
Introduction

Motivation

CAT(0),
CAT(k) and
Curvature

α-Metric

β-Metric

Applications

Summary

Statistical analysis by tuning curvature
of data spaces

Kei Kobayashi (Keio University, JST PRESTO)

16/Aug/2016 @RIMS
Joint work with Henry P. Wynn (London School of Economics)

arXiv:1401.3020 [math.ST]

1 / 44



Introduction

Motivation

CAT(0),
CAT(k) and
Curvature

α-Metric

β-Metric

Applications

Summary

Outline

1 Introduction

2 Motivation

3 CAT(0), CAT(k) and Curvature

4 α-Metric

5 β-Metric

6 Applications

7 Summary

2 / 44



Introduction

Motivation

CAT(0),
CAT(k) and
Curvature

α-Metric

β-Metric

Applications

Summary

Mean (Center) of Population: Japan

Question: Where is the mean (center) of the population of
Japan?

Set every person’s coordinate (xi , yi) for i = 1, . . . ,N ,
then the mean is

(x̄ , ȳ) =
(
1
N

∑
i xi ,

1
N

∑
i yi

)
.

= Seki City in Gifu prefecture
(in 2010, after some modification, [Wikipedia])
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Mean (Center) of Population: World

Question: Where is the mean (center) of the population of
the world?

(x̄ , ȳ) =
(
1
N

∑
i xi ,

1
N

∑
i yi

)
does not make sense:
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Mean of the North Pole and the South Pole

Question: Where is the mean of two samples at the north
pole and the south pole of a sphere?

The center of the sphere
= the mean on the embedding space (Euclidean space)

But NOT on the sphere

We want the “mean” ON a sphere
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The First Candidate: Intrinsic Mean (Fréchet
Mean)

Intrinsic mean on a unit sphere:

µ̂ = arg min
m∈S2

∑
i

d(xi ,m)2

where d(·, ·) is a geodesic distance(shortest path length)
on a sphere.

Every points on the equator attains the minimum.
Intrinsic mean is not necessarily unique.
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The Second Candidate: Extrinsic Mean

Extrinsic mean on a unit sphere:

µ̂ = arg min
m∈S2

∑
i

∥xi −m∥2.

Remember the original “outer” mean is

µ̂ = arg min
m∈E3

∑
i

∥xi −m∥2.

Every points on the sphere attain the minimum.
Extrinsic mean is again not necessarily unique.
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Example: Sphere

On a restricted region A ⊂ S2, the intrinsic mean is unique
regardless of the population (empirical) distribution iff the
diameter of A is less than π/2 [Kendall, W.S. 1990]

So in the five continents, only Eurasia can have multiple
means.
(e.g. d(Madrid, Singapore) = 11400km > 10000km)

Similar theory holds for metric spaces of positive curvature
and CAT(k) spaces.
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Example: Euclidean Space

For a Euclidean space, the intrinsic mean is unique since
fi(m) = ∥m − xi∥2 is strictly convex, thus
f (m) =

∑
i ∥m − xi∥2 is strictly convex and has the unique

minimum.

It is easy to see the intrinsic mean is equal to x̄ .

The Lγ-mean argmin
m

∑
i

∥m − xi∥γ for γ ≥ 1 is also

unique.

HOWEVER, the uniqueness of the means is sometimes
unwelcome.
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Clustering

Local minima of the Fréchet function (sometimes called
Karcher means) can be used for clustering.
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However, for clustering, Euclidean space is TOO FLAT.
i.e. curvature of Euclidean metric is so small that f cannot
have multiple local minima.
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Family of metrics for data analysis

Ordinary data analysis (e.g. classification, regression):
Data Xi (i = 1, . . . , n), Metric d
−→ Loss function f̂ ∈ F

(can be selected by cross validation, resampling)

−→ θ̂ = argmin
∑
i

f̂ (d(Xi , θ))

Our approach:
Data Xi (i = 1, . . . , n), Loss function f
−→ Metric d̂ ∈ D

(can be selected by cross validation, resampling)

−→ θ̂ = argmin
∑
i

f (d̂(Xi , θ))

How to set the family D of metrics?
=⇒ by focusing on their curvature and the intrinsic means.

Our policy: keep the problem in geometry
as much as possible.
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Two steps of changing metrics

A geodesic metric space is a metric space such that the
distance between two points is equivalent to the shortest
path length connecting them.

Metrics

Geodesic Metrics

We assume the original metric is a geodesic metric (usually
the Euclidean or the shortest path length of a metric
graph).
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The α, β-metric and α, β, γ-mean

We propose a family of metrics:

dα,β(x , y) = gβ(dα(x , y))

and intrinsic means:

µ̂α,β,γ = arg min
m∈M

∑
i

gβ(dα(xi ,m))γ

dα: a locally transformed geodesic metric (α ∈ R)
gβ: a concave function corresponding to a specific kind of
extrinsic means (β ∈ (0,∞])
γ: for Lγ-loss (γ ≥ 1)

We will explain α and β one by one.
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Data analysis by α, β and γ

Euclidean dα,β,γ

metrics d(x , y) = ∥x − y∥ dαβγ(x , y) = gβ(dα(x , y))

intrinsic arg min
m∈Ed

∑
∥xi −m∥2 arg min

m∈M

∑
gβ(dα(xi ,m))γ

mean

variance min
m∈Ed

1

n

∑
∥xi −m∥2 min

m∈M

1

n

∑
gβ(dα(xi ,m))γ

Fréchet f (m) =
∑

∥xi −m∥2 fαβγ(m) =
∑

gβ(dα(xi ,m))γ

function
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CAT(0)

A geodesic metric space (X , d) is a CAT(0) space iff for
any a, b, c ∈ X the following condition is satisfied:

Construct a triangle in E2 with vertices a′, b′, c ′, called the
comparison triangle, such that ∥a′ − b′∥ = d(a, b), etc.

Select p ∈ b̃c and find the corresponding point p′ ∈ b′c ′

such that d(b, p) = ∥b′ − p′∥. Then for any choice of

p ∈ b̃c , d(p, a) ≤ ∥p′ − a′∥.
a

b
p c

a’

b’ p’ c’

� 


Intuitively speaking, each geodesic triangle in X is
“thinner” than the corresponding one in a Euclidean space.
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CAT(k)

CAT(k) is defined similarly
but by using
(i) geodesic triangles whose
perimeter is less than
2π/

√
max(k , 0) and

(ii) comparison triangles on a
surface with a constant curvature
k .

Locally, a simply connected Riemannian manifold with
sectional curvatures at most k is CAT(k).

Globally, it requires completeness condition (i.e. two
different geodesics can intersect only once) but up to

diameter 1/
√

max(k , 0).
18 / 44
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Convexity, Geodesic and Unique Mean

Theorem 1 (Known result, e.g. Kendall (1990))

On a CAT(k) space, an empirical/population distribution
has a unique local intrinsic mean in any subsets with a
diameter smaller than π/(2

√
k).

Thus a lower curvature k of the data space makes the
intrinsic means “more unique”.
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Geodesic metrics on distributions

M: a geodesic metric space.
X : r.v. on M with density f (x).
Γ = {z(t)|t ∈ [0, 1]}: a parametrised integrable path
between x0 = z(0), x1 = z(1) in M .
Let

s(t) =

√√√√ d∑
i=1

(
∂zi(t)

∂t

)2

,

with appropriate modification in the non-differentiable
case, be the local element of length along Γ.
The weighted metric along Γ is

dΓ(x0, x1) =

∫ 1

0

s(t)f (z(t))dt.

The geodesic metric is d(x0, x1) = inf
Γ
dΓ(x0, x1).
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The dα Metric: Population Case

Γ = {z(t), t ∈ [0, 1]} between x0 = z(0) and x1 = z(1),

dΓ,α(x0, x1) =

∫ 1

0

s(t)f α(z(t))dt

and
dα(x0, x1) = inf

Γ
dΓ,α(x0, x1).

Roughly speaking when α is more negative (positive) so
curvature is more negative (positive).

We can prove that for d = 1, the intrinsic mean for α = 1
is equivalent to the (ordinary) median.
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Empirical Metric Graphs

There are various empirical graphs whose vertices are the
data points:

1 Complete graph

2 Delaunay graph

3 Gabriel graph

4 k-NN graphs

5 ϵ-NN graphs
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Delaunay empirical graph

We introduce a metric on the graph by the shortest path
length:

d(x0, x1) := inf
Γ

∑
eij∈Γ

dij ,

where dij is the length of an edge eij .
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The dα Metric: Empirical Graph Case

dα metric for an empirical graph is defined by the shortest
path length with powered edge lengths:

dα(x0, x1) := inf
Γ

∑
eij∈Γ

d1−α
ij .

This is an empirical version of

dα(x0, x1) = inf
Γ

∫ 1

0

s(t)f α(z(t))dt.

Here we use a fact, under some regularity conditions, d
−1/p
ij

is an unbiased estimator of the local density where p is the
dimension of M. Thus a natural rescaling of dij is

dijd
−α/p
ij = d

1−α/p
ij .

By resetting α := α/p, d1−α
ij is obtained.
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Geodesic Graphs

Definition 2

For an edge-weighted graph G , the union of all
edge-geodesics between all pairs of vertices is called the
geodesic sub-graph of G and denoted as G ∗.

1

12

5

4

1

12

Original Graph Geodesic Graph
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Ex: Geodesic Graph (Delaunay Graph with α)
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(a) α = 1
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(b) α = 0
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(c) α = −0.3
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(d) α = −1
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(e) α = −5
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(f) α = −30
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Ex: Geodesic Graph (Complete Graph with α)
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(b) α = 0
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α-Chain and minimal spanning trees

The geodesic subgraph G ∗
α gives a filter:

Theorem 3

Let Gα be an edge-weighted graph with distinct weights
{d1−α

ij } and let G ∗
α be its geodesic subgraph then:

α′ < α ≤ 1 ⇒ G ∗
α′ ⊆ G ∗

α.

For sufficiently small α, G ∗
α becomes the minimal spanning

tree and, therefore, CAT(0):

Theorem 4

There is an α∗ such that for any α ≤ α∗ the geodesic
sub-graph becomes the minimal spanning tree T ∗(G )
endowed with the dα metric and, therefore, becomes a
CAT(0) space. 28 / 44
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Smaller α implies CAT(k) for smaller k

Assume α ≤ 1.
Dk(X , x): the maximum radius of a disk centred at x being
CAT(k).
X̄ : a rescaling of X such that the shortest edge length is 1.
For metric graphs, Dk(X , x) can be computed only from
the shortest cycle length and we can prove

Theorem 5

If α′ < α ≤ 1

Dk(Ḡ
∗
α′ , x) ≥ Dk(Ḡ

∗
α, x) for each k ∈ R.

i.e. Ḡ ∗
α becomes “more CAT(k)” for smaller α. Since

rescaling of the graph does not affect the uniqueness of the
intrinsic mean, G ∗

α tends to have a unique mean for a
smaller α. 29 / 44
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The second step is by β

A geodesic metric space is a metric space such that the
distance between two points is equivalent to the shortest
path length connecting them.

Metrics

Geodesic Metrics

We assume the original metric is a geodesic metric (usually
the Euclidean or the shortest path length of a metric
graph).
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dβ Metric

Let (X , d) be a geodesic metric space. For β > 0,
transform the metric d :

dβ(x0, x1) = gβ(d(x0, x1))

where

gβ(z) =


sin(πz

2β
), for 0 ≤ z ≤ β,

1, for z > β.
0.2

0.4

0.6

0.8

1.0

β

For β = ∞, dβ = d .

dβ satisfies the triangle inequality and becomes a metric
but not a geodesic metric.

dβ-mean: µ̂β = arg min
m∈X

∑
i

gβ(d(xi ,m))2.
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β and clustering

f (m) =
∑

i gβ(|xi −m|)2 with various β:
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Extrinsic Mean on a Sphere: Revisited

Extrinsic mean on a unit sphere:

µ̂ = arg min
m∈S2

∑
i

∥xi −m∥2.

Merit of extrinsic means: Euclidean distance is easier to
compute than geodesic length on the data space.

Extrinsic mean on a metric space (X , d) embedded in
(X̃ , d̃):

µ̂ = arg min
m∈X

∑
i

d̃(xi ,m)2.

dβ-mean can be redefined as an extrinsic mean when the
data space is embedded in a “metric cone”.

34 / 44
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Metric Cone

X : a geodesic metric space
A metric cone X̃β with β > 0 is a (truncated) cone
X × [0, 1]/X × {0} with a metric

d̃β((x , s), (y , t)) =
√
t2 + s2 − 2ts cos(πmin(dX (x , y)/β, 1))

for any (x , s), (y , t) ∈ X̃β.

O

�

x

(x,s)
s

1-s

O

�

x

(x,s)
(y,t)

y

(y,t)

y

β

x’y’

(x ,s)’
(y ,s)’

x’y’

O

O

(x ,s)(y ,s) ’’

dβ-mean can be redefined as an extrinsic mean when the
data space is embedded in a “metric cone”.
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β and CAT(k) of the Metric Cone

Theorem 6

1 If X is a CAT(0) space, the metric cone X̃β is also
CAT(0) for every β ∈ (0,∞).

2 If X̃β2 is CAT(0), X̃β1 is also CAT(0) for β1 < β2.

3 If X is CAT(k) for k ≥ 0, X̃β becomes CAT(0) for

β ≤ π/
√
k.

Roughly speaking, the theorem insists that smaller β makes
the metric cone less curved.
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Extrinsic Mean in Metric Cone

Compared with ordinary extrinsic means for embedding in
Euclidean space,

“Curvature” of embedding space can be tuned by β.

the embedding space is only 1-dimensional higher than
the original data space.
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The α, β, γ-mean: Summary

We proposed a class of intrinsic means:

µ̂α,β,γ = arg min
m∈M

∑
i

gβ(dα(xi ,m))γ

and corresponding variances:

Vα,β,γ = min
m∈M

1

N

∑
i

gβ(dα(xi ,m))γ

dα: a locally transformed geodesic metric
gβ: a concave function corresponding to extrinsic means in
metric cones
γ: Lγ-loss
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Application: Clustering

Data: five kinds of data from UCI Machine Learning
Repository (iris, wine, ionosphere, breast cancer, yeast)
- The clustering error by k-means method decreases
significantly by selecting an adequate value.
- α ∈ {−5.0,−4.8, . . . , 0.8, 1} and
β ∈ {2−3, 2−2, . . . , 26,∞}.

k-means with dα,β Euclid

data set α̂ β̂ r ∗ r
(i) iris -4.4 0.125 0.0333 0.1067
(ii) wine 0.8 8 0.2753 0.2978
(iii) ionosphere -5.0 16 0.0798 0.2877
(iv) cancer 0.8 16 0.0914 0.1459
(v) yeast -0.6 2 0.4447 0.4515
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Application: Clustering

- The structure of the “optimal” geodesic graphs differs
depending on the data:
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Figure 1 : The geodesic graph of each data set with an optimum
value of α and β for a randomly selected 100 sub-samples.
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Application: Rainfall Data

Time series of “variance” s20 := {min
i

∑
j

dα(xi , xj)
2}1/(1−α)

are plotted for α = 0 (red solid line), −0.22 (black dashed
line) and −1 (blue solid line).
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This generalized “variance” is expected to detect change of
another type of volatility incorporating spacio-temporal
geometrical structure of the precipitation data.

42 / 44



Introduction

Motivation

CAT(0),
CAT(k) and
Curvature

α-Metric

β-Metric

Applications

Summary

Summary

Curvature of the data space should be focused again in
the recent development of studies on empirical
geodesic graphs (e.g. manifold learning).

The α-metric is a deformation of a geodesic metric.
For empirical graphs, α can control the power law on
an estimated density.

Smaller α < 1 makes the data space CAT(k) with a
smaller k .

β-metric is non-geodesic but embeddable in a geodesic
metric cone.

Smaller β makes the embedding metric cone CAT(k’)
with a smaller k ′.
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This maybe the first study of an extrinsic mean by
embedding in non-Euclidean spaces and the first
application of metric cones to statistics and data
analysis.

Uniqueness of the Lγ-mean depends on γ for
non-Euclidean spaces.

Trade-off between uniqueness of the mean and
robustness of the estimation can be managed by the
curvature of the data space and the embedding metric
cone via α, β and γ.

See arXiv:1401.3020 [math.ST] for the proofs and
details.

Thank you very much for listening!
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