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Introduction
Model assumptions and prior specification

Results

Basic set up

Random sample Y1,Y2, . . . ,Yn.

Regression model: Yi = XT
i β + εi , i = 1, . . . , n.

qYi
(τ |Xi ) = XT

i β, 0 < τ < 1.

qεi (τ |Xi ) = 0.

Xi ∈ Rq, q ≥ 1 for i = 1, . . . , n.

Objective: infer on β.
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Results

Difference with usual regression

Usual regression models the mean of the random variable.

Only concerned with the measure of central tendency

quantile regression considers regressing any arbitrary quantile of Y on X.

more informative about the distribution of the random variable.
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Figure: 1995 ASA academic salary survey for full professors of Statistics
in U.S. colleges and universities
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Two frameworks:

q is fixed

q increases with n: high dimensional set up.
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Results

Posterior contraction

Posterior contraction rate r−1
n , rn →∞:

There exists M > 0 such that

Π (rn‖θ − θ0‖ > M|Y)
P→ 0
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Model assumptions and prior specification

Results

Bernstein-von Mises Theorem

In a regular parametric model, Bayesian and frequentist
distributions of

√
n(θ − θ̂) are nearly equal for large sample

sizes and the common distribution is a Gausian distribution
with mean zero. Here θ̂ is the corresponding Bayes estimator
or the MLE or some other efficient estimator (in most cases).

This is a great reconciliation of two very different ways of
quantifying uncertainties- frequentist and Bayes.
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Model assumptions and prior specification

Results

Contribution

Consider a Bayesian quantile regression approach by putting a
prior on the coefficients of the regression function.

Establish a Bernstein-von Mises theorem for the posterior
distribution of β.

Posterior contraction rate is q(log q)1/2
√
n

.
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Results

Proposed model: Yi = XT
i β + εi , i = 1, . . . , n.

Xi
iid∼ G with density g .

E(Xi ) = 0, E(XiX
T
i ) = Iq.

True model: Yi = XT
i β0 + εi , i = 1, . . . , n.

Working distribution:

f (y , x|β) = τ(1− τ) exp{−(y − xTβ)(τ − I (y ≤ xTβ)}g(x)

.
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Prior

Prior:

π(β|γ, λ0, λ1) =

q∏
j=1

[(1− γ)ψ(βj |λ0) + γψ(βj |λ1)] ,

where ψ(βj |λ) = λ
2 exp{−λ|βj |}, λ0 � λ1.
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Model assumptions and prior specification

Results

Let us denote

π∗n (u) =
π
(
β0 + u/

√
n
)
Zn(u)∫

π
(
β0 + w/

√
n
)
Zn(w)dw

and ∆n = 1√
n

∑n
i=1

˙̀
β0(Yi ,Xi ), where

u =
√
n(β − β0),

Zn(u) =
n∏

i=1

f
(
Yi ,Xi |β0 + u/

√
n
)

f (Yi ,Xi |β0)

and
˙̀
β0(Y ,X) = X(τ − I (Y ≤ XTβ0)).
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Results

Theorem ∫
|π∗n(u)− φq(u;∆n, Iq)| du

P→ 0,

where φq(;µ,Σ) stands for the pdf of a q-component Gaussian
distribution with mean µ and covariance matrix Σ.
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Outline of the proof

The model is differentiable in quadratic mean, that is,

∫ (
f 1/2(y , x|β0 + u/

√
n)− f 1/2(y , x|β0)−

1

2
√
n

uT ˙̀
β0

f 1/2(y , x|β0)

)2

dydx

= O

(
‖u‖3

n3/2

)
.
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Let us denote

pn = f (y , x|β0 + u/
√
n)

p = f (y , x|β0)

(1)

Now we have the following lemma.

Lemma (Local asymptotic normality)

(i) For ‖u‖ . q(log q)1/2,

log
n∏

i=1

pn
p
(Yi ,Xi ) =

1√
n

n∑
i=1

uT ˙̀
β0(Yi ,Xi )−

1

2
‖u‖2 + OP

(
‖u‖2+δ1

nδ2

)
,

where qδ1(log q)δ1/2/nδ2 → 0.
(ii) For ‖u‖ . (q log q)1/2,

log
n∏

i=1

pn
p
(Yi ,Xi ) =

1√
n

n∑
i=1

uT ˙̀
β0(Yi ,Xi )−

1

2
‖u‖2 + OP

(
‖u‖2+δ∗1

nδ
∗
2

)
,

where qδ
∗
1 (log q)δ

∗
1 /2/nδ

∗
2 → 0.
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Let us denote Z̃n(u) = exp[uT∆n − ‖u‖2/2] and
λ∗n = (q log q)δ

∗
1 /2/nδ

∗
2 .

Lemma

For any C > 0, there exists B ′ > 0 such that for all sufficiently
large n, with any preassigned large probability(∫

Z̃n(u)du

)−1 ∫
‖u‖≤C(q log q)1/2

∣∣∣Zn(u)− Z̃n(u)
∣∣∣ du ≤ B ′qλ∗n.
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Lemma

There exists B0, ε1 > 0 such that

E
∣∣∣Z 1/2(u1)− Z 1/2(u2)

∣∣∣2 ≤ B0‖u1 − u2‖2, u1, u2 ∈ n1/2(β − β0)

and
EZ

1/2
n (u) ≤ exp

(
−ε1‖u‖2

)
.

Prithwish Bhaumik quantile regression



Introduction
Model assumptions and prior specification

Results

Lemma

For any 0 < δ < 1,

P

{∫
Zn(u)π

(
β0 +

u√
n

)
du < π(β0)

δq

4

}
≤ 4B

1/2
0 δ.
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Lemma (Posterior consistency)

There exists C > 0 such that

E

(∫
‖u‖>Cq(log q)1/2

π∗n(u)du

)
→ 0 as n→∞

.
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Lemma

For any C2, c > 0, we can find B2,C1 > 0 such that with
probability approaching 1,∫

C1(q log q)1/2≤‖u‖≤C2q(log q)1/2
Zn(u)du ≤ B2 exp[−cq log q].
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Lemma (Estimate of tail probability)

For any c > 0, there exists C > 0 such that with any preassigned
probability, ∫

‖u‖>Cq1/2
φq(u;∆n, Iq) ≤ exp[−cq].
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