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but:

• Crime rates are not spatially homogeneous

• Crime rates can vary sharply
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• To avoid overfitting, we impose smoothness on β, e.g., under a single

intercept model,

β̂ := argmin
β

‖Y − β‖22 + λ‖Mβ‖22

= argmin
β

D(Y;β) + λβ⊤M⊤Mβ

where M is a differential operator and λ is a roughness penalty

• Similar works: network kernel-based regression (Smola and Kondor,

2003; Kolaczyk, 2009), and, more generally, functional data analysis

(Ramsay and Silverman, 1996)
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β⊤M⊤Mβ := β⊤Lwβ =
∑

(u,v)∈E(G)

wuv(β(u)− β(v))2

i.e., Lw is weighted Laplacian

• With Lw := ΦΞΦ⊤, Ξ := Diagi=1,...,|V (G)|(ξi), we adopt a basis

expansion for β, β = Φ1:kθ, k ≤ |V (G)|, so the penalty becomes:

β⊤Lwβ = θ⊤Φ⊤
1:kΦΞΦ

⊤Φ1:kθ = θ⊤Diagi=1,...,k(ξi)θ

• Under a Bayesian formulation, β̂ is the posterior mode when

Yv | θ
ind
∼ Po

[
exp

(
φkv

⊤θ
)]

θ ∼ N
(
0,Diagi=1,...,k

{
(λξi)

−1})



Network Regularized Regression

Toy example: Y = (10, 2, 3, 4), vertex 1 connected to triangle with vertices

2, 3, and 4, w(u, v) ∝ exp{−d(u, v)/2}I[d(u, v) > 0], and

D =




0 10 0 0
10 0 5 3
0 5 0 2
0 3 2 0


 , L =




0.02 −0.02 0 0
−0.02 0.85 −0.22 −0.61
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where:

• ζ is the “background” crime rate

• Zv codes for v being in a “hot zone”, also varying smoothly

• Both β and γ are network indexed and assume a basis expansion

as before

• Using basis coefficients, x⊤
v β(v) → DX(v)⊤θ and u

⊤
v γ(v) → DU (v)

⊤ω,

Yv | ζ, θ, Zv
ind
∼ Po

[
exp

(
Zvζ + (1− Zv)DX(v)⊤θ

)]

Zv |ω
ind
∼ Bern

[
logit−1

(
DU (v)

⊤ω
)]
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• There are now two main practical problems:

• How to define the hyper-parameters controlling the smoothness of

β and γ?

• How to fit this model efficiently for large scale datasets?
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• Three main sets of hyper-parameters: θ ∼ N
(
0, λ−1Ω(X,Lw(G))

−
)

,

where Ω(X,Lw(G)) := D⊤
XLwDX and DX depends on Φ1:k

• To define Lw we need a measure of similarity as weights in G: in our

application, we use w(u, v) ∝ exp{−d(u, v)/ψ} and set the “network

range” ψ such that median similarity is 0.8

• Penalty λ and basis rank k can be defined jointly using leave-one-out

cross-validation via PRESS working residuals (“LOOP”)
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Model Fitting
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• Summary

• Network regularization is useful in a number of applications and

can be more suitable than other types of regularization

• Methodology can be used as a building block for more elaborated

models

• Main concern: representative models and computational efficiency

• New challenges

• Refinements and extensions: dynamic model, basis selection,

covariance structure

• Other applications in Biology, Epidemiology, and Engineering

• Bayesian network regression (for topology inference)

Thank you!
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