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Symmetric location problem

Yi = µ+ εi, εi
iid∼ η(·) (unknown)

If η is symmetric, efficient and adaptive estimation of µ is possible.
[Beran, 1974; Stone 1975; ...]

Linear regression [Bickel, 1982]:

µ = xT
i θ, θ ∈ Rp, i = 1, . . . , n.

For Bayesian, the semi-parametric Bernstein-von Mises (BvM)
theorem holds. [Chae, Kim and Kleijn, 2016]

We study a Bayesian approach when p is large.
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Bayesian paradigm

A parameter θ is generated acoording to a prior distribution Π.

Conditional on θ, the data X is generated according to a density pθ.

For given observed data X, statistical inferences are based on the
posterior distribution:

dΠ(θ|X) ∝ pθ(X)dΠ(θ).

Typically, the posterior distribution can be approximated via MCMC.
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Bayesian asymptotics

A frequentist would like to know their performance in a frequentist
viewpoint.

Assume that the data X1, . . . ,Xn is generated according to a given
parameter θ0 and consider the posterior Π(θ ∈ ·|X1, . . . ,Xn).

For large enough n, we want Π(θ ∈ ·|X1, . . . ,Xn) to put most of its
mass near θ0 for most X1, . . . ,Xn.

For infinite dimensional θ, the choice of the prior is important.
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Parametric Bernstein-von Mises theorem

Assume that a parametric model P = {Pθ : θ ∈ Θ} is regular and
X1, . . . ,Xn

iid∼ Pθ0 , where θ0 ∈ Θ.

THEOREM (Bernstein-von Mises) [Le Cam and Yang, 1990] For any
prior with positive density around θ0,∥∥∥Π(·|X1, . . . ,Xn)− N

(
θ̂n, I−1

θ0
/n
)∥∥∥

TV

P→ 0,

where θ̂n is an efficient estimator for θ and Iθ0 is the Fisher
information matrix.

The Bayesian credible interval is a standard confidence interval.
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Parametric BvM: Illustration

θ ∼ Beta(5, 1), X1, . . . ,Xn|θ
iid∼ Bernoulli(θ), θ0 = 1/2
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Semi-parametric BvM (fixed p)

Yi = xT
i θ + εi, εi

iid∼ η(·) (unknown)

Put a symmetrized Dirichlet process (DP) mixture prior on η.

THEOREM [Chae, Kim and Kleijn, 2016] For any prior on θ, with
positive density around θ0,∥∥∥Π(θ ∈ ·|X1, . . . ,Xn)− N

(
θ̂n, I−1

θ0,η0
/n
)∥∥∥

TV

P→ 0,

where θ̂n is an efficient estimator for θ and Iθ0,η0 is the efficient
information matrix.

What if p is large?
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Sparse linear model

Consider the linear regression model

Yi = xT
i θ + εi, i = 1, . . . , n

where θ = (θ1, . . . , θp)T and possibly p� n.

Simply, Y = Xθ + ε.

A sparse model assumes that most of θi’s are (nearly) zero.

We apply full Bayesian procedures, and express the sparsity in priors.
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Sparse prior

A prior ΠΘ for θ ∈ Rp can be constructed as follows:

1 (Dimension) Choose s from prior πp on {0, 1, . . . , p}.
2 (Model) Choose S ⊂ {0, 1, . . . , p} of size |S| = s at random.

3 (Nonzero coeff.) Choose θS = (θi)i∈S from density gS on R|S|
and set θSc = 0.

Formally,

(S, θ) 7→ πp(s)
1(p
s

)gS(θS)δ0(θSc).

Prior πp on the dimension controls the level of sparsity.
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Sparse prior: example

Spike and slab [Ishwaran and Rao 2005; and many authors]

s ∼ Binomial(p, r)

for some r ∈ (0, 1), similarly,

θi ∼ (1− r)δ0 + rG, ∀i ≤ p

for some continuous distribution G.

Good asymptotic properties if r ∼ Beta(1, pu) for some u > 1 and tail
of G is as thick as Laplace. [Castillo and van der Vaart, 2015]
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Sparse prior: example

Complexity prior [Castillo and van der Vaart, 2012]

πp(s) ∝ c−sp−as, s = 0, 1, . . . , p

for some constants a, c > 0.

Roughly,

πp(s) ∝
(

p
s

)−1

, for s� p.

15 / 38



Other priors

Continuous shrinkage priors that peaks near zero.

Typically, scale mixtures of normals: for i = 1, . . . , p,

θi|τ 2, λ2
i ∼ N(0, τ 2λ2

i ), λ2
i ∼ πλ(λ2

i ), , τ 2 ∼ πτ (τ 2).

1 Bayesian Lasso [Park and Casella, 2008]

2 Horseshoe [Carvalho, Polson and Scott, 2010]

3 Normal-gamma [Griffin and Brown, 2010]

4 Generalized double Pareto [Amagan, Dunson and Lee, 2013]

5 Dirichlet-Laplace [Bhattacharya et al., 2016]

6 ...
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Gaussian model

Yi = xT
i θ + εi, i = 1, . . . , n.

Assume that εi
i.i.d.∼ η for some density η ∈ H.

Usually it is assumed that η(y) = φσ(y) because of

1 computational simplicity, and

2 good theoretical properties.

Some properties (e.g. consistency and rate) tend to be robust to
misspecification.
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Key problems

Yi = xT
i θ + εi, i = 1, . . . , n.

Assume that εi’s are not really normally distributed.

Key problems caused from model misspecification:

1 (Efficiency) Asymptotic variance of
√

n(θ̂i − θi) can be large.

2 (Uncertainty quantification) Credible sets do not give valid
confidence. [Kleijn and van der Vaart, 2012]

3 (Selection) Misspecification might result in serious overfitting.
[Grünwald and Ommen, 2014]

Good remedy : semi-parametric modelling.
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Key problems: example
[Grünwald and Ommen, 2014]

Yi = θint + θ1xi + θ2x2
i + · · ·+ θpxp

i + εi, θ0 = 0 ∈ Rp+1
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Frequentist’s method for fixed p

Yi = xT
i θ + εi, εi ∼ η.

There is an efficient estimator for θ. [Bickel, 1982]

One way to get an efficient estimator is:

1 Find an initial n−1/2-consistent estimator θ̃n.

2 Estimate the score function with perturbed sample

ε̃i = Yi − θ̃T
n Xi.

3 Solve the score equation using one step Newton-Raphson
iteration.

Does it work if p� n?
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Bayesian method for fixed p

Yi = xT
i θ + εi, εi ∼ η.

Put a symmetrized DP mixture prior ΠH on η:

η(y) =

∫
φσ(y− z)dF(z, σ), F ∼ DP(α),

and dF(z, σ) =
dF(z, σ) + dF(−z, σ)

2
.

Then, the BvM theorem holds. [Chae, Kim and Kleijn, 2016]

Inference: Gibbs sampler algorithm
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Bayesian inference

Yi = xT
i θ + εi ⇔ Yi = xT

i θ + zi + σiε̃i

εi ∼ η (zi, σi) ∼ F, ε̃i ∼ N(0, 1)

Inference can be done through Gibbs sampler algorithm:

1 For given (zi, σi)i≤n, θ can be sampled as in the Gaussian model.

2 For given θ, (zi, σi)i≤n can be sampled as in the DPM model.

Additional computational burden by semi-parametric modelling
depends only on n. ⇒ Feasible when p� n!
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Goal: frequentist properties (p� n)

Assume fixed design X, and responce vector Y is really generated
from a given (θ0, η0), possibly p� n.

We want (marginal) posterior Π(θ ∈ ·|Y):

1 (Recovery) to put most of its mass around θ0

2 (Uncertainty quantification) to express remaining uncertainty

3 (Selection) to find the true nonzero set S0 of θ0

4 (Adaptation) to adapt unknwon sparsity level and error density

with high Pθ0,η0-probability.
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Prior for θ

The probability πp(s) decrease exponentially:
[Castillo and van der Vaart, 2012; 2015]

(i) for some constants A1,A2,A3,A4 > 0,

A1p−A3πp(s− 1) ≤ πp(s) ≤ A2p−A4πp(s− 1), s = 1, . . . , p

Tails of nonzero coeff. are as thick as Laplace distribution:
[Castillo and van der Vaart, 2012; van der Pas et al., 2016]

(ii) gS(θ) = ⊗i∈Sg(θi), g(θi) ∝ eλ|θi| and λ satisfies
√

n
p
≤ λ ≤

√
n log p.
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Prior for η

Put a symmetrized DP mixture prior ΠH on η [Chae, Kim and Kleijn,
2016] :

η(y) =

∫
φσ(y− z)dF(z, σ), F ∼ DP(α),

and dF(z, σ) =
dF(z, σ) + dF(−z, σ)

2
.

Assume that supp(α) ⊂ [−M,M]× [σ1, σ2] for some positive
constants M and σ1 < σ2.
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Design matrix

Assume unifomrly bounded covariates: |xij| . 1.

Define uniform compatibility numbers

φ2(s) = inf
{

sθ‖Xθ‖2
2

n‖θ‖2
1

: 0 < sθ ≤ s
}

and restricted eigenvalues

ψ2(s) = inf
{
‖Xθ‖2

2

n‖θ‖2
2

: 0 < sθ ≤ s
}
.

φ(Ks0) & 1 (ψ(Ks0) & 1, resp.) for some const. K > 1 is sufficient
for the recovery of θ in `1- (`2-, resp.) norm.
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Design matrix: examples

By C-S inequality, φ(s) ≥ ψ(s).

ψ(s) & 1 in many examples:

1 Typically, ψ(s) ≥ const.− s maxi 6=j corr(xi, xj). [Lounici, 2008]

2 If xij’s are i.i.d. random variables, then ψ(s) & 1 with high
probability for s .

√
n/ log p. [Cai and Jiang, 2011]

3 If p = n and corr(xi, xj) = ρ|i−j| for some ρ ∈ (0, 1), then
ψ(p) & 1. [Zhao and Yu, 2006]

There are some examples such that φ(s) & 1 but not for ψ(s). [van de
Geer and Bühlmann, 2009]
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Asymptotic: dimension

THEOREM [Chae, Lin and Dunson, 2016] If λ‖θ0‖1 . s0 log p and
s0 log p� n, then

EΠ
(
sθ > Ks0

∣∣ Y
)
→ 0

for some constant K > 1.

Small value of λ is preferred for large ‖θ0‖1.
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Asymptotic: consistency

d2
n((θ, η), (θ0, η0)) =

1
n

n∑
i=1

d2
H(pθ,η,i, pθ0,η0,i).

Mean Hellinger distance dn allows to construct certain exponentially
consistent tests for independent observations. [Birgé, 1983; Ghosal
and van der Vaart 2007]

THEOREM [Chae, Lin and Dunson, 2016] If, furthermore,
φ(Ks0) & p−1, then

EΠ

(
dn((θ, η), (θ0, η0)) &

√
s0 log p

n

∣∣∣ Y
)
→ 0.
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Asymptotic: consistency (cont.)

THEOREM [Chae, Lin and Dunson, 2016] Under the previous
conditions,

EΠ

(
dH(η, η0) &

√
s0 log p

n

∣∣∣ Y
)
→ 0.

If, furthermore, s2
0 log p/φ2(Ks0)� n, then

EΠ

(
‖θ − θ0‖1 &

s0

φ(Ks0)

√
log p

n

∣∣∣ Y
)
→ 0

EΠ

(
‖θ − θ0‖2 &

1
ψ(Ks0)

√
s0 log p

n

∣∣∣ Y
)
→ 0

EΠ

(
‖X(θ − θ0)‖2 &

√
s0 log p

∣∣∣ Y
)
→ 0.
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Asymptotic: LAN

rn(θ, η) = Ln(θ, η)− Ln(θ0, η)

−
{√

n(θ − θ0)TGn ˙̀
θ0,η0 −

n
2

(θ − θ0)TVn,η0(θ − θ0)
}

THEOREM [Chae, Lin and Dunson, 2016] If s0 log p� n1/6, then

sup
θ∈Θn

sup
η∈Hn

|rn(θ, η)| = oP(1),

where Π(Θn ×Hn|Y)→ 1 in probability.
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Asymptotic: BvM theorem

Let Nn,S be the |S|-dimensional normal dist’n to which an efficient
estimator

√
n(θ̂S − θ0

S) converges in dist’n.

THEOREM [Chae, Lin and Dunson, 2016] If, furthermore,
λs0
√

log p�
√

n and ψ(Ks0) & 1, then

sup
S∈Sn

sup
B

∣∣Π(
√

n(θS − θ0,S) ∈ B|Y, Sθ = S)−Nn,S(B)
∣∣ = oP(1),

where Π(Sθ ∈ Sn|Y)→ 1 in probability.

Posterior dist’n of nonzero coeff. is asymptotically a mixture of
normal dist’n.
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Asymptotic: selection

THEOREM [Chae, Lin and Dunson, 2016] Under the previous
conditions,

Π(Sθ ) S0|Y)→ 0

in probability.

The true non-zero coeff. can be selected if every non-zero coeff. is not
very small (beta-min condition).
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Discussion

• Condition s0 log p� n1/6 is required due to semi-parametric
bias.

• If η is known (may not be a Gaussian) and p = s0, the condition
may be reduced to s0 � n1/3, and this cannot be improved.
[Panov and Spokoiny, 2015]

• In some parametric models, s0 � n1/6 is required for BvM
theorem. [Ghosal, 2000]

• Results can be extended to more general prior, i.e., M, σ1 →∞
and σ1 → 0, but sub-Gaussian tail of ˙̀

η0 is (maybe) essential in
selection. [Kim and Jeon, 2016]
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