

Bayesian Network Regularized Regression for Crime Modeling

Luis Carvalho Joint work with Liz Upton Dept. of Mathematics and Statistics Boston University lecarval@math.bu.edu

BU-Keio Workshop, August 2016

Introduction

A motivating example: residential burglary in Boston

Introduction

A motivating example: residential burglary in Boston

Potential goals:

• Understanding crime rates: covariates? predictions?

Introduction

A motivating example: residential burglary in Boston

Potential goals:

- Understanding crime rates: covariates? predictions?
- Identifying "hot zones" for intervention

• Data description: \sim 7K crimes occurring from July 2012 to October 2015 in Boston, provided by data.cityofboston.gov

- Reported occurrences are pooled in time and by intersection
- Covariates: averaged tax income, district type, distance to nearest police station
- Network with \sim 13K nodes, provided by boston.opendata.arcgis.com

• Data description: \sim 7K crimes occurring from July 2012 to October 2015 in Boston, provided by data.cityofboston.gov

- Reported occurrences are pooled in time and by intersection
- Covariates: averaged tax income, district type, distance to nearest police station
- Network with \sim 13K nodes, provided by boston.opendata.arcgis.com
- First take: for v in a network (undirected simple graph) G,

$$Y_v \stackrel{\text{iid}}{\sim} \mathsf{Po}\Big[\exp\left(\mathbf{x}_v^\top \beta\right)\Big]$$

• Data description: \sim 7K crimes occurring from July 2012 to October 2015 in Boston, provided by data.cityofboston.gov

- Reported occurrences are pooled in time and by intersection
- Covariates: averaged tax income, district type, distance to nearest police station
- Network with \sim 13K nodes, provided by boston.opendata.arcgis.com
- First take: for v in a network (undirected simple graph) G,

$$Y_v \stackrel{\text{iid}}{\sim} \mathsf{Po}\Big[\exp\left(\mathbf{x}_v^\top \beta\right)\Big]$$

but:

• Crime rates are not spatially homogeneous

• Data description: \sim 7K crimes occurring from July 2012 to October 2015 in Boston, provided by data.cityofboston.gov

- Reported occurrences are pooled in time and by intersection
- Covariates: averaged tax income, district type, distance to nearest police station
- Network with \sim 13K nodes, provided by boston.opendata.arcgis.com
- First take: for v in a network (undirected simple graph) G,

$$Y_v \stackrel{\text{iid}}{\sim} \mathsf{Po}\Big[\exp\left(\mathbf{x}_v^\top \beta\right)\Big]$$

but:

- Crime rates are not spatially homogeneous
- Crime rates can vary sharply

• Addressing the first issue,

$$Y_v \stackrel{\text{ind}}{\sim} \mathsf{Po}\Big[\exp\left(\mathbf{x}_v^\top \beta(v)\right)\Big]$$

where β is now network indexed

• Addressing the first issue,

$$Y_v \stackrel{\text{ind}}{\sim} \mathsf{Po}\Big[\exp\left(\mathbf{x}_v^\top \beta(v)\right)\Big]$$

where β is now network indexed

To avoid overfitting, we impose smoothness on β, e.g., under a single intercept model,

$$\widehat{\boldsymbol{\beta}} := \underset{\boldsymbol{\beta}}{\arg\min} \|\mathbf{Y} - \boldsymbol{\beta}\|_{2}^{2} + \lambda \|\boldsymbol{M}\boldsymbol{\beta}\|_{2}^{2}$$
$$= \underset{\boldsymbol{\beta}}{\arg\min} D(\mathbf{Y};\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^{\top} \boldsymbol{M}^{\top} \boldsymbol{M}\boldsymbol{\beta}$$

where M is a differential operator and λ is a roughness penalty

• Addressing the first issue,

$$Y_v \stackrel{\text{ind}}{\sim} \mathsf{Po}\Big[\exp\left(\mathbf{x}_v^\top \beta(v)\right)\Big]$$

where β is now network indexed

To avoid overfitting, we impose smoothness on β, e.g., under a single intercept model,

$$\widehat{\boldsymbol{\beta}} := \underset{\boldsymbol{\beta}}{\arg\min} \|\mathbf{Y} - \boldsymbol{\beta}\|_{2}^{2} + \lambda \|\boldsymbol{M}\boldsymbol{\beta}\|_{2}^{2}$$
$$= \underset{\boldsymbol{\beta}}{\arg\min} D(\mathbf{Y}; \boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^{\top} \boldsymbol{M}^{\top} \boldsymbol{M}\boldsymbol{\beta}$$

where M is a differential operator and λ is a roughness penalty

 Similar works: network kernel-based regression (Smola and Kondor, 2003; Kolaczyk, 2009), and, more generally, functional data analysis (Ramsay and Silverman, 1996) • For network indexed coefficients, with *M* the oriented weighted incidence matrix:

$$\beta^{\top} M^{\top} M \beta := \beta^{\top} L_w \beta = \sum_{(u,v) \in E(G)} w_{uv} (\beta(u) - \beta(v))^2$$

i.e., L_w is weighted Laplacian

• For network indexed coefficients, with *M* the oriented weighted incidence matrix:

$$\beta^{\top} M^{\top} M \beta := \beta^{\top} L_w \beta = \sum_{(u,v) \in E(G)} w_{uv} (\beta(u) - \beta(v))^2$$

i.e., L_w is weighted Laplacian

• With $L_w := \Phi \Xi \Phi^{\top}$, $\Xi := \text{Diag}_{i=1,...,|V(G)|}(\xi_i)$, we adopt a basis expansion for β , $\beta = \Phi_{1:k}\theta$, $k \leq |V(G)|$, so the penalty becomes:

$$\beta^{\top} L_w \beta = \theta^{\top} \Phi_{1:k}^{\top} \Phi \Xi \Phi^{\top} \Phi_{1:k} \theta = \theta^{\top} \mathsf{Diag}_{i=1,\dots,k}(\xi_i) \theta$$

• For network indexed coefficients, with *M* the oriented weighted incidence matrix:

$$\beta^{\top} M^{\top} M \beta := \beta^{\top} L_w \beta = \sum_{(u,v) \in E(G)} w_{uv} (\beta(u) - \beta(v))^2$$

i.e., L_w is weighted Laplacian

• With $L_w := \Phi \Xi \Phi^{\top}$, $\Xi := \text{Diag}_{i=1,...,|V(G)|}(\xi_i)$, we adopt a basis expansion for β , $\beta = \Phi_{1:k}\theta$, $k \leq |V(G)|$, so the penalty becomes:

$$\beta^{\top} L_w \beta = \theta^{\top} \Phi_{1:k}^{\top} \Phi \Xi \Phi^{\top} \Phi_{1:k} \theta = \theta^{\top} \mathsf{Diag}_{i=1,\dots,k}(\xi_i) \theta$$

• Under a Bayesian formulation, $\widehat{\beta}$ is the posterior mode when

$$Y_{v} \mid \theta \stackrel{\text{ind}}{\sim} \mathsf{Po} \Big[\exp \left(\phi_{kv}^{\top} \theta \right) \Big]$$
$$\theta \sim N \Big(0, \mathsf{Diag}_{i=1,\dots,k} \big\{ (\lambda \xi_{i})^{-1} \big\} \Big)$$

Toy example: $\mathbf{Y} = (10, 2, 3, 4)$, vertex 1 connected to triangle with vertices 2, 3, and 4, $w(u, v) \propto \exp\{-d(u, v)/2\}I[d(u, v) > 0]$, and

$$D = \begin{bmatrix} 0 & 10 & 0 & 0 \\ 10 & 0 & 5 & 3 \\ 0 & 5 & 0 & 2 \\ 0 & 3 & 2 & 0 \end{bmatrix}, \quad L = \begin{bmatrix} 0.02 & -0.02 & 0 & 0 \\ -0.02 & 0.85 & -0.22 & -0.61 \\ 0 & -0.22 & 1.22 & -1 \\ 0 & -0.61 & -1 & 1.61 \end{bmatrix}$$

• Addressing the issue of abrupt rate changes,

$$Y_{v} \mid \zeta, \beta, Z_{v} \stackrel{\text{ind}}{\sim} \mathsf{Po} \Big[\exp \Big(Z_{v} \zeta + (1 - Z_{v}) \mathbf{x}_{v}^{\top} \beta(v) \Big) \Big]$$
$$Z_{v} \mid \gamma \stackrel{\text{ind}}{\sim} \mathsf{Bern} \Big[\text{logit}^{-1} \Big(\mathbf{u}_{v}^{\top} \gamma(v) \Big) \Big]$$

where:

- ζ is the "background" crime rate
- Z_v codes for v being in a "hot zone", also varying smoothly
- Both β and γ are network indexed and assume a basis expansion as before

• Addressing the issue of abrupt rate changes,

$$Y_{v} \mid \zeta, \beta, Z_{v} \stackrel{\text{ind}}{\sim} \mathsf{Po} \Big[\exp \Big(Z_{v} \zeta + (1 - Z_{v}) \mathbf{x}_{v}^{\top} \beta(v) \Big) \Big]$$
$$Z_{v} \mid \gamma \stackrel{\text{ind}}{\sim} \mathsf{Bern} \Big[\text{logit}^{-1} \Big(\mathbf{u}_{v}^{\top} \gamma(v) \Big) \Big]$$

where:

- ζ is the "background" crime rate
- Z_v codes for v being in a "hot zone", also varying smoothly
- Both β and γ are network indexed and assume a basis expansion as before
- Using basis coefficients, $\mathbf{x}_v^\top \beta(v) \to D_X(v)^\top \theta$ and $\mathbf{u}_v^\top \gamma(v) \to D_U(v)^\top \omega$,

$$Y_{v} \mid \zeta, \theta, Z_{v} \stackrel{\text{ind}}{\sim} \mathsf{Po}\Big[\exp\Big(Z_{v}\zeta + (1 - Z_{v})D_{X}(v)^{\top}\theta\Big)\Big]$$
$$Z_{v} \mid \omega \stackrel{\text{ind}}{\sim} \mathsf{Bern}\Big[\operatorname{logit}^{-1}\Big(D_{U}(v)^{\top}\omega\Big)\Big]$$

- Quick methodological recap:
 - Network regularized regression as a building block,

$$Y_{v} \mid \theta \stackrel{\text{ind}}{\sim} \mathbf{F} \Big[g^{-1} \big(D_{X}(v)^{\top} \theta \big) \Big], \quad \theta \sim N \big(0, \lambda_{\theta}^{-1} \Omega(X, L_{w}(G))^{-} \big)$$

• Change regions using latent network-indexed indicators Z and conditional responses

$$Z_{v} \mid \omega \stackrel{\text{ind}}{\sim} \mathsf{Bern}\Big[\mathsf{logit}^{-1} \big(D_{U}(v)^{\top} \omega \big) \Big], \quad \omega \sim N\big(0, \lambda_{\omega}^{-1} \Omega(U, L_{w}(G))^{-} \big)$$

- Quick methodological recap:
 - Network regularized regression as a building block,

$$Y_{v} \mid \theta \stackrel{\text{ind}}{\sim} \mathbf{F} \Big[g^{-1} \big(D_{X}(v)^{\top} \theta \big) \Big], \quad \theta \sim N \big(0, \lambda_{\theta}^{-1} \Omega(X, L_{w}(G))^{-} \big)$$

• Change regions using latent network-indexed indicators Z and conditional responses

$$Z_{v} \mid \omega \stackrel{\text{ind}}{\sim} \mathsf{Bern}\Big[\mathsf{logit}^{-1} \big(D_{U}(v)^{\top} \omega \big) \Big], \quad \omega \sim N\big(0, \lambda_{\omega}^{-1} \Omega(U, L_{w}(G))^{-} \big)$$

- There are now two main practical problems:
 - How to define the hyper-parameters controlling the smoothness of β and $\gamma?$

- Quick methodological recap:
 - Network regularized regression as a building block,

$$Y_{v} \mid \theta \stackrel{\text{ind}}{\sim} \mathbf{F} \Big[g^{-1} \big(D_{X}(v)^{\top} \theta \big) \Big], \quad \theta \sim N \big(0, \lambda_{\theta}^{-1} \Omega(X, L_{w}(G))^{-} \big)$$

• Change regions using latent network-indexed indicators Z and conditional responses

$$Z_v \mid \omega \stackrel{\text{ind}}{\sim} \mathsf{Bern}\Big[\mathrm{logit}^{-1} \big(D_U(v)^\top \omega \big) \Big], \quad \omega \sim N\big(0, \lambda_\omega^{-1} \Omega(U, L_w(G))^- \big)$$

- There are now two main practical problems:
 - How to define the hyper-parameters controlling the smoothness of β and $\gamma?$
 - How to fit this model *efficiently* for large scale datasets?

• Three main sets of hyper-parameters: $\theta \sim N(0, \lambda^{-1}\Omega(X, L_w(G))^{-})$, where $\Omega(X, L_w(G)) := D_X^{\top} L_w D_X$ and D_X depends on $\Phi_{1:k}$

- Three main sets of hyper-parameters: $\theta \sim N(0, \lambda^{-1}\Omega(X, L_w(G))^{-})$, where $\Omega(X, L_w(G)) := D_X^{\top} L_w D_X$ and D_X depends on $\Phi_{1:k}$
- To define L_w we need a measure of similarity as weights in G: in our application, we use $w(u, v) \propto \exp\{-d(u, v)/\psi\}$ and set the "network range" ψ such that median similarity is 0.8

- Three main sets of hyper-parameters: $\theta \sim N(0, \lambda^{-1}\Omega(X, L_w(G))^{-})$, where $\Omega(X, L_w(G)) := D_X^{\top} L_w D_X$ and D_X depends on $\Phi_{1:k}$
- To define L_w we need a measure of similarity as weights in G: in our application, we use $w(u, v) \propto \exp\{-d(u, v)/\psi\}$ and set the "network range" ψ such that median similarity is 0.8
- Penalty λ and basis rank k can be defined jointly using leave-one-out cross-validation via PRESS working residuals ("LOOP")

Crime Counts: Predicted and Actual Pearson Residuals 10 9 Latent Variable = 0 Latent Variable = 1 ω 4 9 Residuals Predicted • ł \sim 4 0 N ٩ 0 0 5 10 15 20 25 -3 -2 Actual

• Summary

- Summary
 - Network regularization is useful in a number of applications and can be more suitable than other types of regularization

- Summary
 - Network regularization is useful in a number of applications and can be more suitable than other types of regularization
 - Methodology can be used as a building block for more elaborated models

- Summary
 - Network regularization is useful in a number of applications and can be more suitable than other types of regularization
 - Methodology can be used as a building block for more elaborated models
 - Main concern: representative models and computational efficiency

- Summary
 - Network regularization is useful in a number of applications and can be more suitable than other types of regularization
 - Methodology can be used as a building block for more elaborated models
 - Main concern: representative models and computational efficiency
- New challenges

- Summary
 - Network regularization is useful in a number of applications and can be more suitable than other types of regularization
 - Methodology can be used as a building block for more elaborated models
 - Main concern: representative models and computational efficiency
- New challenges
 - Refinements and extensions: dynamic model, basis selection, covariance structure

- Summary
 - Network regularization is useful in a number of applications and can be more suitable than other types of regularization
 - Methodology can be used as a building block for more elaborated models
 - Main concern: representative models and computational efficiency
- New challenges
 - Refinements and extensions: dynamic model, basis selection, covariance structure
 - Other applications in Biology, Epidemiology, and Engineering

- Summary
 - Network regularization is useful in a number of applications and can be more suitable than other types of regularization
 - Methodology can be used as a building block for more elaborated models
 - Main concern: representative models and computational efficiency
- New challenges
 - Refinements and extensions: dynamic model, basis selection, covariance structure
 - Other applications in Biology, Epidemiology, and Engineering
 - Bayesian *network* regression (for topology inference)

- Summary
 - Network regularization is useful in a number of applications and can be more suitable than other types of regularization
 - Methodology can be used as a building block for more elaborated models
 - Main concern: representative models and computational efficiency
- New challenges
 - Refinements and extensions: dynamic model, basis selection, covariance structure
 - Other applications in Biology, Epidemiology, and Engineering
 - Bayesian *network* regression (for topology inference)

Thank you!

