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Introduction

Basic set up

@ Random sample Y1, Y2,..., Y.

@ Regression model: Y; = X,-Tﬁ#—a,-, i=1,...,n.
o qv,(7|Xj) = X3 0<7<1,

e g, (7|X;)=0.
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Introduction

Basic set up

Random sample Y1, Ys,..., Y,.

Regression model: Y; = X,-Tﬁ +ei,i=1,...,n
qv.(TIX)) =XTB,0< 1< 1.

g, (71X;) = 0.

X;eR9, g>1fori=1,...,n.
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Introduction

Basic set up

Random sample Y1, Ys,..., Y,.

Regression model: Y; = X,-Tﬁ +ei,i=1,...,n
qv.(TIX)) =XTB,0< 1< 1.

g, (71X;) = 0.

X;eR9, g>1fori=1,...,n.

Objective: infer on 3.
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Introduction

Difference with usual regression

@ Usual regression models the mean of the random variable.
@ Only concerned with the measure of central tendency
@ quantile regression considers regressing any arbitrary quantile of Y on X.

@ more informative about the distribution of the random variable.
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Introduction
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Figure: 1995 ASA academic salary survey for full professors of Statistics
in U.S. colleges and universities
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Two frameworks:
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Introduction

Two frameworks:
@ g is fixed

@ g increases with n: high dimensional set up.
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Introduction

Posterior contraction

Posterior contraction rate r, !

There exists M > 0 such that

, In — OQ:

N (ra)|6 — bo]| > M|Y) 5 0
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Introduction

Bernstein-von Mises Theorem

@ In a regular parametric model, Bayesian and frequentist
distributions of /n(@ — @) are nearly equal for large sample
sizes and the common distribution is a Gausian distribution
with mean zero. Here 6 is the corresponding Bayes estimator
or the MLE or some other efficient estimator (in most cases).
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Introduction

Bernstein-von Mises Theorem

@ In a regular parametric model, Bayesian and frequentist
distributions of /n(@ — @) are nearly equal for large sample
sizes and the common distribution is a Gausian distribution
with mean zero. Here 6 is the corresponding Bayes estimator
or the MLE or some other efficient estimator (in most cases).

@ This is a great reconciliation of two very different ways of
quantifying uncertainties- frequentist and Bayes.
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o Consider a Bayesian quantile regression approach by putting a
prior on the coefficients of the regression function.
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Introduction

Contribution

o Consider a Bayesian quantile regression approach by putting a
prior on the coefficients of the regression function.

@ Establish a Bernstein-von Mises theorem for the posterior
distribution of 3.

q(log q)*/2

vn

@ Posterior contraction rate is
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@ Proposed model: Y;
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Model assumptions and prior specification

@ Proposed model: Y; =X/B+¢;,i=1,...,n.
o X; % G with density g.

@ E(X;) =0, E(X;X[) =1,

@ True model: Vi =X/ Bo+¢i,i=1,...,n.
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Model assumptions and prior specification

Proposed model: Y; =X/ B+¢;,i=1,...,n.
Xi % G with density g.

E(X;) =0, E(X;X]) = 1,.

True model: Y; :X,-T,80+5,-, i=1,...,n
Working distribution:

f(y,xIB) =7(1 — ) exp{—(y —x"B)(r — I(y < x"B)}g(x)
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Model assumptions and prior specification

@ Prior:

q

7(B17: 2o, A1) = [T = N)e(B120) + (81 M),

Jj=1

where ¥(8;|A) = 5 exp{—A[B;]}, Ao > A1
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Let us denote

™ (Bo -+ u/ V) Zo(u)

mh(u) =

J 7 (Bo + w/y/n) Zy(w)dw

and A, = =37, £5,(Yi, X;), where

n

Z,(u) = H

i=1

and )
eﬁo(yv X)

=/n(B — Bo),

Y,,x 1Bo + u/+/7)

\/17 X |50)

=X(r = I(Y < X" B)).
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[ i) = 6ol A1) a5 o,

where ¢q(; pt, X) stands for the pdf of a g-component Gaussian
distribution with mean g and covariance matrix 3.
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Results

Outline of the proof

The model is differentiable in quadratic mean, that is,

2
/ (fl/z(yaxlﬁo-i-u/ﬁ)—f1/2(y7x\ﬂ0)—f\lﬁuwﬁof”z(%xlﬁo)) dydx

_ o (vl
_O(n3/2 :
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Results
Let us denote

f(y,xBo +u/v/n)
p = f(y,X|ﬂ0)

T
3
[

Now we have the following lemma.

Lemma (Local asymptotic normality)

(i) For ||ul < q(log a)*2,
n 24657
n u
o8 [T 2207 %) = 723 w7 %) lulf+ 00 (12,
i=1

where q°* (log q)°/?/n®2 — 0.
(ii) For |lu]| < (qlog q)*/,

pr [lul**
IogH (Y,,X)—que@o(Y,,X)— lull® +Op { == 55— |,

where q°1 (log q)°1/2/n% — 0.

Prithwish Bhaumik quantile regression



Results

Let us denote Z,(u) = exp[u’ A, — ||lul[?/2] and
X; = (qlog )%/ /nf%.

Lemma

For any C > 0, there exists B’ > 0 such that for all sufficiently
large n, with any preassigned large probability

—1l
</ Zn(U)du> /
[ull<C(qlog q)1/2
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Results

Lemma
There exists By, €1 > 0 such that

2
E ‘21/2(111) — Zl/z(uz)’ < Bollus — wo|%, uy, up € n¥3(8 — Bo)

and

EZY?(u) < exp (—e1ful?).
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Forany 0 <d <1,

P{ [ 2aorm (B + ) u < n(n)’y | <483
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Lemma (Posterior consistency)

There exists C > 0 such that

E / mp(u)du | — 0asn — oo
[|ull>Cq(log q)*/2
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For any Co,c > 0, we can find By, C; > 0 such that with
probability approaching 1,

Z,(u)du < B, exp[—cqlog q].

/Cl(q log g)1/2<|u||<Gyq(log q)1/2
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Lemma (Estimate of tail probability)

For any ¢ > 0, there exists C > 0 such that with any preassigned
probability,

uj|>Cq
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