + [~ exp{2(B(T) V |pl)x}¥(dx) < oo, where B(t) := =2 for
telo,T].
Q —%—= > -1, where G, := [;"(e** — 1)?v(dXx).

—1T 52
eTo+C,y

@ ltem 1 ensures [~ x?v(dx) < .
Q By le”™ — 1| < —px, we have [[7(e** — 1)?v(dx) < [ p?x?v(dX) < oco.
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Main results

Assumption

Denote L; := log(S;/So) for t € [0, T], that is,

t 1 t
L,=fo (,,-Ecri)ds+fo osdWs + pd;.

Assumption (BNS)
Q f01 xv(dx) + [~ exp{2(B(T) V |pl)x}¥(dx) < oo, where B(t) := =2 for
telo,T].
Q —%—= > -1, where G, := [;"(e** — 1)?v(dXx).

—1T 52
eTo+C,y

@ ltem 1 ensures [~ x?v(dx) < .
Q By le”™ — 1| < —px, we have [[7(e** — 1)?v(dx) < [ p?x?v(dX) < oco.

Q ltem 2 ensures =%~ > —1forany t € [0, T].
o +C,
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Main results

Representative examples of o2

IG-OU
The first is the case where the Lévy measure v of the subordinator H is given as

H(dx) = x"2(1 4 b2x)e 171 o) (x)dx

2

wherea > 0and b > 0.

In this case, the invariant distribution of the squared volatility process o2 follows
an inverse-Gaussian distribution with parameters a > 0 and b > 0.

o is called an IG-OU process.
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Main results

Representative examples of o2

IG-OU
The first is the case where the Lévy measure v" of the subordinator H is given as

H(dx) = x"2(1 4 b2x)e 171 o) (x)dx

2

wherea > 0and b > 0.

In this case, the invariant distribution of the squared volatility process o2 follows
an inverse-Gaussian distribution with parameters a > 0 and b > 0.

o is called an IG-OU process.

If & > 2(8(T) V Ipl), then item 1 of Assumption (BNS) is satisfied.
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Main results

Representative examples of o2 (cont’d)

Gamma-OU

The second example is what we call Gamma-OU case, that is, the case where the
invariant distribution of o is given by a Gamma distribution with parameter a > 0
and b > 0.

In this case, v/ is described as

v(dx) = abe™1 g ) (x)dx.

wherea >0and b > 0.
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Main results

Representative examples of o2 (cont’d)

Gamma-OU

The second example is what we call Gamma-OU case, that is, the case where the
invariant distribution of o is given by a Gamma distribution with parameter a > 0
and b > 0.

In this case, v/ is described as

v(dx) = abe™1 g ) (x)dx.
wherea >0and b > 0.

If b >2(B(T) V |pl), then item 1 of Assumption (BNS) is satisfied.
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Minimal martingale measure
Now, we consider the following SDE:
dz; = -Z; NdMy, Z5 =1,

where Ag := 2= —%—and C, := [ (e”* — 1)?v(dx).
5. z+c p = Jo
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Main results

Minimal martingale measure

Now, we consider the following SDE:

dz; = -Z;_ NedMy, 25 =1,

where As = z-—%— vy and C, := [”(e** — 1)?v(dx). Denoting
a(e’* -1
Us := NsSs_0s = ——2 and Osy := NsSs_(e” —1) = %
o2+ C, o2+ C,

for s € [0, T] and x € (0, ), we have A;dM; = urdW; + [~ 6;.N(dt, dz); and
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Main results

Minimal martingale measure

Now, we consider the following SDE:

dz; = -Z;_ NedMy, 25 =1,

where As = z-—%— vy and C, := [”(e** — 1)?v(dx). Denoting
a(e’* -1
Us := NsSs_0s = ——2 and Osy := NsSs_(e” —1) = %
o2+ C, o2+ C,

for s € [0, T] and x € (0, ), we have A;dM; = urdW; + [~ 6;.N(dt, dz); and

t 1 t t 0o _
Z; = exp{ - f usdWs — > f uids + f f log(1 — 6sx)N(ds, dx)
0 0 o Jo

n fo t fo " (log(1 - 6sx) + as,x)V(dX)dS}-
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Main results

Minimal martingale measure

Now, we consider the following SDE:

dz; = -Z;_ NedMy, 25 =1,

where As = z-—%— vy and C, := [”(e** — 1)?v(dx). Denoting
a(e’* -1
Us := NsSs_0s = ——2 and Osy := NsSs_(e” —1) = %
o2+ C, o2+ C,

for s € [0, T] and x € (0, ), we have A;dM; = urdW; + [~ 6;.N(dt, dz); and

t 1 t t 0o _
Z; = exp{ - f usdWs — > f uids + f f log(1 — 6sx)N(ds, dx)
0 0 o Jo

+ j: j:o(log(1 —0sx) + 9s,x)V(dX)d5}-

Proposition

The process Z is a martingale with Zr € L2(P).
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LRM for put options

Theorem
For K > 0, LRM £(K=51)" of put option (K — St)* is represented as

(K-Sr)* 1 2
£ = —{o- Ep: [-1(s;<k) STIF-]
t Si- (0'? +G) '

+ f Ep [(K - sT)+(H;‘z - 1) + zH; D.(K - Sr) T 1F-]
o 9 9

x (e - 1)v(dz)},

where H; := exp{zD;log Zr — log(1 — 6;)} for (t,2) € [0, T] x (0, o).
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Main results

Reminder

Assumption (A)
Q@ u e ]L.:J’Z; and 2usD; yus + z(Dy,us)? € L2(g x P) for a.e. s € [0, T].
@ 0+log(1-6) eL}? andlog(1 - 6) € L}
© For g-a.e. (s,x) € [0, T] x Rg, Jesx € (0,1) suchthat Osx < 1 — &5x.
2Dt 7 log Z1 _
Qo Zr {Dg,o |Og ZT1{0)(Z) + et‘—zgr“‘l]Ro(Z)} € Lz(q X ]P)
Q F e D'?;and ZyDy,F + FD;,Zr + 2D ,F - Dy, Zr € L2(q x PP).
Q FH;_, H: D F € L'(P*) for g-a.e. (,2) € [0, T] x RR.
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LRM for call options

Corollary
LRM for call option (St — K)* is given as £(5K)" = 1 4 £(K=Sn)*,
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LRM for call options

Corollary

LRM for call option (St — K)* is given as £(5K)" = 1 4 £(K=Sn)*,

Proof
(ST—K)+ = ST—K+(K—ST)+
T + T (k-sp)* (K=8r)*
=S+ [ dsi-K+E(K-S)TT+ [ 6 a5+ 1
T
— E]P*[ST -K + (K _ ST)+] +f (1 +§§K—Sr)+) ds; + L;_K_ST)+
0
-
= Ep-[(ST - K)+] _|_f (1 +§£K_ST)+)dSr + Ls-K—Sr)Jr.
0

This is an FS-decomposition of (Sy — K)* since 1 € Os.
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Proof of Theorem

In order to see condition 4, we need to show Zy € D2,

Condition 4: Zr {Dyg log Zr1i0)(2) + 7" 15, (2)} € L?(q x P).

Reminder:
dz; = -Z;_ {u,dw, + f 6 .N(dt, dz)}, Zy =1,
0
where us = ;’:Z Osx = “(f/+;1) and C, := [~ (e” - 1)?v(dx).
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Main results

Proof of Theorem (cont’d)

For t € [0, T], we define Z'(O) :=1and

t t oo
z'(n+1) = 1 _f Zif)udes _f f zg)gs’xN(ds, dx)
0 0 0

forn > 0.
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Main results

Proof of Theorem (cont’d)
For t € [0, T], we define Z'(O) :=1and

t t oo
z'(n+1) = 1 _f Zif)udes _f f zg)gs’xN(ds, dx)
0 0 0

forn > 0.
Besides, we denote, for n > 0,

$n(t) :=E [ f (0r:2"" aar, dz)] -
[0,£]x[0,c0)

Note that ¢o(t) = 0.
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Main results

Proof of Theorem (cont’d)

For t € [0, T], we define Z'(O) :=1and

t t oo
z'(n+1) = 1 _f Zif)udes _f f zg)gs’xN(ds, dx)
0 0 0

forn > 0.
Besides, we denote, for n > 0,

$n(t) :=E [ f (0r:2"" aar, dz)] -
[0,£]x[0,c0)

Note that ¢o(t) = 0.
Lemma 1

We have 2" e D' for every n > 0 and any t € [0, T]. Moreover, there exist
constants ki > 0 and ko > 0 such that

t
bnin(t) < ki + Ky fo #n(s)ds

foreveryn > 0and any t € [0, T].
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Numerical riments

@ Numerical experiments

Takuji Arai (Keil
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Setting

We treat Gamma-OU model: v(dx) = abde 1o . (X)dx, where a > 0, b > 0.

4Schoutens, W.: Lévy Processes in Finance: Pricing Financial Derivatives. John Wiley & Sons,
Hoboken (2003)
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Setting

We treat Gamma-OU model: v(dx) = abde 1o . (X)dx, where a > 0, b > 0.

We use a parameter set estimated in Schoutens’ text book®.

4Schoutens, W.: Lévy Processes in Finance: Pricing Financial Derivatives. John Wiley & Sons,
Hoboken (2003)
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Setting

We treat Gamma-OU model: v(dx) = abde 1o . (X)dx, where a > 0, b > 0.
We use a parameter set estimated in Schoutens’ text book®.
Fix T=1,r = 0.019 and q = 0.012.

The asset price and the squared volatility at time t are fixed to §; = 1124.47 and
o-f = 0.0145, respectively.

4Schoutens, W.: Lévy Processes in Finance: Pricing Financial Derivatives. John Wiley & Sons,
Hoboken (2003)
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Setting

We treat Gamma-OU model: v(dx) = abde 1o . (X)dx, where a > 0, b > 0.
We use a parameter set estimated in Schoutens’ text book®.

Fix T=1,r =0.019 and g = 0.012.

The asset price and the squared volatility at time t are fixed to §; = 1124.47 and
o-f = 0.0145, respectively.

p = —1.2606, 1 = 0.5783, a = 1.4338, b = 11.6641.

4Schoutens, W.: Lévy Processes in Finance: Pricing Financial Derivatives. John Wiley & Sons,
Hoboken (2003)
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Setting

We treat Gamma-OU model: v(dx) = abde 1o . (X)dx, where a > 0, b > 0.
We use a parameter set estimated in Schoutens’ text book®.

Fix T=1,r =0.019 and g = 0.012.

The asset price and the squared volatility at time t are fixed to §; = 1124.47 and
o-f = 0.0145, respectively.

p = —1.2606, 1 = 0.5783, a = 1.4338, b = 11.6641.

Suppose that the discounted asset price process e~("~91S; is a martingale.
Hence, p is given as

alp

p:r—q+f (1-e)v(dx)=r-q- .
0 b-p

4Schoutens, W.: Lévy Processes in Finance: Pricing Financial Derivatives. John Wiley & Sons,
Hoboken (2003)
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Numerical experiments

Setting (cont’d)

A., Imai and Suzuki ° developed a numerical scheme of LRM for exponential Lévy

models using the Carr-Madan approach ©, which is a numerical method for option
prices based on the fast Fourier transform (FFT).

We consider a call option with strike price K. Since H;"z =1and Zr = 1, we have

sy e-raT-n
gi T-K) —

= = |0®B[Sr1s,2x)|F-]
St_(O'? + Cp)( t ~

+ f E [(sreszLT - K)+ - (S7- K)+|T,_] (e - 1)v(dz))
0
0'?’1 + Iz
" Si(02+C,)

5Arai, T., Imai, Y., Suzuki, R.: Numerical analysis on local risk-minimization for exponential Levy
models, International Journal of Theoretical and Applied Finance vol.19, 1650008 (2016)

8Carr, P, D. Madan: Option valuation using the fast Fourier transform. Journal of Computational
Finance, 2, 61-73 (1999)
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Numerical experiments

Reminder: main result

(K-Sr)* 1 2
£ — —{o- Ep-[-1(s;<k) STIF -]
t S (O'f + Cp) ' ’

+ fm Ep[(K = Sr)H(H:, = 1) + 2H: Dyo(K — Sr)¥IF:]
0 8 a
x (e”% - 1)v(dz)},

where Hy := exp{zDylog Zr — log(1 — 6,)} for (t,2) € [0, T] x (0, o).

§SrH)" = 1 4 glk-S0*,
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Numerical experiments

Characteristic function of Lt

#(9) := E[exp(idLr)ISy, o]
(T-19 ,

exp (lﬂ(l—r +[1(T - t)) - (192 + iﬂ)BTO't

a b-#
blo hHLA(T -t
+b—f2[ g(b—iﬂp)“‘ )”

for & € C, where

fi := idp - %(02 + id)AB(T - t) and f := idp — %(02 + i).

Recall that 8(t) = == for t € [0, T].

19 August 2016 32/42

Takuiji Arai (Keio University) Local risk-minimization for BNS models



Numerical experiments

—(r-q)(T-t) oo
L= e_("q)(T_t)]E[Sﬂ{stK}I‘Fr-] = e—f K-'§+1_¢(—§)dv, 2)
T 0 il -1

where { := v — jé, and ¢ is a real number satisfying
1 P 1 P
sup{——- ———— — VD5t <6< inf = — ———— 4+ D}
tss<pT{2 B(T -s) s} '5“7{2 B(T - s) s}
Here,

2 9 ~ 00
D, := (—% + B(;’_s)) + B(";'is) and J := sup {z?| J (™ = 1)v(dx) < oo}.
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Numerical experiments

—(r-q)(T-t) oo
L= e_("q)(T_t)]E[Sﬂ{stK}I‘Fr-] = e—f K-'§+1_¢(—§)dv, 2)
T 0 il -1

where { := v — jé, and ¢ is a real number satisfying
Y 1 P
sup{——- ———— — VD5t <6< inf = — ———— 4+ D}
tss<pT{2 B(T -s) s} ’5“7{2 B(T - s) s}
Here,
2 9 ~ 00
D, := (—% + B(;’_s)) + B(";'is) and J := sup {z?| J (™ = 1)v(dx) < oo}.

Note that the RHS of (2) is independent of the choice of 6. _
As a result, since the integrand of (2) is given by the product of K=%*1 and a
function of £, we can compute k through the FFT.
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Numerical experiments

Reminder: -
b = e (-9(T-1 f E [(srezf’f»er ~K)" = (81 - K)*IF+-| (e - 1)¥(d2).
0

0o K=H4+1¢(7)
Note that E[(St - K)*1Sy, 2] = 1 17 Zic?
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Numerical experiments

Reminder: -
b = e (-9(T-1 f E [(srezf’f»er ~K)" = (81 - K)*IF+-| (e - 1)¥(d2).
0

0o KH+1g(¢)
Note that E[(ST - K)+|St, 0'?] = :-r o de

S
2T exp(zD;.Lt)
St

T T T
= exp(,u(T— t) - %f o’ds + f osdWs +pf dJs
t t t
z T
_EB(T -1+ f (\’0@ + ze~M(s-1) — 0'5) dw; + pz]
t

1 (T T T
= exp (y(T— t) - 5]; (ri,zds + j; s dWs +p]; dJs +pz}

where o2 , := 0% 4 ze~"(>™1) for (s, 2) € [t, T] x (0, o).
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I, (cont’d)

Denoting

(@) (1 ° ’
Ls :=j; (ﬂ——ﬂ'i,z)du'Fj; U'u,deu+Pj; dJd,

for (s, z) € [t, T] % (0, ), we have

Srexp(zDi.Lt) = S; exp(L(Tz) + pz).
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I, (cont’d)

Denoting

(z) S 1 5 S S
Ls :=j;(ﬂ——0’u,z)du+jt‘ U'u,deu+Pj; dJd,

for (s, z) € [t, T] % (0, ), we have

Srexp(zDi.Lt) = S; exp(L(Tz) + pz).

(02 ,)1<s<7 is a solution to the same SDE as o2, that s, dof = —/lo-fdt + dJ;
with initial condition o-fz = o-f + z
We denote

¢ (@) :=E [exp(iﬂL(z))lst, 0-2] S =Ek [exp(iﬂLT)lst,(rf + z]

=¢(0)exp( —(9? + i) ———— ( - 1) )
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I, (cont’d)

elr-a)(T-0,

fow E [(Srezo,,er — K)+ - (Sr- K)+|7:t—] (e”% = 1)v(dz)

_ f " [(s, exp (LD + pz) - K)" - (57 - K)+|s,,a§] (&% - 1)v(dz)
3 e W,1wm 1 [~ K%¢(2) .
- L[ L m-nn;"”‘zfo W"”)“’” -1

[ 02 o

T KT() 2 i
"f;@qmﬁ@-MW—mmm,
where 7 := ip{ — ({2 + ,{)B(T 1)
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I, (cont’d)

Note that R(n) <Owhen0 <6 <1- %.
Therefore, taking such an ¢, we have

it 1 1 1 1
e — 1)(e* — 1)v(dz) = abd - - +—),
[ e - 1@ - (e (b_n_p -t

from which we can compute k using the FFT.
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I, (cont’d)

2
Note that R(n) <Owhen0 <6 <1- TpT)'

Therefore, taking such an ¢, we have

it 1 1 1 1
e — 1)(e* — 1)v(dz) = abd - - +—),
[ e - 1@ - (e (b_n_p -t

from which we can compute k using the FFT.

Reminder: sup,Ss<T{% - ﬁ - \/Ds} <6< inf,ssd-{% - ﬁ + \jDs}.
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Delta-hedging strategy

Next, we discuss delta-hedging strategy AﬁsT_K)Jr for a call option with strike price
K, which is given as the partial derivative of the option price with respect to S;,
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Numerical experiments

Delta-hedging strategy

Next, we discuss delta-hedging strategy A for a call option with strike price

K, which is given as the partial derivative of the option price with respect to S;,
that is,

(Sr-K)* . _ ~(r-q)(T-1) O + 2
At T = e (r-a9)( )a_st]E[(ST_ K) IS(,O't].
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Delta-hedging strategy

Next, we discuss delta-hedging strategy AﬁsT_K)Jr for a call option with strike price
K, which is given as the partial derivative of the option price with respect to S;,
that is, 5
A(ST—K)+ — e_(r—q)(T—t)_]E[(sT _ K)+|St, 0.?]
t JS;
Noting that

9

Cevtie 21V i 8
El(Sr =K |s,,a,]_”fo e

we have

—(r=g)(T-1) oo g-ig+1 9
A(ST_K)+ _ e f K #($) dv
t n o (i¢—-1)if 0

-1
_ e [ MO8,k
P 0 ig -1 St
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Numerical experiments

Numerical experiments

)

We show numerical results on LRM strategies §fST_K " and delta-hedging

strategies AgsT_K)Jr.

Takuiji Arai (Keio University) Local risk-minimization for BNS models 19 August 2016 39/42



Numerical experiments

Numerical experiments

)

We show numerical results on LRM strategies §fST_K " and delta-hedging

strategies AgsT_K)Jr.

Reminder:
we take T =1, r = 0.019, g = 0.012, S; = 1124.47, o-f = 0.0145,
p = —1.2606, 1 = 0.5783, a = 1.4338, b = 11.6641.

Moreover, we take 6 = 1.75.
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Numerical experiments
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Figure: Values of gﬁsf"‘” and Aﬁs""“ when K is fixed to 1124.47(ATM) vs. times

t =0,0.02,...,0.98. In this case, the option is in the money at time t. Red crosses and
- —-K)t

blue circles represent the values of fﬁsr K* and Aﬁsr “) , respectively.
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Numerical experiments
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Figure: Values of gﬁsf"‘” and Aﬁs""“ at t = 0.5 vs. strike price K from 200 to 2000 at
steps of 25. Red crosses and blue circles represent the values of fisT'K)Jr and Aﬁsr’
respectively.
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Numerical experiments

Thank you for your attention!
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