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Fix a filtered probability space (Ω,F ,Ft, P ).

Let Mt be a continuous local martingale.

Def. If Mt is not a true martingale, we say Mt is a strictly local

martingale.

Mt is a (true) martingale

⇔ E[MT ] = E[M0] for ∀T : bounded stopping time.

“Local” property of Mt :

γT (M) := E[M0] − E[MT ].

is called a default function (Elworthy- X.M.Li-Yor(‘99)).



Default formula : Assume that E[|MT |] < ∞, E[|M0|] < ∞ for a

stopping time T and {M−
T∧S;S : stopping times } is uniformly

integrable. Set M∗
t := sup

0≤s≤t

Ms.

E[MT : M∗
T ≤ λ] + λP (M∗

T > λ) + E[(M0 − λ)+] = E[M0].

Letting λ → ∞,

γT (M) = lim
λ→∞

λP ( sup
0≤t≤T

Mt > λ).

Another quantity: σT (M)

Def.

σT (M) := lim
λ→∞

λP (⟨M⟩1/2T > λ).



Theorem (Elworthy-Li-Yor, Takaoka(‘99)) Assume that

E[|MT |] < ∞, E[|M0|] < ∞.

∃γT (M) =

√
π

2
σT (M).

Moreover MT
t := MT∧t is a uniformly integrable martingale iff

γT (M) = σT (M) = 0.

See also Azema-Gundy -Yor(‘80), Galtchouk-Novikov(‘97).



[Example]

Rt : d-dimensional Bessel process:

dRt = dbt +
d − 1

2Rt

dt, R0 = r.

If d > 2, then R2−d
t is a strictly local martingale.

As for default function, if R0 = r,

γt(R
2−d) =

1

2νΓ(ν)

∫ t

0

du

u1+ν
exp(− r2

2u
),

where d = 2(1 + ν).

If d = 2, logRt is a strictly local martingale.

γt(logR) =
1

2

∫ t

0

du

u
exp(− r2

2u
).



[submartingale case]

Let Xt = X0 + Mt + At where M is a local martingale and A is an

adapted increasing process.

Lem.(Default function for submartingale)

If X is positive and E[AT ] < ∞,

lim
λ→∞

λP ( sup
0≤t≤T

Xt > λ) = lim
λ→∞

λP ( sup
0≤t≤T

Mt > λ)

= E[X0] − E[XT ] + E[AT ].



Example (stochastic Jensen’s formula).

Let Zt : BM(C) with Z0 = o, τr = inf{t > 0 : |Zt| > r}
and f be a non-constant holomorphic function on C, f(o) ̸= 0.

Set Xt := log |f(Zτr∧t)− a|−2 : a local martingale bounded below.

lim
λ→∞

λP ( sup
0<t<τr

Xt > λ) =
∑

f(ζ)=a, |ζ|<r

2 log
r

|ζ|
.

From this we can see an essential relationship between Nevanlinna

theory and complex Brownian motion ( Carne(86), A.(95)).



Our question:

When is a local submartingale u(Xt) a submartingale ?



§2 Submartingale property of subharmonic functions.

[Settings]

Let M : a smooth manifold, m a Radon measure on M with

suppm = M, (Xt, Px) be a symmetric diffusion process defined

from the Dirichlet form (E,F) with a core C ⊂ F ∩ Co(M) where

E(u, v) =

∫
M

Γ(u, v)dm (u, v ∈ C).

We have there exists L a s.a.operator on L2(m) such that

E(u, v) = −
∫
M

uLvdm for u, v ∈ C.

L is the generator of the diffusion.



Assume that

• (E,F) is a strongly local, irreducible regular Dirichlet form.

• the transition probability p(t, x, dy) is absolutely continuous

w.r.t. m.

• there exists a nonnegative exhaustion function r(x) (i.e.

{r(x) < r} : rel.cpt for ∀r ≥ 0) such that Γ(r(·), r(·)) is

bounded a.e.

• there exists x0 ∈ M and c1(x0), c2(x0) > 0 such that

c1(x0)|∇u|2 ≥ Γ(u, u) ≥ c2(x0)|∇u|2 for ∀u ∈ C on a

neighborhood of x0.

Note that the first assumption implies a diffusion process corresponds

to the Dirichlet form.



Typical Example : Brownian motion on a complete, connected

Riemannian manifold M.

L =
1

2
∆,Γ(u, u) = |∇u|2, r(x) = d(o, x),

m = Riemannian volume dv, p(t, x, dy) = p(t, x, y)dv(y) where

p(t, x, y) is the heat kernel of ∂/∂t − 1

2
∆.

F = H1
0(M) = C∞

0 (M)
E1

where

E1(u, u) = E(u, u) + ||u||2L2(m). Note C = C∞
0 (M).



[subharmonic function]

Def. u is (L-)subharmonic if u ∈ Floc and E(ϕ, u) ≤ 0 for

∀ϕ ≥ 0, ϕ ∈ F with compact support.

It is well-known that u(Xt) is a continuous local submartingale:

u(Xt) − u(x) = M
[u]
t + A

[u]
t Px-a.s.

Def. Default function of u(XT )

Nx(T, u) = lim
λ→∞

λPx( sup
0≤s≤T

u(Xs) > λ).

As before if u is positive subharmonic and Ex[A
[u]
t ] < ∞,

Ex[u(Xt)] − u(x) + Nx(t, u) = Ex[A
[u]
t ].



We consider the condition for the default function to be vanishing.

Let U := {u : a positive subharmonic function |Ex[u(Xt)] <

∞(∀t > 0)a.e.x}.

Theorem. Let B(r) := {r(x) < r}.

If X is transient, u ∈ U and

lim inf
r→∞

1

r2
{log

∫
B(r))

uαdm + logm(B(r))} < ∞

for some α > 2, then u(Xt) is a submartingale under Px for a.e.x.

sketch of proof.

1◦. Let τr = inf{t > 0|Xt /∈ B(r)}. If

lim
r→∞

Ex[u(Xτr) : τr < t] = 0,

then Nx(t, u) = 0.



2◦. Estimate Ex[u(Xτr)].

Lem. Let x0 a point appearing in the assumption. If X is transient

and u is a positive subharmonic function, there exists a constant

C(x0) such that

Ex0 [u(Xτr)] ≤ C(x0){(
∫
B(r+1)

u(x)2dm)1/2 +

∫
B(r)

u(x)dm}.

3◦. Estimate Px(τr < t).

Lem. (Takeda’s inequality) Fix 1 > r0 > 0. If r > r0, there exists

c > 0 such that∫
B(r0)

Py(τr < t)dm(y) ≤ const.
m(B(r + 1))

r
e− cr2

t ,

4◦. Nx0(t0, u) = 0 for some x0, t0 implies Nx(t, u) = 0 for ∀t > 0

and a.e.x.



[Brownian motion case]

When M is a complete Riemannian manifold and (Xt, Px) is

Brownian motion on M, the Ricci curvature controls the conditions

in the above theorem.

Theorem. If there exists a constant C > 0 such that

Ric ≥ −Cr(x)2 −C and a positive subharmonic function u satisfies

lim inf
r→∞

1

r2
log

∫
B(r)

u(x)dv(x) < ∞,

then u(Xt) is a submartingale.



§3. L1 Liouville theorem.

[Known results]

1-1. Lp-Liouville theorem: (Yau ‘76, cf. P.Li-Schoen ‘84) If M is a

complete Riemannian manifold and a positive ∆-subharmonic

function u is Lp-integrable for some p > 1, u is constant.

1-2. Generalization in the context of Dirichlet form (T.Sturm ‘94).

Under our setting, if a positive L-subharmonic u satisfies∫ ∞ rdr∫
B(r)

updm
= ∞

for some p > 1, then u is constant.



2. L1-Liouville theorem. Let M be a complete Riemannian manifold

and u a positive ∆-subharmonic function.

Ricci curvature condition (P.Li ‘84 )

If M is a complete Riemannian manifold satisfying

Ric ≥ −Cr(x)2 − C for some C > 0 and u is L1, then u is

constant.

3. Weighted Lp-Liouville theorem. (Nadirashvili ‘85)

If

∫
M

f(u(x))

r(x)2 + 1
dv(x) < ∞ for a nonnegative function f on [0,∞)

satisfying

∫ ∞

0

1/f(t)dt < ∞, then u is constant.

∃p > 1 s.t.

∫
M

u(x)p

r(x)2 + 1
dv(x) < ∞ ⇒ u const.



[L1-Liouville theorem and submartingale property]

Prop. If u is a positive, integrable L-subharmonic function and u(Xt)

is a submartingale under Px for a.e. x, then u is constant. Namely

vanishing of default function of u implies L1-Liouville theorem.

Proof.

u(x) ≤ Ex[u(Xt)]

for all 0 < t and a.e. x.

tu(x) ≤
∫ t

0

Ex[u(Xs)]ds.

If X is recurrent, ratio ergodic theorem for recurrent Markov



processes implies

1

t
Ex[

∫ t

0

u(Xs)ds] →


∫
M u(x)dx

m(M)
( if m(M) < ∞),

0 ( if m(M) = ∞)

as t → ∞. In both cases u should be bounded. Then u is a constant.

If X is transient,
1

t
Ex[

∫ t

0

u(Xs)ds] → 0 as t → ∞ since

Ex[

∫ ζ

0

u(Xs)ds] < ∞ for an integrable function u where ζ is the

life time of X.



[Example]

The following example is originally due to Li-Schoen. We give a little

modification. Let M be a compact 2-dim Riemannian manifold with

a metric ds2
0, ∆M is the Laplacian defined from ds2

0 and X

Brownian motion on M with its generator
1

2
∆M . Fix o ∈ M . Set

g(o, x) = 2π

∫ ∞

0

(p(t, o, x) − 1

vol(M)
)dt + C,

where p(t, x, y) is the transition density of X and C is a positive

constant such that g(o, x) > 0 for all x ∈ M \ {o}. Remark that

g(x, y) ∼ log
1

d(x, y)2
(d(x, y) → 0). Note

1

2
∆Mg(o, x) = −2πδo(x) +

1

V ol(M)
.



Let M be M \ {o}. Take σ be a smooth function on M s.t.

σ(x) ∼ t−1(log
1

t
)−1(log log

1

t
)−α with 1/2 < α < 1

when t = dM(o, x) → 0.

Define a metric ds2 = σ2ds2
0 on M . Note that Laplacian ∆M

defined from ds2 has a form

∆M = σ−2∆M ,

where ∆M is defined from ds2
0. Let Xt be Brownian motion on M

with its generator
1

2
∆M . Then Xt is a time changed process of Xt

which is recurrent. Hence Xt is recurrent, in particular, conservative.



(M,ds2) satisfies

• complete and stochastically complete.

• M is of finite volume w.r.t ds2.

• u(x) := g(o, x) is a nonnegative smooth subharmonic function

on M and integrable w.r.t. ds2.

• the curvature ∼ −const.r
2α

1−α = −cr2+ϵ as r → ∞
(ϵ = (4α − 2)/(1 − α) > 0).

From these facts we see u(Xt) is a strictly local submartingale and

L1-Liouville property of M fails.



[Our results]

Theorem 1. Suppose Xt is transient and u is a nonnegative

L-subharmonic function.

i) Assume there exists α > 2 and 0 ≤ p < 1 such that

lim inf
r→∞

1

r2(1−p)
log{m(B(r))

∫
B(r)

u(x)αdm(x)} < ∞.

If ∫
M

u(x)

(1 + r(x))2p
dm(x) < ∞,

then u = 0.



ii) Assume there exists α > 2 such that

lim inf
r→∞

1

(log r)2
log{m(B(r))

∫
B(r)

u(x)αdm(x)} < ∞.

If ∫
M

u(x)

1 + r(x)2
dm(x) < ∞,

then u = 0.



[Brownian motion case]

When M is a complete Riemannian manifold and u is a nonnegative

∆-subharmonic function, using Ricci curvature condition enables us

to simplify the results as follows.

Theorem 2. Suppose Ric ≥ −Cr(x)2 − C.

i) Assume

lim inf
r→∞

1

r2(1−p)
log vol(B(r)) < ∞ (0 ≤ ∃p < 1).

If ∫
M

u(x)

(1 + r(x))2p
dv(x) < ∞,

then u is constant.



ii) Assume

lim inf
r→∞

1

(log r)2
log vol(B(r)) < ∞.

If ∫
M

u(x)

1 + r(x)2
dv(x) < ∞,

then u is constant.

Rem. When p = 0 in i), it implies P.Li’s Liouville theorem.

Proofs of Theorem 1 & 2. As for the case of p = 0 directly from the

submartingale property for u(Xt). For the other case use

time-change argument as follows. Let ρ(t) is a non-increasing,

positive function on (0,∞) such that

∫ ∞

0

ρ(t)1/2dt = ∞. Yt

defined by

Yt = X
ζ
−1
t

with ζt =

∫ t

0

ρ(r(Xs))ds.



Note that Yt has a generator
1

2
ρ(r(x))−1L which becomes a

self-adjoint operator on L2(ρ(r(x))dm). Define an exhaustion

function θ(x) on M by

θ(x) =

∫ r(x)

0

√
ρ(s)ds.

Then Γ(θ, θ) is bounded. Thus our argument as before is available.

Take ρ(t) = (1 + t)−2p with 0 ≤ p < 1 in case of i) and with p = 1

in case of ii).



§4. Liouville theorems for holomorphic maps.

Let M be a complete Kähler manifold, N a Hermitian manifold, and

f : M → N a holomorphic map. R(x) := inf
ξ∈TxM,||ξ||=1

Ric(ξ, ξ),

B(r) := {x ∈ M |r(x) < r}, K(y) : holomorphic bisectional

curvature of N .

Let e(x) := trgMf∗gN (energy density of f). Chern-Lu formula

implies

1

2
∆ log e(x) ≥ −K(f(x))e(x) + R−(x) if e(x) ̸= 0.

From this with modifying the method in the previous sections, we

have the following.



Theorem 3. Assume Brownian motion on M is transient. If

K(f(x)) ≤ −c0 for some c0 > 0,

∫
M

R−(x)dv(x) < ∞ and

lim inf
r→∞

1

r2
log{vol(B(r))

∫
B(r)

R−(x)2dv(x)} < ∞,

then f is constant.

Cor. If

∫
M

R−(x)dv(x) < ∞ and

lim inf
r→∞

1

r2
log{vol(B(r))

∫
B(r)

R−(x)2dv(x)} < ∞,

then every bounded holomorphic function on M is constant.



In recurrent case we have the following by assuming a Ricci curvature

condition.

Theorem 4. Assume R−(x) ≥ −Cr(x)2 − C for some C > 0 and

Brownian motion on M is recurrent. If K(f(x)) ≤ −c0 for c0 > 0,∫
M

|R(x)|dv(x) < ∞, and

∫
M

R(x)dv(x) ≥ 0,

then f is constant.

Rem. These results a generalization of a Liouville theorem due to

Li-Yau(‘90).



[Problems]

1. Non-symmetric case. Complex Laplacian L on non-Kähler,

Hermitian manifolds. L = ∆ + V . Girsanov formula does not seem

to work well.

2. Difference between the space of L1-harmonic functions and

L1-subharmonic functions.

3. L1-Liouville theorem on manifolds with topological constraint.

Murata and Tsuchida conjectures every L1-harmonic function on

comlete Riemannian manifolds with one end should be constant. Cf.

Grigoryan showed that every positive L1-superharmonic function on

M is constant if M is stochastically complete (i.e. Brownian motion

on M is consevative).


