Local risk-minimization for Barndorff-Nielsen and Shephard models

Takuji Arai

Keio University

19 August 2016

Boston University/Keio University Workshop 2016

This talk is based on a joint work with Yuto Imai (Waseda) and Ryoichi Suzuki (Keio)

Outline

- Local risk-minimization
- Barndorff-Nielsen and Shephard models
- Main results
- Numerical experiments

- Local risk-minimization
- Barndorff-Nielsen and Shephard models
- Main results
- Mumerical experiments

We consider a financial market with maturity T, which is composed of one risky asset whose price is represented by a semimartingale S, and one riskless asset with O interest rate.

We consider a financial market with maturity T, which is composed of one risky asset whose price is represented by a semimartingale S, and one riskless asset with O interest rate.

Consider a contingent claim $F \in L^2(\mathbb{P})$.

For example, if F is a call option with strike price K, then $F = (S_T - K)^+$.

We consider a financial market with maturity T, which is composed of one risky asset whose price is represented by a semimartingale S, and one riskless asset with O interest rate.

Consider a contingent claim $F \in L^2(\mathbb{P})$. For example, if F is a call option with strike price K, then $F = (S_T - K)^+$.

Let ξ_t (resp. η_t) be the amount of units of the risky asset (resp. the risk-free asset) an investor holds at time $t \in [0, T]$, respectively.

We consider a financial market with maturity T, which is composed of one risky asset whose price is represented by a semimartingale S, and one riskless asset with O interest rate.

Consider a contingent claim $F \in L^2(\mathbb{P})$.

For example, if F is a call option with strike price K, then $F = (S_T - K)^+$.

Let ξ_t (resp. η_t) be the amount of units of the risky asset (resp. the risk-free asset) an investor holds at time $t \in [0, T]$, respectively.

 $\varphi := (\xi, \eta)$ is called a strategy. The wealth is given as $V_t(\varphi) = \eta_t + \xi_t S_t$.

We consider a financial market with maturity T, which is composed of one risky asset whose price is represented by a semimartingale S, and one riskless asset with O interest rate.

Consider a contingent claim $F \in L^2(\mathbb{P})$.

For example, if F is a call option with strike price K, then $F = (S_T - K)^+$.

Let ξ_t (resp. η_t) be the amount of units of the risky asset (resp. the risk-free asset) an investor holds at time $t \in [0, T]$, respectively.

 $\varphi := (\xi, \eta)$ is called a strategy. The wealth is given as $V_t(\varphi) = \eta_t + \xi_t S_t$.

 φ is self-financing if $V_t(\varphi) = V_0(\varphi) + \int_0^t \xi_s dS_s$.

We consider a financial market with maturity T, which is composed of one risky asset whose price is represented by a semimartingale S, and one riskless asset with O interest rate.

Consider a contingent claim $F \in L^2(\mathbb{P})$.

For example, if F is a call option with strike price K, then $F = (S_T - K)^+$.

Let ξ_t (resp. η_t) be the amount of units of the risky asset (resp. the risk-free asset) an investor holds at time $t \in [0, T]$, respectively.

 $\varphi := (\xi, \eta)$ is called a strategy. The wealth is given as $V_t(\varphi) = \eta_t + \xi_t S_t$.

 φ is self-financing if $V_t(\varphi) = V_0(\varphi) + \int_0^t \xi_s dS_s$.

Discrete time model

A self-financing strategy satisfies the following at each trading time n:

$$\eta_n + \xi_n S_n = \eta_{n+1} + \xi_{n+1} S_n (= V_n(\varphi))$$

In particular, we have $V_n(\varphi) = V_0(\varphi) + \sum_{k=1}^n \xi_k \Delta S_k$.

Introduction to pricing theory (cont'd)

A market is called complete, if, for any F, we can find a $c \in \mathbb{R}$ and a predictable process ξ satisfying

$$F = c + \int_0^T \xi_t dS_t.$$

The pair (c, ξ) is called the perfect hedge of F.

Note that (c, ξ) has a one-to-one corresponding to φ for self-financing strategies.

Introduction to pricing theory (cont'd)

A market is called complete, if, for any F, we can find a $c \in \mathbb{R}$ and a predictable process ξ satisfying

$$F = c + \int_0^T \xi_t dS_t.$$

The pair (c, ξ) is called the perfect hedge of F.

Note that (c, ξ) has a one-to-one corresponding to φ for self-financing strategies.

In this talk, we focus on hedging strategies for incomplete markets. Instead of the perfect hedge, we consider a replicating strategy which is not self-financing.

5/42

Risk minimization

Consider a strategy $\varphi := (\xi, \eta)$, which is not necessarily self-financing. Define the cumulative cost process $C_t(\varphi)$ as

$$C_t(\varphi) := V_t(\varphi) - \int_0^t \xi_s dS_s.$$

Risk minimization

Consider a strategy $\varphi := (\xi, \eta)$, which is not necessarily self-financing. Define the cumulative cost process $C_t(\varphi)$ as

$$C_t(\varphi) := V_t(\varphi) - \int_0^t \xi_s dS_s.$$

Define the risk process $R_t(\varphi)$ as

$$R_t(\varphi) := E\left[\left(C_T(\varphi) - C_t(\varphi)\right)^2\middle|\mathcal{F}_t\right].$$

Risk minimization

Consider a strategy $\varphi := (\xi, \eta)$, which is not necessarily self-financing. Define the cumulative cost process $C_t(\varphi)$ as

$$C_t(\varphi) := V_t(\varphi) - \int_0^t \xi_s dS_s.$$

Define the risk process $R_t(\varphi)$ as

$$R_t(\varphi) := E\left[\left(C_T(\varphi) - C_t(\varphi)\right)^2\middle|\mathcal{F}_t\right].$$

 φ is said risk-minimizing if φ satisfies $F = V_T(\varphi)$ and

$$R_t(\varphi) \leq R_t(\widetilde{\varphi}) \mathbb{P}$$
-a.s. for every $t \in [0, T]$

for any strategy $\widetilde{\varphi}$ satisfying $F = V_{\tau}(\widetilde{\varphi})$.

Local risk-minimization

Assumption 1

- S is a special semimartingale with the canonical decomposition $S = S_0 + M + A$.
- ② We can find a predictable process Λ such that $dA = \Lambda d(M)$.
- **1** The mean-variance trade-off process $K_t := \int_0^t \Lambda_s^2 d\langle M \rangle_s$ is finite, that is, K_T is finite \mathbb{P} -a.s.

Definition

O_S denotes the space of all \mathbb{R} -valued predictable processes ξ satisfying $\mathbb{E}\left[\int_0^T \xi_t^2 d\langle M \rangle_t + \left(\int_0^T |\xi_t dA_t|\right)^2\right] < \infty$.

19 August 2016

Definition

- Θ_s denotes the space of all \mathbb{R} -valued predictable processes ξ satisfying $\mathbb{E}\left[\int_0^T \xi_t^2 d\langle M \rangle_t + \left(\int_0^T |\xi_t dA_t|\right)^2\right] < \infty$.
- ② An L^2 -strategy is given by a pair $\varphi = (\xi, \eta)$, where $\xi \in \Theta_S$ and η is an adapted process such that $V(\varphi) := \xi S + \eta$ is a right continuous process with $\mathbb{E}[V_t^2(\varphi)] < \infty$ for every $t \in [0, T]$. Note that ξ_t (resp. η_t) represents the amount of units of the risky asset (resp. the riskfree asset) an investor holds at time t.

Definition

- Θ_S denotes the space of all \mathbb{R} -valued predictable processes ξ satisfying $\mathbb{E}\left[\int_0^T \xi_t^2 d\langle M \rangle_t + \left(\int_0^T |\xi_t dA_t|\right)^2\right] < \infty$.
- ② An L^2 -strategy is given by a pair $\varphi = (\xi, \eta)$, where $\xi \in \Theta_S$ and η is an adapted process such that $V(\varphi) := \xi S + \eta$ is a right continuous process with $\mathbb{E}[V_t^2(\varphi)] < \infty$ for every $t \in [0, T]$. Note that ξ_t (resp. η_t) represents the amount of units of the risky asset (resp. the riskfree asset) an investor holds at time t.
- \bullet For $F \in L^2(\mathbb{P})$, the process $C^F(\varphi)$ defined by

$$C_t^F(\varphi) := F1_{\{t=T\}} + V_t(\varphi) - \int_0^t \xi_s dS_s$$

is called the cost process of $\varphi = (\xi, \eta)$ for F.

Definition

- **●** S denotes the space of all \mathbb{R} -valued predictable processes ξ satisfying $\mathbb{E}\left[\int_0^T \xi_t^2 d\langle M \rangle_t + \left(\int_0^T |\xi_t dA_t|\right)^2\right] < \infty$.
- ② An L^2 -strategy is given by a pair $\varphi = (\xi, \eta)$, where $\xi \in \Theta_S$ and η is an adapted process such that $V(\varphi) := \xi S + \eta$ is a right continuous process with $\mathbb{E}[V_t^2(\varphi)] < \infty$ for every $t \in [0, T]$. Note that ξ_t (resp. η_t) represents the amount of units of the risky asset (resp. the riskfree asset) an investor holds at time t.
- **③** For $F ∈ L^2(\mathbb{P})$, the process $C^F(\varphi)$ defined by

$$C_t^F(\varphi) := F1_{\{t=T\}} + V_t(\varphi) - \int_0^t \xi_s dS_s$$

is called the cost process of $\varphi = (\xi, \eta)$ for F.

4 An L^2 -strategy φ is said locally risk-minimizing strategy for F if $V_T(\varphi) = 0$ and $C^F(\varphi)$ is a martingale orthogonal to M, that is, $C^F(\varphi)M$ is a martingale.

Föllmer-Schweizer decomposition

An $F \in L^2(\mathbb{P})$ admits an FS decomposition if it can be described by

$$F = F_0 + \int_0^T \xi_t^F dS_t + L_T^F, \tag{1}$$

where $F_0 \in \mathbb{R}$, $\xi^F \in \Theta_S$ and L^F is a square-integrable martingale orthogonal to M with $L_0^F = 0$.

¹Schweizer, M.: Local Risk-Minimization for Multidimensional Assets and Payment Streams. Banach Center Publ. 83, 213–229 (2008)

Föllmer-Schweizer decomposition

An $F \in L^2(\mathbb{P})$ admits an FS decomposition if it can be described by

$$F = F_0 + \int_0^T \xi_t^F dS_t + L_T^F, \tag{1}$$

where $F_0 \in \mathbb{R}$, $\xi^F \in \Theta_S$ and L^F is a square-integrable martingale orthogonal to M with $L_0^F = 0$.

Proposition 5.2 of Schweizer¹

Under Assumption 1, LRM $\varphi = (\xi, \eta)$ for F exists if and only if F admits an FS decomposition, and its relationship is given by

$$\xi_t = \xi_t^F, \quad \eta_t = F_0 + \int_0^t \xi_s^F dS_s + L_t^F - F1_{\{t=T\}} - \xi_t^F S_t.$$

¹Schweizer, M.: Local Risk-Minimization for Multidimensional Assets and Payment Streams. Banach Center Publ. 83, 213–229 (2008)

As a result, it suffices to obtain a representation of ξ^F in (1) in order to obtain LRM.

As a result, it suffices to obtain a representation of ξ^F in (1) in order to obtain LRM.

A martingale measure $\mathbb{P}^* \sim \mathbb{P}$ is called minimal if any square-integrable \mathbb{P} -martingale orthogonal to M remains a martingale under \mathbb{P}^* .

As a result, it suffices to obtain a representation of ξ^F in (1) in order to obtain LRM.

A martingale measure $\mathbb{P}^* \sim \mathbb{P}$ is called minimal if any square-integrable \mathbb{P} -martingale orthogonal to M remains a martingale under \mathbb{P}^* .

We define $Z := \mathcal{E}(-\int \Lambda dM)$, where $\mathcal{E}(Y)$ represents the stochastic exponential of Y.

Note that **Z** is a solution to the SDE $dZ_t = -\Lambda_t Z_{t-} dM_t$.

As a result, it suffices to obtain a representation of ξ^F in (1) in order to obtain LRM.

A martingale measure $\mathbb{P}^* \sim \mathbb{P}$ is called minimal if any square-integrable \mathbb{P} -martingale orthogonal to M remains a martingale under \mathbb{P}^* .

We define $Z := \mathcal{E}(-\int \Lambda dM)$, where $\mathcal{E}(Y)$ represents the stochastic exponential of Y.

Note that Z is a solution to the SDE $dZ_t = -\Lambda_t Z_{t-} dM_t$.

Under Assumption 1, if Z is a positive square integrable martingale, then an MMM \mathbb{P}^* exists with $d\mathbb{P}^* = Z_T d\mathbb{P}$.

10 / 42

Precedence research²

We consider a Lévy market as follows:

²Arai, T., Suzuki, R.: Local risk minimization for Lévy markets. International Journal of Financial Engineering, 2, 1550015 (2015)

Precedence research²

We consider a Lévy market as follows:

Assume that **S** is given by a solution to the following SDE:

$$dS_t = S_{t-} \left[\alpha_t dt + \beta_t dW_t + \int_{\mathbb{R}_0} \gamma_{t,z} \widetilde{N}(dt, dz) \right], \quad S_0 > 0,$$

where α , β and γ are predictable processes.

Here, W is a 1-dimensional Brownian motion, N is a Poisson random measure, ν is its Lévy measure and $\widetilde{N}(dt, dx) = N(dt, dx) - \nu(dx)dt$.

²Arai, T., Suzuki, R.: Local risk minimization for Lévy markets. International Journal of Financial Engineering, 2, 1550015 (2015)

Precedence research (cont'd)

Under some assumptions, A. and Suzuki gave the following expression of locally risk minimizing(LRM) strategy \mathcal{E}^F for claim F:

$$\xi_t^F := \frac{\Lambda_t}{\alpha_t} \{ h_t^0 \beta_t + \int_{\mathbb{R}_0} h_{t,z}^1 \gamma_{t,z} \nu(dz) \},$$

where
$$\Lambda_t := \frac{\alpha_t}{S_{t-}(\beta_{\star}^2 + \int_{\mathbb{D}_z} \gamma_{\star-}^2 \nu(dz))}$$
, $u_t := \Lambda_t S_{t-}\beta_t$, $\theta_{t,z} := \Lambda_t S_{t-}\gamma_{t,z}$.

Moreover.

$$\begin{split} & h_t^0 := \mathbb{E}_{\mathbb{P}^*} \bigg[D_{t,0} F - F \bigg[\int_0^T D_{t,0} u_s dW_s^{\mathbb{P}^*} + \int_0^T \int_{\mathbb{R}_0} \frac{D_{t,0} \theta_{s,x}}{1 - \theta_{s,x}} \widetilde{N}^{\mathbb{P}^*} (ds, dx) \bigg] \Big| \mathcal{F}_{t-} \bigg], \\ & h_{t,z}^1 := \mathbb{E}_{\mathbb{P}^*} [F(H_{t,z}^* - 1) + z H_{t,z}^* D_{t,z} F | \mathcal{F}_{t-}], \end{split}$$

where $H_{t,z}^* := \exp\{zD_{t,z} \log Z_T - \log(1 - \theta_{t,z})\}.$

Precedence research (cont'd)

However, we need to assume the following:

Assumption (A)

- **1** $u, u^2 \in \mathbb{L}_0^{1,2}$; and $2u_s D_{t,z} u_s + z(D_{t,z} u_s)^2 \in L^2(q \times \mathbb{P})$ for a.e. $s \in [0, T]$.
- $\theta + \log(1 \theta) \in \widetilde{\mathbb{L}}_1^{1,2}$, and $\log(1 \theta) \in \mathbb{L}_1^{1,2}$
- lacktriangledown For q-a.e. $(s,x) \in [0,T] \times \mathbb{R}_0$, $\exists \varepsilon_{s,x} \in (0,1)$ such that $\theta_{s,x} < 1 \varepsilon_{s,x}$.

- $FH_{t,z}^*$, $H_{t,z}^*D_{t,z}F \in L^1(\mathbb{P}^*)$ for q-a.e. $(t,z) \in [0,T] \times \mathbb{R}$, where $H_{t,z}^* := \exp\{zD_{t,z}\log Z_T \log(1-\theta_{t,z})\}$.

Precedence Research (cont'd)

Deterministic coeffcients case

In the case where α , β , and γ are given by deterministic functions satisfying the following three conditions, if condition 5 in Assumption (A) and $Z_T F \in L^2(\mathbb{P})$ are satisfied, then ξ^F is given as

$$\xi_t^F = \frac{\beta_t \mathbb{E}_{\mathbb{P}^*}[D_{t,0}F|\mathcal{F}_{t-}] + \int_{\mathbb{R}_0} \mathbb{E}_{\mathbb{P}^*}[zD_{t,z}F|\mathcal{F}_{t-}]\gamma_{t,z}\nu(dz)}{S_{t-}\Big(\beta_t^2 + \int_{\mathbb{R}_0} \gamma_{t,z}^2\nu(dz)\Big)}.$$

Conditions on α , β , and γ

- **1** $\gamma_{t,z} > -1$, dtv(dz)-a.e.
- **3** $\sup_{t \in [0,T]} (|\alpha_t| + \beta_t^2 + \int_{\mathbb{R}_0} \gamma_{t,z}^2 \nu(dz)) < C \text{ for some } C > 0.$
- \odot We can find a positive number ε such that

$$eta_t^2 + \int_{\mathbb{R}_0} \gamma_{t,z}^2 \nu(dz) > \varepsilon \text{ and } \frac{\alpha_t \gamma_{t,z}}{\beta_t^2 + \int_{\mathbb{R}_0} \gamma_{t,z}^2 \nu(dz)} < 1 - \varepsilon.$$

- Local risk-minimization
- Barndorff-Nielsen and Shephard models
- Main results
- Mumerical experiments

BNS models

In this talk, we calculate locally risk-minimizing (LRM) strategies for Barndorff-Nielsen and Shephard (BNS) models ³:

$$S_t = S_0 \exp\left\{\int_0^t \left(\mu - rac{1}{2}\sigma_s^2
ight)ds + \int_0^t \sigma_s dW_s +
ho H_{\lambda t}
ight\}.$$

where $S_0 > 0$, $\rho \le 0$, $\mu \in \mathbb{R}$, $\lambda > 0$, H is a subordinator without drift, and

³Barndorff-Nielsen, O.E., Shephard, N.: Non-Gaussian Ornstein-Uhlenbeck based models and some of their uses in financial econometrics. J.R. Statistic. Soc. 63, 167–241 (2001)

BNS models

In this talk, we calculate locally risk-minimizing (LRM) strategies for Barndorff-Nielsen and Shephard (BNS) models ³:

$$\mathbf{S}_t = \mathbf{S}_0 \exp \left\{ \int_0^t \left(\mu - rac{1}{2} \sigma_s^2
ight) d\mathbf{s} + \int_0^t \sigma_s dW_s +
ho H_{\lambda t}
ight\}.$$

where $S_0 > 0$, $\rho \le 0$, $\mu \in \mathbb{R}$, $\lambda > 0$, H is a subordinator without drift, and

$$d\sigma_t^2 = -\lambda \sigma_t^2 dt + dH_{\lambda t}, \quad \sigma_0^2 > 0.$$

³Barndorff-Nielsen, O.E., Shephard, N.: Non-Gaussian Ornstein-Uhlenbeck based models and some of their uses in financial econometrics. J.R. Statistic. Soc. 63, 167–241 (2001)

BNS models

In this talk, we calculate locally risk-minimizing (LRM) strategies for Barndorff-Nielsen and Shephard (BNS) models ³:

$$\mathbf{S}_t = \mathbf{S}_0 \exp \left\{ \int_0^t \left(\mu - rac{1}{2} \sigma_s^2
ight) d\mathbf{s} + \int_0^t \sigma_s dW_s +
ho H_{\lambda t}
ight\}.$$

where $S_0 > 0$, $\rho \le 0$, $\mu \in \mathbb{R}$, $\lambda > 0$, H is a subordinator without drift, and

$$d\sigma_t^2 = -\lambda \sigma_t^2 dt + dH_{\lambda t}, \quad \sigma_0^2 > 0.$$

 $\rho H_{\lambda t}$ represents leverage effect.

³Barndorff-Nielsen, O.E., Shephard, N.: Non-Gaussian Ornstein-Uhlenbeck based models and some of their uses in financial econometrics. J.R. Statistic. Soc. 63, 167–241 (2001)

BNS models (cont'd)

S is a solution to the following SDE:

$$dS_t = S_{t-} \left\{ \alpha dt + \sigma_t dW_t + \int_0^\infty (e^{\rho x} - 1) \widetilde{N}(dt, dx) \right\},\,$$

where $\alpha = \mu + \int_0^\infty (e^{\rho x} - 1) \nu(dx)$. Here.

$$(J_t :=) H_{\lambda t} = \int_0^\infty x N([0,t], dx) \text{ and } \widetilde{N}(dt, dx) = N(dt, dx) - v(dx) dt,$$

where ν is the Lévy measure of J.

BNS models (cont'd)

S is a solution to the following SDE:

$$dS_t = S_{t-} \left\{ \alpha dt + \sigma_t dW_t + \int_0^\infty (e^{\rho x} - 1) \widetilde{N}(dt, dx) \right\},\,$$

where $\alpha = \mu + \int_0^\infty (e^{\rho x} - 1) \nu(dx)$. Here,

$$(J_t :=) H_{\lambda t} = \int_0^\infty x N([0,t], dx) \text{ and } \widetilde{N}(dt, dx) = N(dt, dx) - v(dx) dt,$$

where v is the Lévy measure of J.

Note that σ^2 is represented as

$$\sigma_t^2 = e^{-\lambda t} \sigma_0^2 + \int_0^t e^{-\lambda(t-s)} dJ_s.$$

- Local risk-minimization
- Barndorff-Nielsen and Shephard models
- Main results
- Mumerical experiments

Denote $L_t := \log(S_t/S_0)$ for $t \in [0, T]$, that is,

$$L_t = \int_0^t \left(\mu - \frac{1}{2}\sigma_s^2\right) ds + \int_0^t \sigma_s dW_s + \rho J_t.$$

Denote $L_t := \log(S_t/S_0)$ for $t \in [0, T]$, that is,

$$L_t = \int_0^t \left(\mu - \frac{1}{2}\sigma_s^2\right) ds + \int_0^t \sigma_s dW_s + \rho J_t.$$

- $\frac{\alpha}{e^{-\lambda T}\sigma_{\rho}^2 + C_{\rho}} > -1, \text{ where } C_{\rho} := \int_0^{\infty} (e^{\rho x} 1)^2 \nu(dx).$

Denote $L_t := \log(S_t/S_0)$ for $t \in [0, T]$, that is,

$$L_t = \int_0^t \left(\mu - \frac{1}{2}\sigma_s^2\right) ds + \int_0^t \sigma_s dW_s + \rho J_t.$$

- $\frac{\alpha}{e^{-\lambda T}\sigma_{\rho}^2 + C_{\rho}} > -1, \text{ where } C_{\rho} := \int_0^{\infty} (e^{\rho x} 1)^2 \nu(dx).$
- ① Item 1 ensures $\int_0^\infty x^2 v(dx) < \infty$.

Denote $L_t := \log(S_t/S_0)$ for $t \in [0, T]$, that is,

$$L_t = \int_0^t \left(\mu - \frac{1}{2}\sigma_s^2\right) ds + \int_0^t \sigma_s dW_s + \rho J_t.$$

- $\frac{\alpha}{e^{-\lambda T}\sigma_{\rho}^2 + C_{\rho}} > -1, \text{ where } C_{\rho} := \int_0^{\infty} (e^{\rho x} 1)^2 \nu(dx).$
- 1 Item 1 ensures $\int_0^\infty x^2 v(dx) < \infty$.
- ② By $|e^{\rho x} 1| \le -\rho x$, we have $\int_0^\infty (e^{\rho x} 1)^2 \nu(dx) \le \int_0^\infty \rho^2 x^2 \nu(dx) < \infty$.

Denote $L_t := \log(S_t/S_0)$ for $t \in [0, T]$, that is,

$$L_t = \int_0^t \left(\mu - \frac{1}{2}\sigma_s^2\right) ds + \int_0^t \sigma_s dW_s + \rho J_t.$$

- $\stackrel{\alpha}{=} \frac{\alpha}{e^{-\lambda T} \sigma_{\alpha}^2 + C_{\rho}} > -1, \text{ where } C_{\rho} := \int_0^{\infty} (e^{\rho x} 1)^2 \nu(dx).$
- ① Item 1 ensures $\int_0^\infty x^2 v(dx) < \infty$.
- ② By $|e^{\rho x} 1| \le -\rho x$, we have $\int_0^\infty (e^{\rho x} 1)^2 \nu(dx) \le \int_0^\infty \rho^2 x^2 \nu(dx) < \infty$.
- § Item 2 ensures $\frac{\alpha}{\sigma_*^2 + C_0} > -1$ for any $t \in [0, T]$.

Representative examples of σ^2

IG-OU

The first is the case where the Lévy measure v^H of the subordinator H is given as

$$v^{H}(dx) = \frac{a}{2\sqrt{2\pi}}x^{-\frac{3}{2}}(1+b^{2}x)e^{-\frac{1}{2}b^{2}x}1_{(0,\infty)}(x)dx$$

where a > 0 and b > 0.

In this case, the invariant distribution of the squared volatility process σ^2 follows an inverse-Gaussian distribution with parameters a > 0 and b > 0. σ^2 is called an IG-OU process.

Representative examples of σ^2

IG-OU

The first is the case where the Lévy measure v^H of the subordinator H is given as

$$v^{H}(dx) = \frac{a}{2\sqrt{2\pi}}x^{-\frac{3}{2}}(1+b^{2}x)e^{-\frac{1}{2}b^{2}x}1_{(0,\infty)}(x)dx$$

where a > 0 and b > 0.

In this case, the invariant distribution of the squared volatility process σ^2 follows an inverse-Gaussian distribution with parameters a > 0 and b > 0. σ^2 is called an IG-OU process.

If $\frac{b^2}{2} > 2(\mathcal{B}(T) \vee |\rho|)$, then item 1 of Assumption (BNS) is satisfied.

Representative examples of σ^2 (cont'd)

Gamma-OU

The second example is what we call Gamma-OU case, that is, the case where the invariant distribution of σ^2 is given by a Gamma distribution with parameter a > 0 and b > 0.

In this case, v^H is described as

$$v^H(dx) = abe^{-bx}1_{(0,\infty)}(x)dx.$$

where a > 0 and b > 0.

21 / 42

Representative examples of σ^2 (cont'd)

Gamma-OU

The second example is what we call Gamma-OU case, that is, the case where the invariant distribution of σ^2 is given by a Gamma distribution with parameter a > 0 and b > 0.

In this case, v^H is described as

$$v^H(dx) = abe^{-bx} \mathbf{1}_{(0,\infty)}(x) dx.$$

where a > 0 and b > 0.

If $b > 2(\mathcal{B}(T) \vee |\rho|)$, then item 1 of Assumption (BNS) is satisfied.

Now, we consider the following SDE:

$$dZ_t = -Z_{t-}\Lambda_t dM_t, \quad Z_0 = 1,$$

where
$$\Lambda_s:=rac{1}{S_{s-}}rac{lpha}{\sigma_s^2+C_
ho}$$
 and $\emph{C}_
ho:=\int_0^\infty (\emph{e}^{
ho x}-\emph{1})^2 \emph{v}(\emph{dx}).$

Now, we consider the following SDE:

$$dZ_t = -Z_{t-}\Lambda_t dM_t, \quad Z_0 = 1,$$

where
$$\Lambda_s:=rac{1}{S_{s-}}rac{lpha}{\sigma_s^2+C_
ho}$$
 and $C_
ho:=\int_0^\infty (e^{
ho x}-1)^2
u(dx)$. Denoting

$$u_s := \Lambda_s S_{s-} \sigma_s = \frac{\alpha \sigma_s}{\sigma_s^2 + C_\rho}$$
 and $\theta_{s,x} := \Lambda_s S_{s-} (e^{\rho x} - 1) = \frac{\alpha (e^{\rho x} - 1)}{\sigma_s^2 + C_\rho}$

for $s \in [0, T]$ and $x \in (0, \infty)$, we have $\Lambda_t dM_t = u_t dW_t + \int_0^\infty \theta_{t,z} \widetilde{N}(dt, dz)$; and

Now, we consider the following SDE:

$$dZ_t = -Z_{t-}\Lambda_t dM_t, \quad Z_0 = 1,$$

where
$$\Lambda_s:=rac{1}{S_{s-}}rac{lpha}{\sigma_c^2+C_{
ho}}$$
 and $C_{
ho}:=\int_0^\infty (e^{
ho x}-1)^2
u(dx)$. Denoting

$$u_s := \Lambda_s S_{s-} \sigma_s = \frac{\alpha \sigma_s}{\sigma_s^2 + C_\rho}$$
 and $\theta_{s,x} := \Lambda_s S_{s-} (e^{\rho x} - 1) = \frac{\alpha (e^{\rho x} - 1)}{\sigma_s^2 + C_\rho}$

for $s \in [0, T]$ and $x \in (0, \infty)$, we have $\Lambda_t dM_t = u_t dW_t + \int_0^\infty \theta_{t,z} \widetilde{N}(dt, dz)$; and

$$Z_t = \exp\left\{-\int_0^t u_s dW_s - \frac{1}{2} \int_0^t u_s^2 ds + \int_0^t \int_0^\infty \log(1 - \theta_{s,x}) \widetilde{N}(ds, dx) + \int_0^t \int_0^\infty (\log(1 - \theta_{s,x}) + \theta_{s,x}) \nu(dx) ds\right\}.$$

Now, we consider the following SDE:

$$dZ_t = -Z_{t-}\Lambda_t dM_t, \quad Z_0 = 1,$$

where $\Lambda_s:=rac{1}{S_{s-}}rac{lpha}{\sigma_s^2+C_
ho}$ and $C_
ho:=\int_0^\infty (e^{
ho x}-1)^2
u(dx)$. Denoting

$$u_s := \Lambda_s S_{s-} \sigma_s = \frac{\alpha \sigma_s}{\sigma_s^2 + C_\rho}$$
 and $\theta_{s,x} := \Lambda_s S_{s-} (e^{\rho x} - 1) = \frac{\alpha (e^{\rho x} - 1)}{\sigma_s^2 + C_\rho}$

for $s \in [0, T]$ and $x \in (0, \infty)$, we have $\Lambda_t dM_t = u_t dW_t + \int_0^\infty \theta_{t,z} \widetilde{N}(dt, dz)$; and

$$Z_t = \exp\left\{-\int_0^t u_s dW_s - \frac{1}{2} \int_0^t u_s^2 ds + \int_0^t \int_0^\infty \log(1 - \theta_{s,x}) \widetilde{N}(ds, dx) + \int_0^t \int_0^\infty (\log(1 - \theta_{s,x}) + \theta_{s,x}) \nu(dx) ds\right\}.$$

Proposition

The process Z is a martingale with $Z_T \in L^2(\mathbb{P})$.

LRM for put options

Theorem

For K > 0, LRM $\xi^{(K-S_T)^+}$ of put option $(K - S_T)^+$ is represented as

$$\begin{split} \xi_t^{(K-S_T)^+} &= \frac{1}{S_{t-}(\sigma_t^2 + C_\rho)} \bigg\{ \sigma_t^2 \mathbb{E}_{\mathbb{P}^*} [-1_{\{S_T < K\}} S_T | \mathcal{F}_{t-}] \\ &+ \int_0^\infty \mathbb{E}_{\mathbb{P}^*} [(K - S_T)^+ (H_{t,z}^* - 1) + z H_{t,z}^* D_{t,z} (K - S_T)^+ | \mathcal{F}_{t-}] \\ &\times (e^{\rho z} - 1) \nu(dz) \bigg\}, \end{split}$$

where $H_{t,z}^* := \exp\{zD_{t,z} \log Z_T - \log(1-\theta_{t,z})\}$ for $(t,z) \in [0,T] \times (0,\infty)$.

Reminder

Assumption (A)

- $\theta + \log(1 \theta) \in \widetilde{\mathbb{L}}_1^{1,2}$, and $\log(1 \theta) \in \mathbb{L}_1^{1,2}$
- **③** For q-a.e. $(s,x) \in [0,T] \times \mathbb{R}_0$, $∃\varepsilon_{s,x} \in (0,1)$ such that $\theta_{s,x} < 1 \varepsilon_{s,x}$.
- \bullet $F \in \mathbb{D}^{1,2}$; and $Z_T D_{t,z} F + F D_{t,z} Z_T + z D_{t,z} F \cdot D_{t,z} Z_T \in L^2(q \times \mathbb{P})$.
- **5** $FH_{t,z}^*, H_{t,z}^*D_{t,z}F \in L^1(\mathbb{P}^*)$ for q-a.e. $(t,z) \in [0,T] \times \mathbb{R}$.

LRM for call options

Corollary

LRM for call option $(S_T - K)^+$ is given as $\xi^{(S_T - K)^+} = 1 + \xi^{(K - S_T)^+}$.

LRM for call options

Corollary

LRM for call option $(S_T - K)^+$ is given as $\xi^{(S_T - K)^+} = 1 + \xi^{(K - S_T)^+}$.

Proof

$$\begin{split} (S_{T} - K)^{+} &= S_{T} - K + (K - S_{T})^{+} \\ &= S_{0} + \int_{0}^{T} dS_{t} - K + \mathbb{E}_{\mathbb{P}^{*}}[(K - S_{T})^{+}] + \int_{0}^{T} \xi_{t}^{(K - S_{T})^{+}} dS_{t} + L_{T}^{(K - S_{T})^{+}} \\ &= \mathbb{E}_{\mathbb{P}^{*}}[S_{T} - K + (K - S_{T})^{+}] + \int_{0}^{T} \left(1 + \xi_{t}^{(K - S_{T})^{+}}\right) dS_{t} + L_{T}^{(K - S_{T})^{+}} \\ &= \mathbb{E}_{\mathbb{P}^{*}}[(S_{T} - K)^{+}] + \int_{0}^{T} \left(1 + \xi_{t}^{(K - S_{T})^{+}}\right) dS_{t} + L_{T}^{(K - S_{T})^{+}}. \end{split}$$

This is an FS-decomposition of $(S_T - K)^+$ since $1 \in \Theta_S$.

Proof of Theorem

In order to see condition 4, we need to show $Z_T \in \mathbb{D}^{1,2}$.

$$\text{Condition 4: } Z_T\left\{D_{t,0}\log Z_T\mathbf{1}_{\{0\}}(z) + \tfrac{e^{zD_{t,z}\log Z_T}-1}{z}\mathbf{1}_{\mathbb{R}_0}(z)\right\} \in L^2(q\times\mathbb{P}).$$

Reminder:

$$dZ_t = -Z_{t-}\left\{u_t dW_t + \int_0^\infty \theta_{t,z} \widetilde{N}(dt, dz)\right\}, \quad Z_0 = 1,$$

where
$$u_s=rac{lpha\sigma_s}{\sigma_s^2+C_
ho},\, heta_{s,x}=rac{lpha(e^{
ho x}-1)}{\sigma_s^2+C_
ho}$$
 and $C_
ho:=\int_0^\infty (e^{
ho x}-1)^2
u(dx).$

Proof of Theorem (cont'd)

For $t \in [0, T]$, we define $Z_t^{(0)} := 1$ and

$$Z_{t}^{(n+1)} := 1 - \int_{0}^{t} Z_{s-}^{(n)} u_{s} dW_{s} - \int_{0}^{t} \int_{0}^{\infty} Z_{s-}^{(n)} \theta_{s,x} \widetilde{N}(ds, dx)$$

for $n \geq 0$.

Proof of Theorem (cont'd)

For $t \in [0, T]$, we define $Z_t^{(0)} := 1$ and

$$Z_{t}^{(n+1)} := 1 - \int_{0}^{t} Z_{s-}^{(n)} u_{s} dW_{s} - \int_{0}^{t} \int_{0}^{\infty} Z_{s-}^{(n)} \theta_{s,x} \widetilde{N}(ds, dx)$$

for $n \ge 0$.

Besides, we denote, for $n \ge 0$,

$$\phi_n(t) := \mathbb{E}\left[\int_{[0,t]\times[0,\infty)} \left(D_{r,z}Z_t^{(n)}\right)^2 q(dr,dz)\right].$$

Note that $\phi_0(t) \equiv 0$.

27 / 42

Proof of Theorem (cont'd)

For $t \in [0, T]$, we define $Z_t^{(0)} := 1$ and

$$Z_{t}^{(n+1)} := 1 - \int_{0}^{t} Z_{s-}^{(n)} u_{s} dW_{s} - \int_{0}^{t} \int_{0}^{\infty} Z_{s-}^{(n)} \theta_{s,x} \widetilde{N}(ds, dx)$$

for $n \ge 0$.

Besides, we denote, for $n \ge 0$,

$$\phi_n(t) := \mathbb{E}\left[\int_{[0,t]\times[0,\infty)} \left(D_{r,z}Z_t^{(n)}\right)^2 q(dr,dz)\right].$$

Note that $\phi_0(t) \equiv 0$.

Lemma 1

We have $Z_t^{(n)} \in \mathbb{D}^{1,2}$ for every $n \ge 0$ and any $t \in [0, T]$. Moreover, there exist constants $k_1 > 0$ and $k_2 > 0$ such that

$$\phi_{n+1}(t) \leq k_1 + k_2 \int_0^t \phi_n(s) ds$$

for every $n \ge 0$ and any $t \in [0, T]$.

- Local risk-minimization
- Barndorff-Nielsen and Shephard models
- Main results
- Numerical experiments

We treat Gamma-OU model: $v(dx) = ab\lambda e^{-bx} 1_{(0,\infty)}(x) dx$, where a > 0, b > 0.

⁴Schoutens, W.: Lévy Processes in Finance: Pricing Financial Derivatives. John Wiley & Sons, Hoboken (2003)

We treat Gamma-OU model: $v(dx) = ab\lambda e^{-bx} 1_{(0,\infty)}(x) dx$, where a > 0, b > 0.

We use a parameter set estimated in Schoutens' text book⁴.

⁴Schoutens, W.: Lévy Processes in Finance: Pricing Financial Derivatives. John Wiley & Sons, Hoboken (2003)

We treat Gamma-OU model: $v(dx) = ab\lambda e^{-bx} \mathbf{1}_{(0,\infty)}(x) dx$, where a > 0, b > 0.

We use a parameter set estimated in Schoutens' text book⁴.

Fix T = 1, r = 0.019 and q = 0.012.

The asset price and the squared volatility at time t are fixed to $S_t = 1124.47$ and $\sigma_t^2 = 0.0145$, respectively.

⁴Schoutens, W.: Lévy Processes in Finance: Pricing Financial Derivatives. John Wiley & Sons, Hoboken (2003)

We treat Gamma-OU model: $v(dx) = ab\lambda e^{-bx} 1_{(0,\infty)}(x) dx$, where a > 0, b > 0.

We use a parameter set estimated in Schoutens' text book⁴.

Fix T = 1, r = 0.019 and q = 0.012.

The asset price and the squared volatility at time t are fixed to $S_t = 1124.47$ and $\sigma_t^2 = 0.0145$, respectively.

 $\rho = -1.2606, \lambda = 0.5783, a = 1.4338, b = 11.6641.$

⁴Schoutens, W.: Lévy Processes in Finance: Pricing Financial Derivatives. John Wiley & Sons, Hoboken (2003)

We treat Gamma-OU model: $v(dx) = ab\lambda e^{-bx} \mathbf{1}_{(0,\infty)}(x) dx$, where a > 0, b > 0.

We use a parameter set estimated in Schoutens' text book⁴.

Fix T = 1, r = 0.019 and q = 0.012.

The asset price and the squared volatility at time t are fixed to $S_t = 1124.47$ and $\sigma_t^2 = 0.0145$, respectively.

 $\rho = -1.2606$, $\lambda = 0.5783$, a = 1.4338, b = 11.6641.

Suppose that the discounted asset price process $e^{-(r-q)t}S_t$ is a martingale. Hence, μ is given as

$$\mu = r - q + \int_0^\infty (1 - e^{\rho x}) \nu(dx) = r - q - \frac{a\lambda \rho}{b - \rho}.$$

⁴Schoutens, W.: Lévy Processes in Finance: Pricing Financial Derivatives. John Wiley & Sons, Hoboken (2003)

Setting (cont'd)

A., Imai and Suzuki 5 developed a numerical scheme of LRM for exponential Lévy models using the Carr-Madan approach 6, which is a numerical method for option prices based on the fast Fourier transform (FFT).

We consider a call option with strike price K. Since $H_{t,z}^* = 1$ and $Z_T = 1$, we have

$$\begin{split} \xi_{t}^{(S_{7}-K)^{+}} &= \frac{e^{-(r-q)(T-t)}}{S_{t-}(\sigma_{t}^{2} + C_{\rho})} \left(\sigma_{t}^{2} \mathbb{E}[S_{7} 1_{(S_{7} \geq K)} | \mathcal{F}_{t-}] \right. \\ &+ \int_{0}^{\infty} \mathbb{E}\left[\left(S_{7} e^{zD_{t,z}L_{7}} - K \right)^{+} - (S_{7} - K)^{+} | \mathcal{F}_{t-} \right] (e^{\rho z} - 1) \nu(dz) \right) \\ &=: \frac{\sigma_{t}^{2} I_{1} + I_{2}}{S_{t}(\sigma_{t}^{2} + C_{\rho})}. \end{split}$$

30 / 42

⁵Arai, T., Imai, Y., Suzuki, R.: Numerical analysis on local risk-minimization for exponential Levy models, International Journal of Theoretical and Applied Finance vol.19, 1650008 (2016)

⁶Carr, P., D. Madan: Option valuation using the fast Fourier transform. Journal of Computational Finance, 2, 61-73 (1999)

Reminder: main result

$$\begin{split} \xi_{t}^{(K-S_{T})^{+}} &= \frac{1}{S_{t-}(\sigma_{t}^{2} + C_{\rho})} \bigg\{ \sigma_{t}^{2} \mathbb{E}_{\mathbb{P}^{*}} [-1_{\{S_{T} < K\}} S_{T} | \mathcal{F}_{t-}] \\ &+ \int_{0}^{\infty} \mathbb{E}_{\mathbb{P}^{*}} [(K - S_{T})^{+} (H_{t,z}^{*} - 1) + z H_{t,z}^{*} D_{t,z} (K - S_{T})^{+} | \mathcal{F}_{t-}] \\ &\times (e^{\rho z} - 1) \nu(dz) \bigg\}, \end{split}$$

where $H_{t,z}^* := \exp\{zD_{t,z}\log Z_T - \log(1-\theta_{t,z})\}$ for $(t,z) \in [0,T] \times (0,\infty)$.

$$\xi^{(S_T-K)^+} = 1 + \xi^{(K-S_T)^+}.$$

Characteristic function of L_T

$$\phi(\vartheta) := \mathbb{E}[\exp(i\vartheta L_T)|S_t, \sigma_t^2]$$

$$= \exp\left(i\vartheta \left(L_t + \mu(T-t)\right) - (\vartheta^2 + i\vartheta)\frac{\mathcal{B}(T-t)}{2}\sigma_t^2 + \frac{a}{b-f_2}\left[b\log\left(\frac{b-f_1}{b-i\vartheta\rho}\right) + f_2\lambda(T-t)\right]\right)$$

for $\vartheta \in \mathbb{C}$, where

$$f_1:=i\vartheta\rho-\frac{1}{2}(\vartheta^2+i\vartheta)\lambda\mathcal{B}(T-t) \text{ and } f_2:=i\vartheta\rho-\frac{1}{2}(\vartheta^2+i\vartheta).$$

Recall that $\mathcal{B}(t) = \frac{1-e^{-\lambda t}}{\lambda}$ for $t \in [0, T]$.

$$I_{1} = e^{-(r-q)(T-t)} \mathbb{E}[S_{T} 1_{\{S_{T} \geq K\}} | \mathcal{F}_{t-}] = \frac{e^{-(r-q)(T-t)}}{\pi} \int_{0}^{\infty} K^{-i\zeta+1} \frac{\phi(\zeta)}{i\zeta - 1} dv, \quad (2)$$

where $\zeta := \mathbf{v} - \mathbf{i}\delta$, and δ is a real number satisfying

$$\sup_{t\leq s$$

Here,

$$D_s := \left(-\frac{1}{2} + \frac{\rho}{\mathcal{B}(T-s)}\right)^2 + \frac{2\hat{\theta}}{\mathcal{B}(T-s)} \text{ and } \hat{\vartheta} := \sup\left\{\vartheta \middle| \int_0^\infty (e^{\vartheta x} - 1)\nu(dx) < \infty\right\}.$$

$$I_{1} = e^{-(r-q)(T-t)} \mathbb{E}[S_{T} 1_{\{S_{T} \geq K\}} | \mathcal{F}_{t-}] = \frac{e^{-(r-q)(T-t)}}{\pi} \int_{0}^{\infty} K^{-i\zeta+1} \frac{\phi(\zeta)}{i\zeta - 1} dv, \quad (2)$$

where $\zeta := \mathbf{v} - \mathbf{i}\delta$, and δ is a real number satisfying

$$\sup_{t\leq s$$

Here,

$$D_s := \left(-\frac{1}{2} + \frac{\rho}{\mathcal{B}(T-s)}\right)^2 + \frac{2\hat{\vartheta}}{\mathcal{B}(T-s)} \text{ and } \hat{\vartheta} := \sup\left\{\vartheta \middle| \int_0^\infty (e^{\vartheta x} - 1)\nu(dx) < \infty\right\}.$$

Note that the RHS of (2) is independent of the choice of δ .

As a result, since the integrand of (2) is given by the product of $K^{-i\zeta+1}$ and a function of ζ , we can compute I_1 through the FFT.

Reminder:

$$I_{2} = e^{-(r-q)(T-t)} \int_{0}^{\infty} \mathbb{E}\left[\left(S_{T}e^{zD_{t,z}L_{T}} - K\right)^{+} - \left(S_{T} - K\right)^{+}|\mathcal{F}_{t-}\right](e^{\rho z} - 1)\nu(dz).$$

Note that $\mathbb{E}[(S_T - K)^+ | S_t, \sigma_t^2] = \frac{1}{\pi} \int_0^\infty \frac{K^{-i\zeta+1}\phi(\zeta)}{(i\zeta-1)i\zeta} dv$

34 / 42

Reminder:

$$\begin{split} I_2 &= e^{-(r-q)(T-t)} \int_0^\infty \mathbb{E}\left[\left(S_T e^{zD_{t,z}L_T} - K\right)^+ - \left(S_T - K\right)^+ | \mathcal{F}_{t-}\right] (e^{\rho z} - 1) \nu(dz). \\ \text{Note that } \mathbb{E}[\left(S_T - K\right)^+ | S_t, \sigma_t^2] &= \frac{1}{\pi} \int_0^\infty \frac{K^{-i\zeta+1}\phi(\zeta)}{(i\zeta-1)i\zeta} dv \end{split}$$

$$\frac{S_T}{S_t} \exp(zD_{t,z}L_T)$$

$$= \exp\left(\mu(T-t) - \frac{1}{2}\int_t^T \sigma_s^2 ds + \int_t^T \sigma_s dW_s + \rho \int_t^T dJ_s$$

$$-\frac{z}{2}\mathcal{B}(T-t) + \int_t^T \left(\sqrt{\sigma_s^2 + ze^{-\lambda(s-t)}} - \sigma_s\right) dW_s + \rho z\right)$$

$$= \exp\left(\mu(T-t) - \frac{1}{2}\int_t^T \sigma_{s,z}^2 ds + \int_t^T \sigma_{s,z} dW_s + \rho \int_t^T dJ_s + \rho z\right)$$

where $\sigma_{s,z}^2 := \sigma_s^2 + ze^{-\lambda(s-t)}$ for $(s,z) \in [t,T] \times (0,\infty)$.

I_2 (cont'd)

Denoting

$$L_{s}^{(z)} := \int_{t}^{s} \left(\mu - \frac{1}{2}\sigma_{u,z}^{2}\right) \mathrm{d}u + \int_{t}^{s} \sigma_{u,z} \mathrm{d}W_{u} + \rho \int_{t}^{s} \mathrm{d}J_{u}$$

for $(s, z) \in [t, T] \times (0, \infty)$, we have

$$S_T \exp(zD_{t,z}L_T) = S_t \exp(L_T^{(z)} + \rho z).$$

Denoting

$$L_s^{(z)} := \int_t^s \left(\mu - \frac{1}{2}\sigma_{u,z}^2\right) du + \int_t^s \sigma_{u,z} dW_u + \rho \int_t^s dJ_u$$

for $(s, z) \in [t, T] \times (0, \infty)$, we have

$$S_T \exp(zD_{t,z}L_T) = S_t \exp(L_T^{(z)} + \rho z).$$

 $(\sigma_{s,z}^2)_{t \le s \le T}$ is a solution to the same SDE as σ^2 , that is, $d\sigma_t^2 = -\lambda \sigma_t^2 dt + dJ_t$ with initial condition $\sigma_{t,z}^2 = \sigma_t^2 + z$.

We denote

$$\begin{split} \phi^{(z)}(\vartheta) &:= \mathbb{E}\left[\exp(i\vartheta L_{\tau}^{(z)})|S_t, \sigma_t^2\right] S_t^{i\vartheta} = \mathbb{E}\left[\exp(i\vartheta L_{\tau})|S_t, \sigma_t^2 + z\right] \\ &= \phi(\vartheta) \exp\left(-(\vartheta^2 + i\vartheta) \frac{\mathcal{B}(T - t)}{2} z\right). \end{split}$$

$$\begin{split} e^{(r-q)(T-t)}I_{2} &= \int_{0}^{\infty} \mathbb{E}\left[\left(S_{T}e^{zD_{t,z}L_{T}} - K\right)^{+} - \left(S_{T} - K\right)^{+} | \mathcal{F}_{t-}\right]\left(e^{\rho z} - 1\right)\nu(dz) \\ &= \int_{0}^{\infty} \mathbb{E}\left[\left(S_{t}\exp\left(L_{T}^{(z)} + \rho z\right) - K\right)^{+} - \left(S_{T} - K\right)^{+} \middle| S_{t}, \sigma_{t}^{2}\right]\left(e^{\rho z} - 1\right)\nu(dz) \\ &= \int_{0}^{\infty} \left(\frac{e^{\rho z}}{\pi} \int_{0}^{\infty} (Ke^{-\rho z})^{-i\zeta+1} \frac{\phi^{(z)}(\zeta)}{(i\zeta-1)i\zeta} d\nu - \frac{1}{\pi} \int_{0}^{\infty} \frac{K^{-i\zeta+1}\phi(\zeta)}{(i\zeta-1)i\zeta} d\nu\right]\left(e^{\rho z} - 1\right)\nu \\ &= \int_{0}^{\infty} \frac{1}{\pi} \int_{0}^{\infty} \frac{K^{-i\zeta+1}\phi(\zeta)}{(i\zeta-1)i\zeta} \left(e^{i\rho z\zeta} \exp\left(-(\zeta^{2} + i\zeta)\frac{\mathcal{B}(T-t)}{2}z\right) - 1\right) d\nu(e^{\rho z} - 1)\nu \\ &= \int_{0}^{\infty} \frac{1}{\pi} \frac{K^{-i\zeta+1}\phi(\zeta)}{(i\zeta-1)i\zeta} \int_{0}^{\infty} (e^{\eta z} - 1)(e^{\rho z} - 1)\nu(dz) d\nu, \end{split}$$

where $\eta := i\rho\zeta - (\zeta^2 + i\zeta)\frac{\mathcal{B}(\tau - t)}{2}$, which is a function of ζ .

Note that $\Re(\eta) \le 0$ when $0 < \delta < 1 - \frac{2\rho}{\mathcal{B}(T)}$. Therefore, taking such an δ , we have

$$\int_0^\infty (e^{\eta z}-1)(e^{\rho z}-1)\nu(dz)=ab\lambda\bigg(\frac{1}{b-\eta-\rho}-\frac{1}{b-\eta}-\frac{1}{b-\rho}+\frac{1}{b}\bigg),$$

from which we can compute I_2 using the FFT.

37 / 42

Note that $\Re(\eta) \leq 0$ when $0 < \delta < 1 - \frac{2\rho}{\mathcal{B}(T)}$.

Therefore, taking such an δ , we have

$$\int_0^\infty (e^{\eta z}-1)(e^{\rho z}-1)\nu(dz)=ab\lambda\bigg(\frac{1}{b-\eta-\rho}-\frac{1}{b-\eta}-\frac{1}{b-\rho}+\frac{1}{b}\bigg),$$

from which we can compute I_2 using the FFT.

$$\text{Reminder: } \sup_{t \leq s < T} \left\{ \frac{1}{2} - \frac{\rho}{\mathcal{B}(T-s)} - \sqrt{D_s} \right\} < \delta < \inf_{t \leq s < T} \left\{ \frac{1}{2} - \frac{\rho}{\mathcal{B}(T-s)} + \sqrt{D_s} \right\}.$$

Delta-hedging strategy

Next, we discuss delta-hedging strategy $\Delta_t^{(S_T-K)^+}$ for a call option with strike price K, which is given as the partial derivative of the option price with respect to S_t ,

Delta-hedging strategy

Next, we discuss delta-hedging strategy $\Delta_t^{(S_T-K)^+}$ for a call option with strike price K, which is given as the partial derivative of the option price with respect to S_t , that is,

$$\Delta_t^{(S_T-K)^+} := e^{-(r-q)(T-t)} \frac{\partial}{\partial S_t} \mathbb{E}[(S_T-K)^+ | S_t, \sigma_t^2].$$

Delta-hedging strategy

Next, we discuss delta-hedging strategy $\Delta_t^{(S_t-K)^+}$ for a call option with strike price K, which is given as the partial derivative of the option price with respect to S_t , that is,

$$\Delta_t^{(S_T-K)^+} := e^{-(r-q)(T-t)} \frac{\partial}{\partial S_t} \mathbb{E}[(S_T - K)^+ | S_t, \sigma_t^2].$$

Noting that

$$\mathbb{E}[(S_T - K)^+ | S_t, \sigma_t^2] = \frac{1}{\pi} \int_0^\infty K^{-i\zeta+1} \frac{\phi(\zeta)}{(i\zeta-1)i\zeta} dv,$$

we have

$$\begin{split} \Delta_t^{(S_T-K)^+} &= \frac{e^{-(r-q)(T-t)}}{\pi} \int_0^\infty \frac{K^{-i\zeta+1}}{(i\zeta-1)i\zeta} \frac{\partial \phi(\zeta)}{\partial S_t} dv \\ &= \frac{e^{-(r-q)(T-t)}}{\pi} \int_0^\infty K^{-i\zeta+1} \frac{\phi(\zeta)S_t^{-1}}{i\zeta-1} dv = \frac{I_1}{S_t}. \end{split}$$

Numerical experiments

We show numerical results on LRM strategies $\xi_t^{(S_\tau - K)^+}$ and delta-hedging strategies $\Delta_t^{(S_\tau - K)^+}$.

Numerical experiments

We show numerical results on LRM strategies $\xi_t^{(S_\tau - K)^+}$ and delta-hedging strategies $\Delta_t^{(S_\tau - K)^+}$.

Reminder:

we take
$$T = 1$$
, $r = 0.019$, $q = 0.012$, $S_t = 1124.47$, $\sigma_t^2 = 0.0145$, $\rho = -1.2606$, $\lambda = 0.5783$, $a = 1.4338$, $b = 11.6641$.

Moreover, we take $\delta = 1.75$.

Figure: Values of $\xi_t^{(S_T-K)^+}$ and $\Delta_t^{(S_T-K)^+}$ when K is fixed to 1124.47(ATM) vs. times $t=0,0.02,\ldots,0.98$. In this case, the option is in the money at time t. Red crosses and blue circles represent the values of $\xi_t^{(S_T-K)^+}$ and $\Delta_t^{(S_T-K)^+}$, respectively.

Figure: Values of $\xi_t^{(S_T-K)^+}$ and $\Delta_t^{(S_T-K)^+}$ at t=0.5 vs. strike price K from 200 to 2000 at steps of 25. Red crosses and blue circles represent the values of $\xi_t^{(S_T-K)^+}$ and $\Delta_t^{(S_T-K)^+}$, respectively.

Thank you for your attention!