Difficulty of the Computation	Solution using MCMC	Numerical Examples	Conclusion
$\bigcirc\bigcirc\bigcirc\bigcirc$	00000	$\bigcirc \bigcirc \bigcirc$	\bigcirc

Efficient Computation of Risk Contributions by using MCMC

Taka-aki Koike

Graduate School of Science and Technology, Keio University, Japan <<u>taka-aki@math.keio.jp</u>>

BU/KEIO WORKSHOP 2016

Joint work with Prof. Mihoko Minami

Taka-aki KoikeRisk allocation and Computation1 /23

Numerical Examples

Conclusion

Background in Risk Management

Suppose we have a portfolio, consists of d-types of assets: Let

 X_1, \ldots, X_d : Randomly occurred Losses attributed to the asset $j = 1, 2, \ldots, d$, respectively

 $S = X_1 + \dots + X_d$

: Total loss over the portfolio, with c.d.f. F

The *Risk* of the portfolio can be measured by $\rho(F)$, where $\rho: F \mapsto \mathbf{R}$ is called a *Risk Measure*

To prepare for the Risk, portfolio manager is obliged to hold the amount of capital $\rho(F)$ (so called the Economic Capital).

Difficulty of the Computation	Solution using MCMC	Numerical Examples	Conclusion
$\bigcirc\bigcirc\bigcirc\bigcirc$	00000	$\bigcirc \bigcirc \bigcirc$	\bigcirc

The most popular risk measure ρ is the *Value-at-Risk*, defined by

$$\operatorname{VaR}_p: F \to \mathbf{R} \qquad F \mapsto \inf\{x \in \mathbf{R}: F(x) \ge p\}$$

where p is called the confidence level, often is <u>set high</u> such as 0.999:

compute Economic Capital

 Difficulty of the Computation
 Solution using MCMC
 Numerical Examples
 Conclusion

 OOO
 OOO
 OOO
 OOO
 OOO

For more detailed risk analysis, it is required to decompose the economic capital into d Risk Contributions (or Allocated Capital) (AC_1, \ldots, AC_d) , that satisfies

$$\rho(S) = AC_1 + \dots + AC_d$$

Euler Principle is the most prevalent rule to determine the allocated capitals because of its good economical properties.

When we use VaR as the risk measure ρ , the risk contribution of the asset $j\in\{1,2,\ldots,d\}$ can be derived by

$$\operatorname{AC}_{j}^{\operatorname{VaR}_{p}} = \mathbf{E}[X_{j}|X_{1} + \dots + X_{d} = \operatorname{VaR}_{p}(S)]$$

according to the Euler principle (Tasche, 1999).

The problem throughout this presentation is the following:

Problem

Given

- joint distribution of loss random vector (X_1, \ldots, X_d)
- extremely high probability (such as 0.999) p,

how can we compute the VaR contributions

$$\operatorname{AC}_{j}^{\operatorname{VaR}_{p}} = \mathbf{E}[X_{j}|X_{1} + \dots + X_{d} = \operatorname{VaR}_{p}(S)]$$
 for $j = 1, 2, \dots, d$?

Difficulty of the Computation	Solution using MCMC	Numerical Examples	Conclusion O
Outline			

Difficulty of the Computation	Solution using MCMC	Numerical Examples	Conclusion O
Outline			

Numerical Examples

Conclusion

Difficulty of the Computation

How can we compute the VaR contributions

$$\operatorname{AC}_{j}^{\operatorname{VaR}_{p}} = \mathbf{E}[X_{j}|X_{1} + \dots + X_{d} = \operatorname{VaR}_{p}(S)]$$

for $j = 1, 2, \dots, d$?

- Analytical calculation is <u>quite hard</u> because the joint distribution of (X_j, S) is <u>hardly accessible</u>.
- One can estimate the pseudo VaR contributions:

 $\mathbb{E}[X_j | S \in [\operatorname{VaR}_p(S) - \delta, \operatorname{VaR}_p(S) + \delta]]$

for sufficiently small $\delta > 0$ based on Monte Carlo sample of (X_1, \ldots, X_d) \Rightarrow next page

Numerical Examples

Conclusion

Standard Monte Carlo Method

• The d.f. of \mathbf{X} is available, but $\mathbf{X}|S = \operatorname{VaR}_p(S)$ is NOT !

MC for computing VaR and (pseudo) VaR contribution

- 1) Generate $\, {\bf X_1}, \ldots, {\bf X_N}$ from the d.f. of ${\bf X}$
- 2) Compute the component-wise sums S_1, \ldots, S_N
- 3) Estimate $\operatorname{VaR}_p(S)$ by $S_{[Np]}$
- 4) Take out sample $S_{i_1}, \ldots, S_{i_M} \in [\operatorname{VaR}_p(S) \delta, \operatorname{VaR}_p(S) + \delta]$
- 5) Estimate $E[X_j | S \in [VaR_p(S) \delta, VaR_p(S) + \delta]]$

by sample mean
$$rac{1}{M}\sum_{j=1}^M \mathbf{X}_{\mathbf{i}_j}$$

Standard MC method is problematic mainly because

Only a few observations fall in the interval

$$\operatorname{VaR}_p(S) - \delta, \operatorname{VaR}_p(S) + \delta$$

as VaR is the quantile of extremely high probability.

 $\Rightarrow \textbf{Estimator is quite sensitive to} \ \delta$

Outline	Difficulty of the Computation	Solution using MCMC	Numerical Examples	Conclusion
	Outline			

Taka-aki KoikeRisk allocation and Computation11/23

Solution using MCMC ●○○○○ Numerical Examples

Conclusion

Solution using MCMC

• Markov chain Monte Carlo (MCMC) is a method to generate sample from a (often intractable) distribution π (called target distribution) by constructing a Markov chain whose stationary distribution is the desired one π .

• Metropolis Hastings (MH) algorithm is a powerful method to generate a Markov chain whose stationary distribution is the desired π .

⇒ next page

Numerical Examples

Conclusion

 \bigcirc

Metropolis Hastings (MH) Algorithm

input : Initial X_1 , size T, target π and proposal function q. output : Sample $\{\mathbf{X}_t\}_{t=1}^T \sim \pi$

<u>MH for Sampling from π </u>

1) For
$$t = 1, 2, ..., T$$

1-1) Generate $X_t^* \sim q(X_t, \cdot)$
1-2) Set $X_{t+1} = X_t^*$ with probability
 $\alpha(X_t, X_t^*) := \frac{\pi(X_t^*) \cdot q(X_t^*, X_t)}{\pi(X_t) \cdot q(X_t, X_t^*)} \wedge 1$
and $X_{t+1} = X_t$ otherwise.
2) End For.
Only the ratio is required

Difficulty of the Computation Solution using MCMC Numerical Examples Conclusion $\bigcirc \bigcirc \bigcirc \bigcirc$ $\bigcirc\bigcirc\bigcirc\bigcirc$ • If we can generate sample $\{\mathbf{X}_t\}_{t=1}^T$ from a density $f_{\mathbf{X}|S}=VaR_n(S)$, then VaR contributions are estimated by $\hat{AC}^{\operatorname{VaR}_p} = \frac{1}{T} \sum_{T}^{T} \mathbf{X}_t$ (*T* : sample size) $\left(\begin{array}{l} \approx \int \mathbf{x} \cdot f_{\mathbf{X}|S} = \operatorname{VaR}_{p}(S) \, \mathrm{d}\mathbf{X} \\ = \operatorname{E}[\mathbf{X}|S = \operatorname{VaR}_{p}(S)] \end{array} \right)$ where $f_{\mathbf{X}|S} = \operatorname{VaR}_{p(S)}$ is a density of $\mathbf{X} = (X_1 \dots, X_d)$ given $S = \operatorname{VaR}_{p}(S)$ (assume its existence).

- Unfortunately, the density $f_{\mathbf{X}|S} = \operatorname{VaR}_{p(S)}$ is <u>hardly tractable</u> as the density of the total loss f_S usually can not be written explicitly.
- However, MH enables to generate sample from $f_{X|S}=VaR_p(S)$ because it only requires the ratio of the target density:

$$\frac{\pi(\mathbf{y})}{\pi(\mathbf{x})} = \frac{f_{\mathbf{X}|S=v}(\mathbf{y})}{f_{\mathbf{X}|S=v}(\mathbf{x})} = \frac{f_{\mathbf{X}}(\mathbf{y}) \cdot \mathbf{1}_{[\sum_{j=1}^{d} y_j=v]}}{f_{\mathbf{X}}(\mathbf{x}) \cdot \mathbf{1}_{[\sum_{j=1}^{d} x_j=v]}}$$
write $v = \operatorname{VaR}_p(S)$ and
regard it as a given constant
The most cumbersome
term f_S disappears

15/23

Define the v-fiber by

$$\mathcal{F}_v := \{ \mathbf{x} \in \mathbf{R}^d : \sum_{j=1}^d x_j = v \}$$

• Set $X_1 \in \mathcal{F}_v$ and define the proposal q so that it holds

$$\mathbf{x} \in \mathcal{F}_v \Rightarrow {\mathbf{y} \in \mathbf{R}^d : q(\mathbf{x}, \mathbf{y}) > 0} \subset \mathcal{F}_v$$

Then one can implement MH only by computing

$$\alpha(X_t, X_t^*) := \frac{f_{\mathbf{X}}(X_t^*) \cdot q(X_t^*, X_t)}{f_{\mathbf{X}}(X_t) \quad q(X_t, X_t^*)} \quad \text{Easy to Evaluate!}$$

Difficulty of the Computation	Solution using MCMC	Numerical Examples	Conclusion
Outline			

Taka-aki KoikeRisk allocation and Computation17/23

Numerical Example

Simple Independent Pareto Model

d=3 , independent Pareto distributions with

shape=(4, 4.5, 5) and scale=(1, 1, 1)

MC simulation :

[1] Generate T=1e+07 sample from the risk model above

[2] Estimate $v = \operatorname{VaR}_p(S)$ and pseudo VaR contributions for $\delta = 0.1$

(Part of) MC results :

Estimated VaRSize of sample on the interval $[v - \delta, v + \delta]$ 5.9761340

MCMC simulation :

[3] Perform MCMC with T=1e+07, $X_1 = (v/3, v/3, v/3)$ and

 $q(\mathbf{x}, \cdot) \sim \text{Unif}(\mathcal{F}_v) \text{ for all } \mathbf{x} \in \mathcal{F}_v$

[4] Estimate VaR contributions based on MCMC sample.

Estimated VaR contributions :

	MC	MCMC
$X_1 S=v$	3.293	3.264
$X_2 S=v$	1.676	1.733
$X_3 S=v$	1.005	0.979
Sample Size	1340	10^{7}

* a.c.f. will be lower than 0.1 if we take every 50 subsamples. Strong dependence & MultiModality

Fig 1. Smoothed scatter plot of MCMC sample

Difficulty of the Computation	Solution using MCMC	Numerical Examples	Conclusion
We repeated MC as to see the stability	nd MCMC simulat of our results.	tion 10 times with T	=1e+06
[i] We compu	ited 10 MC and M	CMC estimators	

[ii] We then compute their sample mean and standard error:

Table 1. Estimated VaR contributions, mean andstandard error (in parentheses) over 10 runs.

	MC	MCMC
$X_1 \mid S = w$	3.254 🗅	3.259
$\Lambda_1 _{\mathcal{D}} = 0$	(0.234)	(0.003)
$X_{0} S = n$	1.737 🗅	- 1.735
$\Lambda_2 _{\mathcal{O}} = 0$	(0.200) 🔰	(0.019)
$X_2 S = v$	0.979 🗅	0.977
213 0 - 0	(0.148)	(0.010)

Fig 2. Error-bar plots of (mean+sd, mean-sd)

Difficulty of the Computation	Solution using MCMC	Numerical Examples	Conclusion
Outline			

Difficulty of the Computation	Solution using MCMC	Numerical Examples	Conclusion ○●

Conclusion

- In continuous setting, MCMC provides more stable estimator of VaR contributions than standard MC method.
- One can observe some interesting behaviors of conditional densities given extremely high sum, such as strong dependence and multi-modality.

Many other interesting cases and future works.

Difficulty of the Computation	Solution using MCMC	Numerical Examples	Conclusion
Reference			

[1] Glasserman, P. (2005). Measuring marginal risk contributions in credit portfolios. FDIC Center for Financial Research Working Paper, (2005-01).

[2] Tasche, D. (1999). Risk contributions and performance measurement. Report of the Lehrstuhl für mathematische Statistik, TU München.

[3] Tasche, D. (2009). Capital allocation for credit portfolios with kernel estimators. *Quantitative Finance*, 9(5), 581-595.

Numerical Examples

 \bigcirc

Supplementary Note 1

Fig 4. Autocorrelation plots of sample of $(X_1|S = v)$, $(X_2|S = v)$ and $(X_3|S = v)$.

 \bigcirc

Supplementary Note 2

00000

• Since $X_j \ge 0$ for all j, the v-Fiber \mathcal{F}_v reduces to the following bounded set, called v-Simplex. d

$$\mathcal{S}_{v} = \{ \mathbf{x} \in \mathbf{R}^{d} : x_{1}, \dots, x_{d} \ge 0, \sum_{j=1}^{\infty} x_{j} = v \}$$
$$\subset [0, v]^{d}$$