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Background in Risk Management

Suppose we have a portfolio, consists of d-types of assets:
et

X1,...,Xy4 - Randomly occurred Losses attributed to the
asset 7 =1,2,...,d, respectively
S =X L X

: Total loss over the portfolio, with c.d.f. F

The Risk of the portfolio can be measured by 2(F), where
p: F'— Ris called a Risk Measure

To prepare for the Risk, portfolio manager is obliged to hold the
amount of capital p(F") ( so called the Economic Capital ).
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The most popular risk measure p is the Value-at-Risk, defined
by
VaR, : F -+ R F— inf{z € R: F(x) > p}

where P Is called the confidence level, often is set high such
as 0.999:

The Procedure of Portfolio Risk Management

obtain d.f. /' of total loss S

NN

|Prob P L

Modeling joint d.f.s
of loss vector

VaR, (F)

(X1,...,Xq)

>

compute Economic Capital
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For more detailed risk analysis, it is required to decompose the
economic capital into d Risk Contributions (or Allocated Capital )

(ACq, ..., AC,), that satisfies
p(S)=AC) +--- + ACYy

Euler Principle i1s the most prevalent rule to determine the allocated
capitals because of its good economical properties.

When we use VaR as the risk measure 0, the risk contribution of
the asset j € {1,2,...,d}can be derived by

A CVaR

P =E[X,;| X1+ -+ X4 = VaR,(9)]

according to the Euler principle (Tasche, 1999).
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The problem throughout this presentation is the following:

Given

= joint distribution of loss random vector (Xq,..., Xy)
m extremely high probability (such as 0.999) p,

how can we compute the VaR contributions

VaR

AC; ™" = E[X;| X1 + -+ + Xa = VaR,(5)]

for j=1,2,...,d ?
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Difficulty of the Computation

How can we compute the VaR contributions

VaR

AC; 7 = E[X;| X1 + -+ Xg = VaR,(95))

for y=1,2,...,d ?

= Analytical calculation is quite hard because the joint
distribution of (X, S) is hardly accessible.

= One can estimate the pseudo VaR contributions:
E[X;| S € [VaR,(S) — 4, VaR,(S) + 4] |

for sufficiently small 0 > 0 based on Monte Carlo sample of
(X1,...,Xq) = next page
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Standard Monte Carlo Method

» The d.f. of X is available, but X|S = VaR,,(.5) is NOT !

MC for computing VaR and (pseudo) VaR contribution
1) Generate X1,..., XN from the d.f. of X

2) Compute the component-wise sums S1,...,5N

3) Estimate VaR,,(5) [Np]

4) Take out sample S, ,...,S;,, € [VaR,(S) — 9, VaR,(S) + 9]
5) Estlmate [j S _ [VaR (_) 0, _V()_+5]

by sample mean — ZX
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Standard MC method is problematic mainly because

= Only a few observations fall in the interval

VaR,(S) — 9, VaR,,(S) + 9]
as VaR is the quantile of extremely high probability.

= Estimator is quite sensitive to §

No stable (less volatile) method exists

(except for some special cases; Glasserman, 2005 and Tasche, 2009)

total 0SS
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© Solution using MCMC
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Solution using MCMC

= Markov chain Monte Carlo (MCMC) is a method to generate
sample from a (often intractable) distribution 7 (called target
distribution) by constructing a Markov chain whose stationary

distribution is the desired one 7.

= Metropolis Hastings (MH) algorithm is a powerful method to
generate a Markov chain whose stationary distribution is the

desired 7.
= next page
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Metropolis Hastings (MH) Algorithm

Input : Initial X, size T, target m and proposal function q.
output : Sample {X,}/_,~ T

MH for Sampling from 7T
NFort=1,2,....7T
1-1) Generate X; ~ q(X4,-)

and X1 = X, otherwise. -
2) End For. Only the ratio is required
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= If we can generate sample {X,}/_, from a density
f x|s=VaR,(s) > then VaR contributions are estimated by

T
~ VaR, 1 . .
AC = = E X, (T : sample size)

where fX|S:VaRp(S) isadensityof X = (X;...,Xy)
given S = VaR,(5) (@assume its existence).
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= Unfortunately, the density fx|s—VaR,(s) is hardly tractable as
the density of the total loss fq usually can not be written

explicitly.

= However, MH enables to generate sample from fX| s=VaR,, ()

because it only requires the ratio of the target density:

m(y) _ fx15=0(y) _ fx(y) -1 [>25 -1 yj=v]
W(X) fx)5=0(%) fX(X) ‘ 1[2;121 ;=]

write v = VaR,(S5) and
regard it as a given constant
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= Define the v-fiber by ]
Fo ::{XERd:ij:v}
j=1

= Set X, € F, and define the proposal ¢ so that it holds

xeF,={yeR%:q(x,y) >0} C F,

= Then one can implement MH only by computing
' Q(ngv Xt)
| (X, X{) Easy to Evaluate!
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Numerical Example

Simple Independent Pareto Model

d = 3 , independent Pareto distributions with
shape=(4, 4.5, 5) and scale=(1, 1, 1)

MC simulation :

1] Generate T=1e+07 sample from the risk model above
2] Estimate v = VaR,(S) and pseudo VaR contributions for § = 0.1

(Part of) MC results :

Estimated VaR | Size of sample on the interval [v — d, v + ¢]
5.976 1340
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MCMC simulation :
[3] Perform MCMC with T=1e+07, X; = (v/3,v/3,v/3) and
q(x,-) ~ Unif(F,) for all x € F,

[4] Estimate VaR contributions based on MCMC sample.

Strong dependence
& MultiModality

Estimated VaR contributions :

MC MCMC
XiS=v | 3293 | 3.264
X5|8 = 1.676 1.733
X3S=v | 1.005 | 0.979

Illl:
0 1 2 3 4 5 6

Sample Size 1340 107 X2[S=v
_ . . Fig 1. Smoothed scatter plot of
% a.c.f. will be lower than 0.1 if we take every MCMC sample

50 subsamples.
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We repeated MC and MCMC simulation 10 times with T=1e+06
to see the stability of our results.

1] We computed 10 MC and MCMC estimators
1] We then compute their sample mean and standard

error.
| method
Table 1. Estimated VaR contributions, mean and .. MC
standard error (in parentheses) over 10 runs. T —— MCMC
MC MCMC
3.254 7= 3.259 —
X1|S =
S =vl 0234y + (0.003) e
Xyl = | 1737 F 1735
(0.200) > (0.019)
XylS—o | 0979 F 0977 Ails=v XKlS=v Xg|5 =
3|0 = (0-1 48) + (0_01 O) Fig 2. Error-bar plots of (mean+sd, mean-sd)
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O Conclusion
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p In continuous setting, MCMC provides more stable
estimator of VaR contributions than standard MC

method.

P One can observe some interesting behaviors of
conditional densities given extremely high sum,
such as strong dependence and multi-modality.

P Many other interesting cases and future works.
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Supplementary Note 1

[A1-4] [A1-5] [A1-6]
s S L S . S
< 3 - < 3 4 < 3 4
| Lk na, 3 _—
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chain1 chain2 chain3
Fig 4. Autocorrelation plots of sample of (X1|S = v), (X2|S = V)
and (X3|S = v).
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Supplementary Note 2

» Since X; > 0 forall 7, the v-Fiber F, reduces to the following
bounded set, called v-Simplex.

d
SU:{XERd:a’;l,...,deO,ij = v}
C [0, =
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