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Background in Risk Management

Suppose we have a portfolio, consists of    -types of assets:d

Let
: Randomly occurred Losses attributed to the

  asset                         ,  respectivelyj = 1, 2, . . . , d

: Total loss over the portfolio, with   c.d.f. F
The Risk of the portfolio can be measured by         , where

 

⇢(F )
⇢ : F 7! R is called a Risk Measure

⇢(F )
To prepare for the Risk, portfolio manager is obliged to hold the 
amount of capital ( so called the Economic Capital ).
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The most popular risk measure     is the Value-at-Risk, defined 
by 

⇢

where     is called the confidence level, often is set high such

as 0.999:

p

Modeling joint d.f.s  
of loss vector 

(X1, . . . , Xd)

VaRp(F )

Economic Capital

The Procedure of Portfolio Risk Management

obtain d.f.      of total loss      S

compute     
Prob      
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For more detailed risk analysis, it is required to decompose the 

economic capital into     Risk Contributions (or Allocated Capital )

⇢(S) = AC1 + · · ·+ACd

AC
VaRp

j = E[Xj |X1 + · · ·+Xd = VaRp(S)]

Euler Principle is the most prevalent rule to determine the allocated 
capitals because of its good economical properties.

When we use VaR as the risk measure    , the risk contribution of 

the asset                             can be derived by

d
(AC1, . . . , ACd), that satisfies

⇢

according to the Euler principle (Tasche, 1999).

j 2 {1, 2, . . . , d}
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The problem throughout this presentation is the following:

?
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Difficulty of the Computation

■ Analytical calculation is quite hard because the joint   
distribution of               is hardly accessible.  (Xj , S)

■ One can estimate the pseudo VaR contributions:

E[Xj | S 2 [VaRp(S)� �,VaRp(S) + �]

for sufficiently small            based on Monte Carlo sample of� > 0

(X1, . . . , Xd)

●

?

]

⇒ next page
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Standard Monte Carlo Method

1) Generate                       from the d.f. of
MC for computing VaR and (pseudo) VaR contribution

■ The d.f. of      is available, but                              is NOT !  X X|S = VaRp(S)

X1, . . . ,XN X

2) Compute the component-wise sums S1, . . . , SN

3) Estimate                 by S[Np]VaRp(S)

4) Take out sample
5) Estimate E[Xj | S 2 [VaRp(S)� �,VaRp(S) + �]

1

M

MX

j=1

Xijby sample mean
]

Si1 , . . . , SiM 2 [VaRp(S)� �,VaRp(S) + �]

●
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No stable (less volatile) method exists 

■ Only a few observations fall in the interval

[VaRp(S)� �,VaRp(S) + �]
 as VaR is the quantile of extremely high probability.

●

Standard MC method is problematic mainly because

⇒Estimator is quite sensitive to �

F

� �

VaRp(S)

(except for some special cases; Glasserman, 2005 and Tasche, 2009)
total loss
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Solution using MCMC

■ Markov chain Monte Carlo (MCMC) is a method to generate 
sample from a (often intractable) distribution     (called target 
distribution) by constructing a Markov chain whose stationary 
distribution is the desired one    . 

⇡

⇡

●

■ Metropolis Hastings (MH) algorithm is a powerful method to 

    generate a Markov chain whose stationary distribution is the   

    desired    .⇡

⇒ next page
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Metropolis Hastings (MH) Algorithm

1) For
1-1) Generate
1-2) Set                      with probability

2) End For.

MH for Sampling from___
t = 1, 2, . . . , T

⇡

X⇤
t ⇠ q(Xt, ·)

Xt+1 = X⇤
t

↵(Xt, X
⇤
t ) :=

⇡(X⇤
t ) · q(X⇤

t , Xt)

⇡(Xt) · q(Xt, X⇤
t )

and                     otherwise.Xt+1 = Xt

input : 
output : Sample               ～    {Xt}Tt=1 ⇡

Initial X1, size T, target ⇡ and proposal function q.

^ 1

●

Only the ratio is required
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●

■ If we can generate sample                from a density {Xt}Tt=1

, then VaR contributions are estimated byfX|S=VaRp(S)

⇡
Z

x · fX|S=VaRp(S)dX

= E[X|S = VaRp(S)]

ÂC
VaRp

=
1

T

TX

t=1

Xt (T : sample size)

where                          is a density of fX|S=VaRp(S) X = (X1 . . . , Xd)

given                        (assume its existence).S = VaRp(S)
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fX|S=VaRp(S)■ Unfortunately, the density                          is hardly tractable as 
the density of the total loss      usually can not be written  
explicitly.

fS

■ However, MH enables to generate sample from fX|S=VaRp(S)

because it only requires the ratio of the target density:

fX|S=v(y)

fX|S=v(x)

fX(y) · 1[Pd
j=1 yj=v]

fX(x) · 1[Pd
j=1 xj=v]

⇡(y)

⇡(x)
= =

The most cumbersome 
term       disappears fS

v = VaRp(S) write                     and 
 regard it as a given constant

●
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■ Define the v-fiber by        

Fv := {x 2 R

d :
dX

j=1

xj = v}

■ Set                  and define the proposal     so that it holds X1 2 Fv q

x 2 Fv ) {y 2 R

d : q(x,y) > 0} ⇢ Fv

■ Then one can implement MH only by computing

↵(Xt, X
⇤
t ) :=

fX(X⇤
t ) · q(X⇤

t , Xt)

fX(Xt) · q(Xt, X⇤
t ) Easy to Evaluate!

●
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Numerical Example

d = 3 , independent Pareto distributions with
shape=(4, 4.5, 5)   and   scale=(1, 1, 1)

Simple Independent Pareto Model

●

[1] Generate T=1e+07 sample from the risk model above
Estimate                      and pseudo VaR contributions forv = VaRp(S)[2] � = 0.1

MC simulation :

(Part of) MC results :
Estimated VaR Size of sample on the interval [v � �, v + �]

5.976 1340
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[3] Perform MCMC with T=1e+07,                                    and X1 = (v/3, v/3, v/3)

q(x, ·) ⇠ Unif(Fv) for all x 2 Fv

[4] Estimate VaR contributions based on MCMC sample.

MCMC simulation :

Estimated VaR contributions :

MC MCMC
3.293 3.264
1.676 1.733
1.005 0.979

X1|S = v

X2|S = v

X3|S = v

Fig 1. Smoothed scatter plot of

          MCMC sample

Strong dependence 
	
 	
 & MultiModality

Sample Size 1340 107

※ a.c.f. will be lower than 0.1 if we take every 
   50 subsamples.

●



Taka-aki Koike Risk allocation and Computation /23

Difficulty of the Computation Numerical Examples Conclusion
○○○                 ○                    ○

Solution using MCMC
           ○○○           ○○○○

20

We repeated MC and MCMC simulation 10 times with T=1e+06

to see the stability of our results.

[i] We computed 10 MC and MCMC estimators 
[ii] We then compute their sample mean and standard 
     error:

Fig 2. Error-bar plots of (mean+sd, mean-sd) 

X1|S = v X2|S = v X3|S = v

MC MCMC
3.254 
(0.234)

3.259 
(0.003)

1.737 
(0.200)

1.735 
(0.019)

0.979 
(0.148)

0.977 
(0.010)

X1|S = v

X2|S = v

X3|S = v

_～
_～
_～

�

�

�

●

Table 1. Estimated VaR contributions, mean and 
standard error (in parentheses) over 10 runs.
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Conclusion

In continuous setting, MCMC provides more stable 

estimator of VaR contributions than standard MC

method.

●

Many other interesting cases and future works.


One can observe some interesting behaviors of 

conditional densities given extremely high sum, 

such as strong dependence and multi-modality.
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●

Fig 4. Autocorrelation plots of  sample of (X1|S = v), (X2|S = v)  
           and (X3|S = v).

Supplementary Note 1
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Since                for all    , the v-Fiber       reduces to the following 
bounded set, called v-Simplex. 

Xj � 0 j■

Sv = {x 2 R

d : x1, . . . , xd � 0,
dX

j=1

xj = v}

⇢ [0, v]d

Fv

Supplementary Note 2


