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Fix a filtered probability space (02, F, F:, P).

Let M, be a continuous local martingale.

Def. If M, is not a true martingale, we say M, is a strictly local

martingale.

M, is a (true) martingale
& E[Mr] = E[My] for VT': bounded stopping time.

“Local” property of M, :
yr(M) := E[My]| — E[Mr].

is called a default function (Elworthy- X.M.Li-Yor(‘99)).



Default formula : Assume that E[|Mr|] < oo, E[|Mp|] < oo for a
stopping time T and {M,,4; S : stopping times } is uniformly

integrable. Set M, := sup M.
0<s<lt

E[Mt : My < Al + AP(Mt > )\) + E[(Mo — \) 4] = E[Moy].
Letting A — oo,

Yr(M) = lim AP( sup M; > A).

A—>0c0 0<t<T
Another quantity: o (M)

Def.
or(M) = lim AP((M)YY? > N).
— 00



Theorem (Elworthy-Li-Yor, Takaoka(‘99)) Assume that
E[|Mxr] < oo, E[|M|] < oo.

Ivr (M) = \/?GT(M)-

Moreover M; := M s is a uniformly integrable martingale iff
yr(M) = or(M) = 0.

See also Azema-Gundy -Yor(‘80), Galtchouk-Novikov(‘97).



[Example]

R;: : d-dimensional Bessel process:

d—1
th — dbt —I— dt, Ro =T.

t

If d > 2, then Rf_d is a strictly local martingale.

As for default function, if Rg = r,

2
exp(— 1),

R2—d
V(R = 2VI‘(1/) u1+V
where d = 2(1 + v).

If d = 2, log R; is a strictly local martingale.

2
v¢(log R) = / — exp(— el



[submartingale case]

Let X = X9 + M + A where M is a local martingale and A is an
adapted increasing process.

Lem.(Default function for submartingale)

If X is positive and E[Ar]| < oo,

lim AP( sup X¢ > A) = lim AP( sup M; > )

E[Xo] — E[Xr] + E[Ar].



Example (stochastic Jensen’s formula).

Let Z; : BM(C) with Zg = o, 7. = inf{t > 0: |Z¢| > r}
and f be a non-constant holomorphic function on C, f(o) # 0.
Set X; := log |f(Z+.rt) — a|~? : a local martingale bounded below.

lim AP( sup X¢>X) = > 2log -,
—> 0O 0<t<7y f(C):aa |C|<,r, |C|

From this we can see an essential relationship between Nevanlinna
theory and complex Brownian motion ( Carne(86), A.(95)).



Our question:

When is a local submartingale u(X:) a submartingale ?



§2 Submartingale property of subharmonic functions.
[Settings]

Let M : a smooth manifold, m a Radon measure on M with
suppm = M, (X, Pr) be a symmetric diffusion process defined
from the Dirichlet form (£, F) with a core C C F N C,(M) where

E(u,v) = / I'u,v)dm (u,v € C).
M
We have there exists L a s.a.operator on L*(m) such that
E(u,v) = —/ uLvdm for u,v € C.
M

L is the generator of the diffusion.



Assume that
o (£,F) is a strongly local, irreducible regular Dirichlet form.

e the transition probability p(t, x, dy) is absolutely continuous
w.r.t. m.

e there exists a nonnegative exhaustion function r(x) (i.e.
{r(x) < r} : rel.cpt for Vr > 0) such that I'(r(-),r(-)) is
bounded a.e.

e there exists xop € M and ci(xo), c2(xo) > 0 such that
c1(xo)|Vul? > T'(u,u) > ca(x0)|Vul|® for Vu € C on a
neighborhood of x¢.

Note that the first assumption implies a diffusion process corresponds
to the Dirichlet form.



Typical Example : Brownian motion on a complete, connected
Riemannian manifold M.

L = %A,I‘(u, u) = |Vul?, r(x) = d(o, x),

m = Riemannian volume dv, p(t, x,dy) = p(t, x, y)dv(y) where
p(t, x,y) is the heat kernel of /9t — %A.

F = Hy(M) =Cg° (./\/l)g1 where
Ei(u,u) = E(u,u) + ||’U,||iz(m). Note C = Cg5~ (M).



[subharmonic function]

Def. u is (L-)subharmonic if u € Fioc and E(p, u) < 0 for
Vo > 0,0 € F with compact support.

It is well-known that u(X:) is a continuous local submartingale:
w(X:) —u(z) = M + A" Pp-as.
Def. Default function of u(Xr)

Nz (T,u) = lim AP;( sup u(Xs) > \).

As before if u is positive subharmonic and E, [A,[;“’]] < 00,

Eo[u(X:)] — u(x) + Na(t,u) = E-[AM)].



We consider the condition for the default function to be vanishing.
Let U := {u : a positive subharmonic function |E,[u(X:)] <
oo(Vt > 0)a.e.x}.

Theorem. Let B(r) := {r(x) < r}.

If X is transient, u € U and

lim inf l{log/ u”dm + logm(B(r))} < oo
B(r))

r—oo P2
for some o« > 2, then u(X.) is a submartingale under P, for a.e.x.
sketch of proof.
1°. Let 7 = inf{t > 0| X € B(r)}. If

rlLrglo E lu(X+):m < t] =0,

then N, (t,u) = 0.



2°. Estimate E;[u(X,)].

Lem. Let 2o a point appearing in the assumption. If X is transient
and u is a positive subharmonic function, there exists a constant

C (xo) such that

Eao[u(X-,)] < C(z0){( w(@)®dm)*? + [ u(x)dm}.
B(r+1) B(r)

3°. Estimate P, (7 < t).

Lem. (Takeda’s inequality) Fix 1 > ro > 0. If » > r¢, there exists
c > 0 such that

m(B(r+1) e

9

/ P,(mr < t)dm(y) < const.
B(ro)

4°. Ng,(to,u) = 0 for some xo, to implies N (t,u) = 0 for Vt > 0
and a.e.x.



[Brownian motion case]

When M is a complete Riemannian manifold and (X, Py) is
Brownian motion on /M, the Ricci curvature controls the conditions

in the above theorem.

Theorem. If there exists a constant C > 0 such that
Ric > —Cr(x)? — C and a positive subharmonic function u satisfies

lim inf L log/ u(x)dv(x) < oo,
B(r)

T—oo

then u(X:) is a submartingale.



3. L' Liouville theorem.

[Known results]

1-1. L*-Liouville theorem: (Yau ‘76, cf. P.Li-Schoen ‘84) If M is a
complete Riemannian manifold and a positive A-subharmonic
function u is L”-integrable for some p > 1, u is constant.

1-2. Generalization in the context of Dirichlet form (T.Sturm ‘94).
Under our setting, if a positive L-subharmonic u satisfies

/°° rdr
= o0
fB(r) uPdm

for some p > 1, then u is constant.




2. L'-Liouville theorem. Let M be a complete Riemannian manifold
and u a positive A-subharmonic function.

Ricci curvature condition (P.Li ‘84 )

If M is a complete Riemannian manifold satisfying

Ric > —Cr(x)? — C for some C > 0 and u is L', then u is
constant.

3. Weighted L”-Liouville theorem. (Nadirashvili ‘85)
o[ @)
mr(x)2+1

satisfying / 1/f(t)dt < oo, then u is constant.
0

dv(x) < oo for a nonnegative function f on [0, co0)

u(z)”
dp > 1 s.t. / dv(x) < oo = u const.
mr(x)?+1




[Ll-LiouviIIe theorem and submartingale property]

Prop. If u is a positive, integrable L-subharmonic function and u(X4)
is @ submartingale under P, for a.e. x, then u is constant. Namely
vanishing of default function of w implies L*-Liouville theorem.

Proof.
u(z) < Ez[u(Xt)]

for all 0 < t and a.e. x.
t
tu(x) < / E.[u(Xs)]ds.
0

If X is recurrent, ratio ergodic theorem for recurrent Markov



processes implies
( pq u(x)d

%Ew[/ w(Xs)ds] = 4 m(M)
0 L0 (if m(M) = o)

(if m(M) < oo),

as t — oo. In both cases u should be bounded. Then u« is a constant.

1 t
If X is transient, ?Ew [/ u(Xs)ds] — 0 as t — oo since
0

¢
E. [/ u(Xs)ds| < oo for an integrable function u where ¢ is the
0
life time of X.



[Example]

The following example is originally due to Li-Schoen. We give a little
modification. Let M be a compact 2-dim Riemannian manifold with

a metric dsg, A+ is the Laplacian defined from dsg and X

— 1 _ S
Brownian motion on M with its generator EAM. Fix o € M. Set

o 1
g(o,x) = 271'/0 (p(t,o0,x) — ool (3) )dt + C,

where p(t, x, y) is the transition density of X and C is a positive

constant such that g(o,z) > 0 for all z € M \ {0}. Remark that

1
g(z,y) ~ log (d(z,y) — 0). Note

d(z,y)?
1 1
—As7g(o,x) = —27oo(x) + .
5 Mg( ) (z) Vol (M)




Let M be M \ {o}. Take o be a smooth function on M s.t.
—1 1 —1 1 — .
o(x) ~t "(log ?) (loglog ?) with 1/2 < a < 1

when t = d5;(0, ) — O.

Define a metric ds* = o°dsg on M. Note that Laplacian A,

defined from ds? has a form
An = o 2 A,

where A+ is defined from dsg. Let X; be Brownian motion on M

1 __
with its generator §AM' Then X, is a time changed process of X

which is recurrent. Hence X is recurrent, in particular, conservative.



(M, ds®) satisfies
e complete and stochastically complete.
e M is of finite volume w.r.t ds”.

e u(x) := g(o,x) is a nonnegative smooth subharmonic function

on M and integrable w.r.t. ds”.

2

e the curvature ~ —const.ri—-« = —cr
(e = (4da—2)/(1 — a) > 0).

2
T€ as r — 00

From these facts we see u(X4) is a strictly local submartingale and
L*-Liouville property of M (fails.



[Our results]

Theorem 1. Suppose X; is transient and u is a nonnegative

L-subharmonic function.
i) Assume there exists a > 2 and 0 < p < 1 such that

liminf —~ log{m(B(r)) |  u(x)%dm(z)} < oco.

T—> 00 fr.2(1—p) B(r)

If

o T ) <

then u = 0.



ii) Assume there exists a > 2 such that

lim inf —— = log{m(B(r)) u(x)“dm(x)} < oo.

r—oo  (logr) B(r)

If

u(x)
/M T r(m)zdm(m) < oo,

then u = 0.



[Brownian motion case]

When M is a complete Riemannian manifold and u is a nonnegative
A-subharmonic function, using Ricci curvature condition enables us

to simplify the results as follows.
Theorem 2. Suppose Ric > —Cr(x)* — C.

i) Assume
lim inf 1 logvol(B(r)) < oo (0<3dp<1).
r—oco 92(1—p)

If

u(x)
/M (1 n 'r(m))zp d’U(CU) < oo,

then u iIs constant.



i) Assume

lim inf ! log vol(B(r)) < oo.
r—oo  (logr)?

u(x)
/M T r(w)zdv(w) < oo,

If

then v is constant.
Rem. When p = 0 in i), it implies P.Li’s Liouville theorem.

Proofs of Theorem 1 & 2. As for the case of p = 0 directly from the
submartingale property for u(X:). For the other case use
time-change argument as follows. Let p(t) is a non-increasing,

positive function on (0, co) such that / p(t)3dt = co. s
0
defined by

t
Y. = X,—1 with ¢, = / p(r(X.))ds.
t 0



1 _
Note that Y; has a generator §p(r(az)) ' L which becomes a

self-adjoint operator on L?(p(r(x))dm). Define an exhaustion
function 6(x) on M by
r(x)

O(x) = i v p(s)ds.

Then I'(0, 0) is bounded. Thus our argument as before is available.
Take p(t) = (1 +t)"*” with 0 < p < 1 in case of i) and with p =1
in case of ii).



34. Liouville theorems for holomorphic maps.

Let M be a complete Kahler manifold, A/ a Hermitian manifold, and

: M — N a holomorphic map. R(x) := inf Ric ,
f p p. R(x) cerat . (&,8)

B(r) :={x € M|r(x) < r}, K(y) : holomorphic bisectional
curvature of N

Let e(x) := trg,, f gn (energy density of f). Chern-Lu formula

implies

SAloge(z) > —K(f(x))e(z) + R-(2) if e(x) # 0.

From this with modifying the method in the previous sections, we
have the following.



Theorem 3. Assume Brownian motion on M is transient. If

K(f(x)) < —co for some co > 0, / R_(x)dv(x) < oo and
M

lim inf — log{’vol(B('r)) R_(z)’dv(x)} < oo,

then f is constant.

Cor. If/ R_(x)dv(x) < oo and
M

lim 1nf — log{’vol(B('r)) R_(z)’dv(x)} < oo,

™ —> o0 B(’l")

then every bounded holomorphic function on M is constant.



In recurrent case we have the following by assuming a Ricci curvature

condition.

Theorem 4. Assume R_(x) > —Cr(xz)* — C for some C > 0 and
Brownian motion on M is recurrent. If K(f(x)) < —co for co > 0,

/M |R(x)|dv(x) < oo, and /M R(x)dv(x) > 0,

then f is constant.

Rem. These results a generalization of a Liouville theorem due to
Li-Yau(‘90).



[Problems]

1. Non-symmetric case. Complex Laplacian L on non-Kabhler,
Hermitian manifolds. L = A + V. Girsanov formula does not seem

to work well.

2. Difference between the space of L'-harmonic functions and

L*-subharmonic functions.
3. L'-Liouville theorem on manifolds with topological constraint.

Murata and Tsuchida conjectures every L'-harmonic function on
comlete Riemannian manifolds with one end should be constant. Cf.
Grigoryan showed that every positive L' -superharmonic function on
M is constant if M is stochastically complete (i.e. Brownian motion

on M is consevative).



