Default functions and Liouville type theorems

Atsushi Atsuji

Keio University

17. Aug. 2016

[Plan of my talk]

 $\S{1}$ Default functions: definition and basic properties

§2 Submartingale properties of subharmonic functions : Symmetric diffusion cases

§3 L^1 - Liouville properties of subharmonic functions

 \S 4 Liouville theorems for holomorphic maps

Fix a filtered probability space $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$.

Let M_t be a <u>continuous</u> local martingale.

Def. If M_t is not a true martingale, we say M_t is a strictly local martingale.

 M_t is a (true) martingale $\Leftrightarrow E[M_T] = E[M_0]$ for $\forall T$: bounded stopping time.

"Local" property of M_t :

$$\gamma_T(M) := E[M_0] - E[M_T].$$

is called a default function (Elworthy- X.M.Li-Yor('99)).

Default formula : Assume that $E[|M_T|] < \infty$, $E[|M_0|] < \infty$ for a stopping time T and $\{M_{T \wedge S}^-; S:$ stopping times $\}$ is uniformly integrable. Set $M_t^* := \sup_{0 < s < t} M_s$.

 $E[M_T:M_T^*\leq\lambda]+\lambda P(M_T^*>\lambda)+E[(M_0-\lambda)_+]=E[M_0].$ Letting $\lambda o\infty$,

$$\gamma_T(M) = \lim_{\lambda \to \infty} \lambda P(\sup_{0 \le t \le T} M_t > \lambda).$$

Another quantity: $\sigma_T(M)$

Def.

$$\sigma_T(M) := \lim_{\lambda o \infty} \lambda P(\langle M
angle_T^{1/2} > \lambda).$$

Theorem (Elworthy-Li-Yor, Takaoka('99)) Assume that $E[|M_T|] < \infty, E[|M_0|] < \infty.$

$$\exists \gamma_T(M) = \sqrt{rac{\pi}{2}} \sigma_T(M).$$

Moreover $M_t^T := M_{T \wedge t}$ is a uniformly integrable martingale iff $\gamma_T(M) = \sigma_T(M) = 0.$

See also Azema-Gundy -Yor('80), Galtchouk-Novikov('97).

[Example]

 $R_t: d$ -dimensional Bessel process: $dR_t=db_t+rac{d-1}{2R_t}dt, \; R_0=r.$

If d > 2, then R_t^{2-d} is a strictly local martingale.

As for default function, if $R_0 = r$,

$$\gamma_t(R^{2-d}) = rac{1}{2^
u \Gamma(
u)} \int_0^t rac{du}{u^{1+
u}} \exp(-rac{r^2}{2u}),$$

where $d = 2(1 + \nu)$.

If d = 2, $\log R_t$ is a strictly local martingale.

$$\gamma_t(\log R) = rac{1}{2}\int_0^t rac{du}{u}\exp(-rac{r^2}{2u}).$$

[submartingale case]

Let $X_t = X_0 + M_t + A_t$ where M is a local martingale and A is an adapted increasing process.

Lem.(Default function for submartingale)

If X is positive and $E[A_T] < \infty$,

$$egin{aligned} &\lim_{\lambda o\infty}\lambda P(\sup_{0\leq t\leq T}X_t>\lambda) = \lim_{\lambda o\infty}\lambda P(\sup_{0\leq t\leq T}M_t>\lambda)\ &= E[X_0]-E[X_T]+E[A_T]. \end{aligned}$$

Example (stochastic Jensen's formula).

Let Z_t : BM(C) with $Z_0 = o$, $\tau_r = \inf\{t > 0 : |Z_t| > r\}$ and f be a non-constant holomorphic function on C, $f(o) \neq 0$. Set $X_t := \log |f(Z_{\tau_r \wedge t}) - a|^{-2}$: a local martingale bounded below.

$$\lim_{\lambda o \infty} \lambda P(\sup_{0 < t < au_r} X_t > \lambda) = \sum_{f(\zeta) = a, \; |\zeta| < r} 2\log rac{r}{|\zeta|}$$

From this we can see an essential relationship between Nevanlinna theory and complex Brownian motion (Carne(86), A.(95)).

Our question:

When is a local submartingale $u(X_t)$ a submartingale ?

§2 Submartingale property of subharmonic functions.

[Settings]

Let \mathcal{M} : a smooth manifold, m a Radon measure on \mathcal{M} with supp $m = \mathcal{M}$, (X_t, P_x) be a symmetric diffusion process defined from the Dirichlet form $(\mathcal{E}, \mathcal{F})$ with a core $\mathcal{C} \subset \mathcal{F} \cap C_o(\mathcal{M})$ where

$${\mathcal E}(u,v) = \int_{{\mathcal M}} \Gamma(u,v) dm \quad (u,v \in {\mathcal C}).$$

We have there exists L a s.a.operator on $L^2(m)$ such that

$$\mathcal{E}(u,v)=-\int_{\mathcal{M}}uLvdm ext{ for }u,v\in\mathcal{C}.$$

L is the generator of the diffusion.

Assume that

- $(\mathcal{E}, \mathcal{F})$ is a strongly local, irreducible regular Dirichlet form.
- the transition probability p(t, x, dy) is absolutely continuous w.r.t. m.
- there exists a nonnegative exhaustion function r(x) (i.e. $\{r(x) < r\}$: rel.cpt for $\forall r \ge 0$) such that $\Gamma(r(\cdot), r(\cdot))$ is bounded a.e.
- there exists $x_0 \in \mathcal{M}$ and $c_1(x_0), c_2(x_0) > 0$ such that $c_1(x_0) |\nabla u|^2 \geq \Gamma(u, u) \geq c_2(x_0) |\nabla u|^2$ for $\forall u \in \mathcal{C}$ on a neighborhood of x_0 .

Note that the first assumption implies a diffusion process corresponds to the Dirichlet form. **Typical Example :** Brownian motion on a complete, connected Riemannian manifold \mathcal{M} .

$$egin{aligned} L &= rac{1}{2}\Delta, \Gamma(u,u) = |
abla u|^2, r(x) = d(o,x), \ m &= ext{Riemannian volume } dv, \ p(t,x,dy) = p(t,x,y) dv(y) ext{ where} \ p(t,x,y) ext{ is the heat kernel of } \partial/\partial t - rac{1}{2}\Delta. \ \mathcal{F} &= H_0^1(\mathcal{M}) = \overline{C_0^\infty(\mathcal{M})}^{\mathcal{E}_1} ext{ where} \ \mathcal{E}_1(u,u) &= \mathcal{E}(u,u) + ||u||_{L^2(m)}^2. ext{ Note } \mathcal{C} = C_0^\infty(\mathcal{M}). \end{aligned}$$

[subharmonic function]

Def. u is (*L*-)subharmonic if $u \in \mathcal{F}_{loc}$ and $\mathcal{E}(\phi, u) \leq 0$ for $\forall \phi \geq 0, \phi \in \mathcal{F}$ with compact support.

It is well-known that $u(X_t)$ is a continuous local submartingale:

$$u(X_t) - u(x) = M_t^{[u]} + A_t^{[u]}$$
 P_x -a.s.

Def. Default function of $u(X_T)$

$$N_x(T,u) = \lim_{\lambda o \infty} \lambda P_x(\sup_{0 \le s \le T} u(X_s) > \lambda).$$

As before if u is positive subharmonic and $E_x[A_t^{[u]}] < \infty$,

$$E_x[u(X_t)] - u(x) + N_x(t,u) = E_x[A_t^{[u]}].$$

We consider the condition for the default function to be vanishing. Let $\mathcal{U} := \{u : a \text{ positive subharmonic function } |E_x[u(X_t)] < \infty(\forall t > 0)a.e.x\}.$

Theorem. Let $B(r) := \{r(x) < r\}.$

If X is transient, $u \in \mathcal{U}$ and

$$\liminf_{r \to \infty} \frac{1}{r^2} \{ \log \int_{B(r))} u^{\alpha} dm + \log m(B(r)) \} < \infty$$

for some $\alpha > 2$, then $u(X_t)$ is a submartingale under P_x for a.e.x. sketch of proof.

$$1^\circ.$$
 Let $au_r=\inf\{t>0|X_t
otin B(r)\}.$ If $\lim_{r o\infty}E_x[u(X_{ au_r}): au_r< t]=0,$

then $N_x(t,u) = 0$.

2°. Estimate $E_x[u(X_{\tau_r})]$.

Lem. Let x_0 a point appearing in the assumption. If X is transient and u is a positive subharmonic function, there exists a constant $C(x_0)$ such that

$$E_{x_0}[u(X_{ au_r})] \leq C(x_0) \{ (\int_{B(r+1)} u(x)^2 dm)^{1/2} + \int_{B(r)} u(x) dm \}.$$

3°. Estimate $P_x(\tau_r < t)$.

Lem. (Takeda's inequality) Fix $1 > r_0 > 0$. If $r > r_0$, there exists c > 0 such that

$$\int_{B(r_0)} P_y(\tau_r < t) dm(y) \le const. \frac{m(B(r+1))}{r} e^{-\frac{cr^2}{t}},$$

4°. $N_{x_0}(t_0, u) = 0$ for some x_0, t_0 implies $N_x(t, u) = 0$ for $\forall t > 0$ and a.e.x.

[Brownian motion case]

When \mathcal{M} is a complete Riemannian manifold and (X_t, P_x) is Brownian motion on \mathcal{M} , the Ricci curvature controls the conditions in the above theorem.

Theorem. If there exists a constant C > 0 such that $Ric \ge -Cr(x)^2 - C$ and a positive subharmonic function u satisfies $\liminf_{r \to \infty} \frac{1}{r^2} \log \int_{B(r)} u(x) dv(x) < \infty,$

then $u(X_t)$ is a submartingale.

§3. L^1 Liouville theorem.

[Known results]

1-1. L^p -Liouville theorem: (Yau '76, cf. P.Li-Schoen '84) If \mathcal{M} is a complete Riemannian manifold and a positive Δ -subharmonic function u is L^p -integrable for some p > 1, u is constant.

1-2. Generalization in the context of Dirichlet form (T.Sturm '94). Under our setting, if a positive L-subharmonic u satisfies

$$\int^\infty rac{r dr}{\int_{B(r)} u^p dm} = \infty$$

for some p > 1, then u is constant.

2. L^1 -Liouville theorem. Let \mathcal{M} be a complete Riemannian manifold and u a positive Δ -subharmonic function.

Ricci curvature condition (P.Li '84)

If \mathcal{M} is a complete Riemannian manifold satisfying $Ric \geq -Cr(x)^2 - C$ for some C > 0 and u is L^1 , then u is constant.

3. Weighted L^p -Liouville theorem. (Nadirashvili '85) If $\int_{\mathcal{M}} \frac{f(u(x))}{r(x)^2 + 1} dv(x) < \infty$ for a nonnegative function f on $[0, \infty)$ satisfying $\int_0^\infty 1/f(t)dt < \infty$, then u is constant. $\exists p > 1 \text{ s.t. } \int_{\mathcal{M}} \frac{u(x)^p}{r(x)^2 + 1} dv(x) < \infty \Rightarrow u \text{ const.}$

$[L^1$ -Liouville theorem and submartingale property]

Prop. If u is a positive, integrable L-subharmonic function and $u(X_t)$ is a submartingale under P_x for a.e. x, then u is constant. Namely vanishing of default function of u implies L^1 -Liouville theorem.

Proof.

$$u(x) \leq E_x[u(X_t)]$$

for all 0 < t and a.e. x.

$$tu(x) \leq \int_0^t E_x[u(X_s)]ds.$$

If X is recurrent, ratio ergodic theorem for recurrent Markov

processes implies

$$rac{1}{t}E_x[\int_0^t u(X_s)ds] o egin{cases} \displaystylerac{\int_{\mathcal{M}} u(x)dx}{m(\mathcal{M})} \ (ext{ if } m(\mathcal{M}) < \infty), \ 0 \ (ext{ if } m(\mathcal{M}) = \infty) \end{cases}$$

as $t \to \infty$. In both cases u should be bounded. Then u is a constant. If X is transient, $\frac{1}{t}E_x[\int_0^t u(X_s)ds] \to 0$ as $t \to \infty$ since $E_x[\int_0^\zeta u(X_s)ds] < \infty$ for an integrable function u where ζ is the life time of X.

[Example]

The following example is originally due to Li-Schoen. We give a little modification. Let \overline{M} be a compact 2-dim Riemannian manifold with a metric ds_0^2 , $\Delta_{\overline{M}}$ is the Laplacian defined from ds_0^2 and \overline{X} Brownian motion on \overline{M} with its generator $\frac{1}{2}\Delta_{\overline{M}}$. Fix $o \in \overline{M}$. Set

$$g(o,x)=2\pi\int_0^\infty (p(t,o,x)-rac{1}{vol(\overline{M})})dt+C,$$

where p(t, x, y) is the transition density of \overline{X} and C is a positive constant such that g(o, x) > 0 for all $x \in \overline{M} \setminus \{o\}$. Remark that $g(x, y) \sim \log \frac{1}{d(x, y)^2} \quad (d(x, y) \to 0)$. Note $\frac{1}{2}\Delta_{\overline{M}}g(o, x) = -2\pi\delta_o(x) + \frac{1}{Vol(\overline{M})}.$ Let M be $\overline{M} \setminus \{o\}$. Take σ be a smooth function on M s.t.

$$\sigma(x) \sim t^{-1} (\log rac{1}{t})^{-1} (\log \log rac{1}{t})^{-lpha}$$
 with $1/2 < lpha < 1$

when $t = d_{\overline{M}}(o, x) \to 0$.

Define a metric $ds^2 = \sigma^2 ds_0^2$ on M. Note that Laplacian Δ_M defined from ds^2 has a form

$$\Delta_M=\sigma^{-2}\Delta_{\overline{M}},$$

where $\Delta_{\overline{M}}$ is defined from ds_0^2 . Let X_t be Brownian motion on M with its generator $\frac{1}{2}\Delta_M$. Then X_t is a time changed process of \overline{X}_t which is recurrent. Hence X_t is recurrent, in particular, conservative.

 (M, ds^2) satisfies

- complete and stochastically complete.
- M is of finite volume w.r.t ds^2 .
- u(x) := g(o, x) is a nonnegative smooth subharmonic function on M and integrable w.r.t. ds^2 .

• the curvature
$$\sim -const.r^{\frac{2\alpha}{1-\alpha}} = -cr^{2+\epsilon}$$
 as $r \to \infty$
 $(\epsilon = (4\alpha - 2)/(1 - \alpha) > 0).$

From these facts we see $u(X_t)$ is a strictly local submartingale and L^1 -Liouville property of M fails.

[Our results]

Theorem 1. Suppose X_t is transient and u is a nonnegative L-subharmonic function.

i) Assume there exists lpha > 2 and $0 \le p < 1$ such that

$$\liminf_{r\to\infty}\frac{1}{r^{2(1-p)}}\log\{m(B(r))\int_{B(r)}u(x)^{\alpha}dm(x)\}<\infty.$$

lf

$$\int_{\mathcal{M}} \frac{u(x)}{(1+r(x))^{2p}} dm(x) < \infty,$$

then u = 0.

ii) Assume there exists $\alpha > 2$ such that

$$\liminf_{r
ightarrow\infty}rac{1}{(\log r)^2}\log\{m(B(r))\int_{B(r)}u(x)^lpha dm(x)\}<\infty.$$

lf

$$\int_{\mathcal{M}} \frac{u(x)}{1+r(x)^2} dm(x) < \infty,$$

then u = 0.

[Brownian motion case]

When \mathcal{M} is a complete Riemannian manifold and u is a nonnegative Δ -subharmonic function, using Ricci curvature condition enables us to simplify the results as follows.

Theorem 2. Suppose $Ric \ge -Cr(x)^2 - C$.

i) Assume

$$\liminf_{r o\infty} rac{1}{r^{2(1-p)}} \log vol(B(r)) < \infty \quad (0\leq \exists p<1).$$

lf

$$\int_M \frac{u(x)}{(1+r(x))^{2p}} dv(x) < \infty,$$

then u is constant.

ii) Assume

$$\liminf_{r\to\infty}\frac{1}{(\log r)^2}\log vol(B(r))<\infty.$$

lf

$$\int_M \frac{u(x)}{1+r(x)^2} dv(x) < \infty,$$

then u is constant.

Rem. When p = 0 in i), it implies P.Li's Liouville theorem.

Proofs of Theorem 1 & 2. As for the case of p = 0 directly from the submartingale property for $u(X_t)$. For the other case use time-change argument as follows. Let $\rho(t)$ is a non-increasing, positive function on $(0,\infty)$ such that $\int_0^\infty \rho(t)^{1/2} dt = \infty$. Y_t defined by

$$Y_t = X_{\zeta_t^{-1}}$$
 with $\zeta_t = \int_0^t
ho(r(X_s)) ds.$

Note that Y_t has a generator $\frac{1}{2}\rho(r(x))^{-1}L$ which becomes a self-adjoint operator on $L^2(\rho(r(x))dm)$. Define an exhaustion function $\theta(x)$ on \mathcal{M} by

$$heta(x) = \int_0^{r(x)} \sqrt{
ho(s)} ds.$$

Then $\Gamma(\theta, \theta)$ is bounded. Thus our argument as before is available. Take $\rho(t) = (1+t)^{-2p}$ with $0 \le p < 1$ in case of i) and with p = 1 in case of ii). $\S4$. Liouville theorems for holomorphic maps.

Let \mathcal{M} be a complete Kähler manifold, \mathcal{N} a Hermitian manifold, and $f: \mathcal{M} \to \mathcal{N}$ a holomorphic map. $R(x) := \inf_{\xi \in T_x \mathcal{M}, ||\xi||=1} Ric(\xi, \xi)$, $B(r) := \{x \in M | r(x) < r\}$, K(y): holomorphic bisectional curvature of \mathcal{N} .

Let $e(x) := tr_{g_{\mathcal{M}}} f^* g_{\mathcal{N}}$ (energy density of f). Chern-Lu formula implies

$$rac{1}{2}\Delta\log e(x)\geq -K(f(x))e(x)+R_{-}(x) ext{ if } e(x)
eq 0.$$

From this with modifying the method in the previous sections, we have the following.

Theorem 3. Assume Brownian motion on \mathcal{M} is transient. If $K(f(x)) \leq -c_0$ for some $c_0 > 0$, $\int_M R_-(x) dv(x) < \infty$ and

$$\liminf_{r o\infty}rac{1}{r^2}\log\{vol(B(r))\int_{B(r)}R_-(x)^2dv(x)\}<\infty,$$

then f is constant.

Cor. If
$$\int_{\mathcal{M}} R_{-}(x) dv(x) < \infty$$
 and
 $\liminf_{r \to \infty} \frac{1}{r^2} \log \{ vol(B(r)) \int_{B(r)} R_{-}(x)^2 dv(x) \} < \infty,$

then every bounded holomorphic function on \mathcal{M} is constant.

In recurrent case we have the following by assuming a Ricci curvature condition.

Theorem 4. Assume $R_{-}(x) \geq -Cr(x)^{2} - C$ for some C > 0 and Brownian motion on \mathcal{M} is recurrent. If $K(f(x)) \leq -c_{0}$ for $c_{0} > 0$,

$$\int_M |R(x)| dv(x) < \infty, ext{ and } \int_M R(x) dv(x) \geq 0,$$

then f is constant.

Rem. These results a generalization of a Liouville theorem due to Li-Yau('90).

[Problems]

1. Non-symmetric case. Complex Laplacian L on non-Kähler, Hermitian manifolds. $L = \Delta + V$. Girsanov formula does not seem to work well.

2. Difference between the space of L^1 -harmonic functions and L^1 -subharmonic functions.

3. L^1 -Liouville theorem on manifolds with topological constraint. Murata and Tsuchida conjectures every L^1 -harmonic function on comlete Riemannian manifolds with one end should be constant. Cf. Grigoryan showed that every positive L^1 -superharmonic function on \mathcal{M} is constant if \mathcal{M} is stochastically complete (i.e. Brownian motion on \mathcal{M} is consevative).