Bayesian Sparse Linear Regression with Unknown Symmetric Error

Minwoo Chae¹

Joint work with Lizhen Lin² David B. Dunson³

¹Department of Mathematics, The University of Texas at Austin

²Department of Statistics and Data Sciences, The University of Texas at Austin

³Department of Statistical Science, Duke University

June 17, 2016

BU-KEIO 2016 Workshop

Outline

1 Introduction

- 2 Sparse linear model
- 3 Linear model with unknwon error distribution
- 4 Asymptotic results

Outline

1 Introduction

- 2 Sparse linear model
- 3 Linear model with unknwon error distribution
- 4 Asymptotic results

Symmetric location problem

$$Y_i = \mu + \epsilon_i, \quad \epsilon_i \stackrel{\text{iid}}{\sim} \eta(\cdot) \text{ (unknown)}$$

If η is symmetric, efficient and adaptive estimation of μ is possible. [Beran, 1974; Stone 1975; ...]

Linear regression [Bickel, 1982]:

$$\mu = x_i^T \theta, \quad \theta \in \mathbb{R}^p, \quad i = 1, \dots, n.$$

For Bayesian, the semi-parametric Bernstein-von Mises (BvM) theorem holds. [Chae, Kim and Kleijn, 2016]

We study a Bayesian approach when p is large.

Bayesian paradigm

A parameter θ is generated according to a prior distribution Π .

Conditional on θ , the data X is generated according to a density p_{θ} .

For given observed data *X*, statistical inferences are based on the posterior distribution:

 $d\Pi(\theta|X) \propto p_{\theta}(X) d\Pi(\theta).$

Typically, the posterior distribution can be approximated via MCMC.

Bayesian asymptotics

A frequentist would like to know their performance in a frequentist viewpoint.

Assume that the data X_1, \ldots, X_n is generated according to a given parameter θ_0 and consider the posterior $\Pi(\theta \in \cdot | X_1, \ldots, X_n)$.

For large enough *n*, we want $\Pi(\theta \in \cdot | X_1, \ldots, X_n)$ to put most of its mass near θ_0 for most X_1, \ldots, X_n .

Parametric Bernstein-von Mises theorem

Assume that a parametric model $\mathscr{P} = \{P_{\theta} : \theta \in \Theta\}$ is regular and $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} P_{\theta_0}$, where $\theta_0 \in \Theta$.

THEOREM (Bernstein-von Mises) [Le Cam and Yang, 1990] For any prior with positive density around θ_0 ,

$$\left\| \Pi(\cdot|X_1,\ldots,X_n) - N(\hat{\theta}_n,I_{\theta_0}^{-1}/n) \right\|_{TV} \xrightarrow{P} 0,$$

where $\hat{\theta}_n$ is an efficient estimator for θ and I_{θ_0} is the Fisher information matrix.

The Bayesian credible interval is a standard confidence interval.

Parametric BvM: Illustration

$$\theta \sim \text{Beta}(5,1), \quad X_1, \dots, X_n | \theta \stackrel{iid}{\sim} \text{Bernoulli}(\theta), \quad \theta_0 = 1/2$$

Bayesian asymptotics

A frequentist would like to know their performance in a frequentist viewpoint.

Assume that the data X_1, \ldots, X_n is generated according to a given parameter θ_0 and consider the posterior $\Pi(\theta \in \cdot | X_1, \ldots, X_n)$.

For large enough *n*, we want $\Pi(\theta \in \cdot | X_1, \ldots, X_n)$ to put most of its mass near θ_0 for most X_1, \ldots, X_n .

For infinite dimensional θ , the choice of the prior is important.

Semi-parametric BvM (fixed *p*)

$$Y_i = x_i^T \theta + \epsilon_i, \quad \epsilon_i \stackrel{\text{iid}}{\sim} \eta(\cdot) \text{ (unknown)}$$

Put a symmetrized Dirichlet process (DP) mixture prior on η .

THEOREM [Chae, Kim and Kleijn, 2016] For any prior on θ , with positive density around θ_0 ,

$$\left\|\Pi(\theta\in\cdot|X_1,\ldots,X_n)-N(\hat{\theta}_n,I_{\theta_0,\eta_0}^{-1}/n)\right\|_{TV}\xrightarrow{P}0,$$

where $\hat{\theta}_n$ is an efficient estimator for θ and I_{θ_0,η_0} is the efficient information matrix.

What if *p* is large?

Outline

1 Introduction

2 Sparse linear model

- 3 Linear model with unknwon error distribution
- 4 Asymptotic results

Sparse linear model

Consider the linear regression model

$$Y_i = x_i^T \theta + \epsilon_i, \quad i = 1, \dots, n$$

where $\theta = (\theta_1, \ldots, \theta_p)^T$ and possibly $p \gg n$.

Simply, $\mathbf{Y} = \mathbf{X}\theta + \boldsymbol{\epsilon}$.

A sparse model assumes that most of θ_i 's are (nearly) zero.

We apply full Bayesian procedures, and express the sparsity in priors.

Sparse prior

A prior Π_{Θ} for $\theta \in \mathbb{R}^p$ can be constructed as follows:

- **1** (Dimension) Choose *s* from prior π_p on $\{0, 1, \ldots, p\}$.
- 2 (Model) Choose $S \subset \{0, 1, ..., p\}$ of size |S| = s at random.
- (Nonzero coeff.) Choose θ_S = (θ_i)_{i∈S} from density g_S on ℝ^{|S|} and set θ_{S^c} = 0.

Formally,

$$(S, \theta) \mapsto \pi_p(s) \frac{1}{\binom{p}{s}} g_S(\theta_S) \delta_0(\theta_{S^c}).$$

Prior π_p on the dimension controls the level of sparsity.

Sparse prior: example

Spike and slab [Ishwaran and Rao 2005; and many authors]

 $s \sim \text{Binomial}(p, r)$

for some $r \in (0, 1)$, similarly,

$$\theta_i \sim (1-r)\delta_0 + rG, \quad \forall i \le p$$

for some continuous distribution G.

Good asymptotic properties if $r \sim \text{Beta}(1, p^u)$ for some u > 1 and tail of *G* is as thick as Laplace. [Castillo and van der Vaart, 2015]

Sparse prior: example

Complexity prior [Castillo and van der Vaart, 2012]

$$\pi_p(s) \propto c^{-s} p^{-as}, \quad s=0,1,\ldots,p$$

for some constants a, c > 0.

Roughly,

$$\pi_p(s) \propto {\binom{p}{s}}^{-1}, \quad \text{for } s \ll p.$$

Other priors

Continuous shrinkage priors that peaks near zero.

Typically, scale mixtures of normals: for i = 1, ..., p,

$$heta_i | \tau^2, \lambda_i^2 \sim N(0, \tau^2 \lambda_i^2), \quad \lambda_i^2 \sim \pi_\lambda(\lambda_i^2), \quad , \tau^2 \sim \pi_\tau(\tau^2).$$

- 1 Bayesian Lasso [Park and Casella, 2008]
- 2 Horseshoe [Carvalho, Polson and Scott, 2010]
- 3 Normal-gamma [Griffin and Brown, 2010]
- 4 Generalized double Pareto [Amagan, Dunson and Lee, 2013]
- 5 Dirichlet-Laplace [Bhattacharya et al., 2016]
- 6 ...

Outline

- 1 Introduction
- 2 Sparse linear model
- 3 Linear model with unknwon error distribution
- 4 Asymptotic results

Gaussian model

$$Y_i = x_i^T \theta + \epsilon_i, \quad i = 1, \dots, n.$$

Assume that $\epsilon_i \overset{i.i.d.}{\sim} \eta$ for some density $\eta \in \mathcal{H}$.

Usually it is assumed that $\eta(y) = \phi_{\sigma}(y)$ because of

- 1 computational simplicity, and
- 2 good theoretical properties.

Some properties (*e.g.* consistency and rate) tend to be robust to misspecification.

Key problems

$$Y_i = x_i^T \theta + \epsilon_i, \quad i = 1, \dots, n.$$

Assume that ϵ_i 's are not really normally distributed.

Key problems caused from model misspecification:

- **1** (Efficiency) Asymptotic variance of $\sqrt{n}(\hat{\theta}_i \theta_i)$ can be large.
- 2 (Uncertainty quantification) Credible sets do not give valid confidence. [Kleijn and van der Vaart, 2012]
- (Selection) Misspecification might result in serious overfitting. [Grünwald and Ommen, 2014]

Key problems: example

[Grünwald and Ommen, 2014]

$$Y_i = \theta_{\text{int}} + \theta_1 x_i + \theta_2 x_i^2 + \dots + \theta_p x_i^p + \epsilon_i, \quad \theta_0 = \mathbf{0} \in \mathbb{R}^{p+1}$$

Key problems

$$Y_i = x_i^T \theta + \epsilon_i, \quad i = 1, \dots, n.$$

Assume that ϵ_i 's are not really normally distributed.

Key problems caused from model misspecification:

- **1** (Efficiency) Asymptotic variance of $\sqrt{n}(\hat{\theta}_i \theta_i)$ can be large.
- 2 (Uncertainty quantification) Credible sets do not give valid confidence. [Kleijn and van der Vaart, 2012]
- (Selection) Misspecification might result in serious overfitting.
 [Grünwald and Ommen, 2014]

Good remedy : semi-parametric modelling.

Frequentist's method for fixed p

$$Y_i = x_i^T \theta + \epsilon_i, \quad \epsilon_i \sim \eta.$$

There is an efficient estimator for θ . [Bickel, 1982]

One way to get an efficient estimator is:

- 1 Find an initial $n^{-1/2}$ -consistent estimator $\tilde{\theta}_n$.
- 2 Estimate the score function with perturbed sample

$$\tilde{\epsilon}_i = Y_i - \tilde{\theta}_n^T X_i.$$

3 Solve the score equation using one step Newton-Raphson iteration.

Does it work if $p \gg n$?

Bayesian method for fixed *p*

$$Y_i = x_i^T \theta + \epsilon_i, \quad \epsilon_i \sim \eta$$

Put a symmetrized DP mixture prior $\Pi_{\mathcal{H}}$ on η :

$$\eta(\mathbf{y}) = \int \phi_{\sigma}(\mathbf{y} - z) d\overline{F}(z, \sigma), \quad F \sim \mathrm{DP}(\alpha),$$

and $d\overline{F}(z, \sigma) = \frac{dF(z, \sigma) + dF(-z, \sigma)}{2}.$

Then, the BvM theorem holds. [Chae, Kim and Kleijn, 2016]

Inference: Gibbs sampler algorithm

Bayesian inference

$$Y_i = x_i^T \theta + \epsilon_i \quad \Leftrightarrow \quad Y_i = x_i^T \theta + z_i + \sigma_i \tilde{\epsilon}_i$$

$$\epsilon_i \sim \eta \qquad (z_i, \sigma_i) \sim F, \quad \tilde{\epsilon}_i \sim N(0, 1)$$

Inference can be done through Gibbs sampler algorithm:

- **1** For given $(z_i, \sigma_i)_{i \le n}$, θ can be sampled as in the Gaussian model.
- 2 For given θ , $(z_i, \sigma_i)_{i \le n}$ can be sampled as in the DPM model.

Additional computational burden by semi-parametric modelling depends only on n. \Rightarrow Feasible when $p \gg n!$

Outline

- 1 Introduction
- 2 Sparse linear model
- 3 Linear model with unknwon error distribution
- 4 Asymptotic results

Goal: frequentist properties ($p \gg n$)

Assume fixed design **X**, and responce vector **Y** is really generated from a given (θ_0, η_0) , possibly $p \gg n$.

We want (marginal) posterior $\Pi(\theta \in \cdot | \mathbf{Y})$:

- 1 (Recovery) to put most of its mass around θ_0
- 2 (Uncertainty quantification) to express remaining uncertainty
- (Selection) to find the true nonzero set S_0 of θ_0

4 (Adaptation) to adapt unknown sparsity level and error density with high P_{θ_0,η_0} -probability.

Prior for θ

The probability $\pi_p(s)$ decrease exponentially: [Castillo and van der Vaart, 2012; 2015]

(i) for some constants $A_1, A_2, A_3, A_4 > 0$,

$$A_1 p^{-A_3} \pi_p(s-1) \le \pi_p(s) \le A_2 p^{-A_4} \pi_p(s-1), \quad s = 1, \dots, p$$

Tails of nonzero coeff. are as thick as Laplace distribution: [Castillo and van der Vaart, 2012; van der Pas et al., 2016] (ii) $g_S(\theta) = \bigotimes_{i \in S} g(\theta_i), g(\theta_i) \propto e^{\lambda |\theta_i|}$ and λ satisfies

$$\frac{\sqrt{n}}{p} \le \lambda \le \sqrt{n \log p}.$$

Prior for η

Put a symmetrized DP mixture prior $\Pi_{\mathcal{H}}$ on η [Chae, Kim and Kleijn, 2016] :

$$\begin{split} \eta(\mathbf{y}) &= \int \phi_{\sigma}(\mathbf{y}-z) d\overline{F}(z,\sigma), \quad F \sim \mathrm{DP}(\alpha), \\ \text{and} \quad d\overline{F}(z,\sigma) &= \frac{dF(z,\sigma) + dF(-z,\sigma)}{2}. \end{split}$$

Assume that supp $(\alpha) \subset [-M, M] \times [\sigma_1, \sigma_2]$ for some positive constants *M* and $\sigma_1 < \sigma_2$.

Design matrix

Assume uniformly bounded covariates: $|x_{ij}| \leq 1$.

Define uniform compatibility numbers

$$\phi^2(s) = \inf\left\{\frac{s_{\theta} \|\mathbf{X}\theta\|_2^2}{n\|\theta\|_1^2} : 0 < s_{\theta} \le s\right\}$$

and restricted eigenvalues

$$\psi^2(s) = \inf \left\{ \frac{\|\mathbf{X}\theta\|_2^2}{n\|\theta\|_2^2} : 0 < s_{\theta} \le s \right\}.$$

 $\phi(Ks_0) \gtrsim 1 \ (\psi(Ks_0) \gtrsim 1, \text{ resp.})$ for some const. K > 1 is sufficient for the recovery of θ in ℓ_1 - (ℓ_2 -, resp.) norm.

Design matrix: examples

By C-S inequality, $\phi(s) \ge \psi(s)$.

 $\psi(s) \gtrsim 1$ in many examples:

- **1** Typically, $\psi(s) \ge \text{const.} s \max_{i \neq j} \text{corr}(\mathbf{x}_i, \mathbf{x}_j)$. [Lounici, 2008]
- 2 If x_{ij} 's are *i.i.d.* random variables, then $\psi(s) \gtrsim 1$ with high probability for $s \lesssim \sqrt{n/\log p}$. [Cai and Jiang, 2011]
- 3 If p = n and $\operatorname{corr}(\mathbf{x}_i, \mathbf{x}_j) = \rho^{|i-j|}$ for some $\rho \in (0, 1)$, then $\psi(p) \gtrsim 1$. [Zhao and Yu, 2006]

There are some examples such that $\phi(s) \gtrsim 1$ but not for $\psi(s)$. [van de Geer and Bühlmann, 2009]

Asymptotic: dimension

THEOREM [Chae, Lin and Dunson, 2016] If $\lambda \|\theta_0\|_1 \leq s_0 \log p$ and $s_0 \log p \ll n$, then

$$\mathbb{E}\Pi\big(s_{\theta} > Ks_0 \mid \mathbf{Y}\big) \to 0$$

for some constant K > 1.

Small value of λ is preferred for large $\|\theta_0\|_1$.

Asymptotic: consistency

$$d_n^2((heta,\eta),(heta_0,\eta_0)) = rac{1}{n}\sum_{i=1}^n d_H^2(p_{ heta,\eta,i},p_{ heta_0,\eta_0,i}).$$

Mean Hellinger distance d_n allows to construct certain exponentially consistent tests for independent observations. [Birgé, 1983; Ghosal and van der Vaart 2007]

THEOREM [Chae, Lin and Dunson, 2016] If, furthermore, $\phi(Ks_0) \gtrsim p^{-1}$, then

$$\mathbb{E}\Pi\left(d_n((\theta,\eta),(\theta_0,\eta_0))\gtrsim \sqrt{\frac{s_0\log p}{n}} \mid \mathbf{Y}\right) \to 0.$$

Asymptotic: consistency (cont.)

THEOREM [Chae, Lin and Dunson, 2016] Under the previous conditions,

$$\mathbb{E}\Pi\left(d_H(\eta,\eta_0)\gtrsim \sqrt{\frac{s_0\log p}{n}}\mid \mathbf{Y}\right)\to 0.$$

If, furthermore, $s_0^2 \log p / \phi^2(Ks_0) \ll n$, then

$$\mathbb{E}\Pi\left(\|\theta - \theta_0\|_1 \gtrsim \frac{s_0}{\phi(Ks_0)}\sqrt{\frac{\log p}{n}} \mid \mathbf{Y}\right) \to 0$$
$$\mathbb{E}\Pi\left(\|\theta - \theta_0\|_2 \gtrsim \frac{1}{\psi(Ks_0)}\sqrt{\frac{s_0\log p}{n}} \mid \mathbf{Y}\right) \to 0$$
$$\mathbb{E}\Pi\left(\|X(\theta - \theta_0)\|_2 \gtrsim \sqrt{s_0\log p} \mid \mathbf{Y}\right) \to 0.$$

Asymptotic: LAN

$$r_n(\theta,\eta) = L_n(\theta,\eta) - L_n(\theta_0,\eta) - \left\{ \sqrt{n}(\theta-\theta_0)^T \mathbb{G}_n \dot{\ell}_{\theta_0,\eta_0} - \frac{n}{2} (\theta-\theta_0)^T V_{n,\eta_0} (\theta-\theta_0) \right\}$$

THEOREM [Chae, Lin and Dunson, 2016] If $s_0 \log p \ll n^{1/6}$, then

$$\sup_{\theta\in\Theta_n}\sup_{\eta\in\mathcal{H}_n}|r_n(\theta,\eta)|=o_P(1),$$

where $\Pi(\Theta_n \times \mathcal{H}_n | \mathbf{Y}) \to 1$ in probability.

Asymptotic: BvM theorem

Let $\mathcal{N}_{n,S}$ be the |S|-dimensional normal dist'n to which an efficient estimator $\sqrt{n}(\hat{\theta}_S - \theta_S^0)$ converges in dist'n.

THEOREM [Chae, Lin and Dunson, 2016] If, furthermore, $\lambda s_0 \sqrt{\log p} \ll \sqrt{n}$ and $\psi(Ks_0) \gtrsim 1$, then

 $\sup_{S\in\mathcal{S}_n}\sup_{B}\left|\Pi(\sqrt{n}(\theta_S-\theta_{0,S})\in B|\mathbf{Y},S_{\theta}=S)-\mathcal{N}_{n,S}(B)\right|=o_P(1),$

where $\Pi(S_{\theta} \in S_n | \mathbf{Y}) \to 1$ in probability.

Posterior dist'n of nonzero coeff. is asymptotically a mixture of normal dist'n.

Asymptotic: selection

THEOREM [Chae, Lin and Dunson, 2016] **Under the previous** conditions,

$$\Pi(S_\theta \supseteq S_0 | \mathbf{Y}) \to 0$$

in probability.

The true non-zero coeff. can be selected if every non-zero coeff. is not very small (beta-min condition).

Discussion

- Condition $s_0 \log p \ll n^{1/6}$ is required due to semi-parametric bias.
- If η is known (may not be a Gaussian) and p = s₀, the condition may be reduced to s₀ ≪ n^{1/3}, and this cannot be improved.
 [Panov and Spokoiny, 2015]
- In some parametric models, s₀ ≪ n^{1/6} is required for BvM theorem. [Ghosal, 2000]
- Results can be extended to more general prior, *i.e.*, $M, \sigma_1 \rightarrow \infty$ and $\sigma_1 \rightarrow 0$, but sub-Gaussian tail of $\dot{\ell}_{\eta_0}$ is (maybe) essential in selection. [Kim and Jeon, 2016]

Selected references

- [1] Castillo, I., Schmidt-Hieber, J., and van der Vaart, A. W. (2015). Bayesian linear regression with sparse priors. *Ann. Statist.*
- [2] Chae, M. (2015). The semiparametric Bernstein-von Mises theorem for models with symmetric error. PhD thesis, Seoul National University. arXiv.
- [3] Chae, M., Kim, Y., and Kleijn, B. J. K. (2016). The semi-parametric Bernstein-von Mises theorem for regression models with symmetric errors. *arXiv.*
- [4] Chae, M., Lin, L., and Dunson, D. B. (2016). Bayesian sparse linear regression with unknown symmetric error. *arXiv*.
- [5] Grünwald, P. and van Ommen, T. (2014). Inconsistency of Bayesian inference for misspecified linear models, and a proposal for repairing it. *arXiv*.
- [6] Hanson, D. L. and Wright, F. T. (1971). A bound on tail probabilities for quadratic forms in independent random variables. *Ann. Math. Statist.*
- [7] Pollard, D. (2001). Bracketing methods. Unpublished manuscript. Available at http://www.stat.yale.edu/~pollard/Books/Asymptopia/Bracketing.pdf.
- [8] van de Geer, S. A. and Bühlmann, P. (2009). On the conditions used to prove oracle results for the Lasso. *Electron. J. Statist.*