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Motivation and Background Big Picture

At 10K Feet . . .

Two simple observations:

1 The automated, simultaneous monitoring of each unit in a large
complex system has become commonplace.

2 Frequently the resulting data are a high-dimensional multivariate time
series.

Implication: The combination of

. systems and

. time series

perspectives suggests the use of dynamic network modeling, a highly
active frontier in the field of network analysis.
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Motivation and Background Some Motivating Examples

Illustration: Neuroscience

Source: Lucia Vaina, BU/BME
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Motivation and Background Some Motivating Examples

Illustration: Economics/Finance

Source: Battiston et al. (2012) Nature Reports
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Motivation and Background Back to the Big Picture

Dynamic Network Topology Inference

In these and similar application contexts, there is a basic paradigm at
work:

Systems-level question of interest;

⇒ Collection of multivariate time series data;

⇒ Construction of network-based representation of system
from data;

⇒ Network-centric answer to systems-level question.

The third step is known as (association) network topology inference.
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Motivation and Background Back to the Big Picture

Aside on Network Inference

There are a variety of methods for inference of a network1

These can be largely categorized by choices in

1 notion of association (e.g., correlation, mutual information, etc.)

2 method of inference (e.g, testing, regression, etc.)

3 working parameters (e.g., significance level, smoothing parameter,
etc.)

Note: Most formal methods seek to exploit sparseness typically
encountered in empirical networks.

1See, for example, Ch7 in either of Kolaczyk (2009). Statistical Analysis of Network Data,
or Kolaczyk & Csardi (2014). Statistical Analysis of Network Data with R.

BU-Keio Workshop, August 2016



Motivation and Background Back to the Big Picture

Illustration with Gene Regulation: Choices Matter!
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Motivation and Background Back to the Big Picture

An Additional Observation: Nature of Temporal Changes

In many contexts, we can expect changes in the system (local or global)
across multiple time scales.

Examples:

. Neuroscience:

. Finance:

Suggests the need for multi-scale analysis . . . a concept well-established in
time series analysis, but which has not yet emerged in dynamic network
analysis.
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Motivation and Background Back to the Big Picture

Our Focus

Motivated by these various observations, we focus on the problem of
detecting dynamic connectivity changes across multiple time scales in a
network-centric representation of a system, based on high-dimensional
multivariate time series observations.

Our approach combines

. Granger causal modeling, with

. partition-based multi-scale modeling
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Motivation and Background Granger Causal Models

Granger Causal Models

Let Xt be an N-dim time series, at time t, corresponding to a network of
N nodes v ∈ V .

We will adopt a VAR(p) model, i.e.,

Xt =

p∑
τ=1

ΘτXt−τ + εt ,

where Θτ collects the influence of the nodes on each other at lag τ , and
the εt are independent white noise.

Say that Xv Granger causes Xu if Θτ (u, v) 6= 0 for some τ = 1, . . . , p.
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Motivation and Background Granger Causal Models

From Time Series to Network Graphs

In this setting, the notion of ‘network’ is made precise through graphs
defined as a function of the underlying graphical model. That is, through
conditional independence relations, which are coded in one-to-one
correspondence with the non-zero elements of

Θ = (Θ1, . . . ,Θp) .

Two options:

1 G = (V ,E ) is a directed graph with an edge from v to u iff
||θ(u, v)|| 6= 0, where θ(u, v) = (Θ1(u, v), . . . ,Θp(u, v))T .

2 G = (V (p+1),E ) is a directed multi-graph, with an edge from v in
layer τ to u in layer 0 iff θτ (u, v) 6= 0 .

We will focus on the first of these options.
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Motivation and Background Granger Causal Models

Time-indexed Directed Graphical Model

Our interest will be in non-stationary multivariate time series, and the
corresponding representations using dynamic networks.

We adopt a changepoint perspective, so that our model class consists of
concatenations of Granger causal VAR(p) models, each with its own Θ
constant over a given interval of time.

The result is a time-indexed directed graphical model, from which we
define a dynamic network Gt = (V ,Et) in analogy to the stationary case.

Our goal is to infer (i) the changepoints distinguishing the stationary
intervals, and (ii) the corresponding edge sets Et .
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Motivation and Background Granger Causal Models

Granger-causal Dynamic Network Modeling

A great deal of work has been done recently in modeling multiple time series
using causal network types of models.

Extending seminal work of Meinshausen and Buhlmann2, a selection of
representative examples include

. Neighborhood-selection under stationarity, using group-lasso principles3

. Network Granger causality with panel data4

. Inference of networks defined through long-run correlation5

. Adaptive selection of (fixed) window size6.

Our work takes these ideas in a multi-scale direction.
2Meinshausen, N. and Buhlmann, P. (2006). High-dimensional graphs and variable selection with lasso. AoS
3Bolstad, A., Van Veen, B. D., & Nowak, R. (2011). Causal network inference via group sparse regularization. IEEE TSP.
4Basu, S., Shojaie A., & Michailidis, G. (2015). Network granger causality with inherent grouping structure. JMLR.
5Barigozzi, M., Brownlees, C. (2013). Nets: network estimation for time series. Available at SSRN.
6Long, CJ., Brown, EN., Triantafyllou, C., Aharon, I., Wald, LL., Solo, V. (2005). Nonstationary noise estimation in

functional MRI. NeuroImage.

BU-Keio Workshop, August 2016



Motivation and Background Multi-scale Modeling

Multi-scale Modeling

Starting in the late 1980’s (building on threads of work going back at least
to the early 1900’s), there was an explosion of development on methods of
multi-scale modeling that were

. mathematically principled;

. computationally efficient; and, often,

. domain/problem-specific.

The quintissential example is that of methods utilizing transformations
with respect to bases of wavelets.
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Motivation and Background Multi-scale Modeling

Wavelets & Recursive Partitioning: A connection

While the development of wavelet-based methods for standard signal and
image analysis applications proceeded apace, the development of
extensions for less-traditional settings like

. non-normal noise, and

. structured data (e.g., manifolds, graphs, etc.)

proved decidedly more challenging7.

Helpful in many contexts was a fundamental result of Donoho8 relating

1 methods of recursive (dyadic) partitioning, and

2 selection of a best-orthonormal basis,

where the basis is selected from a class of (unbalanced) Haar bases.

7But, nevertheless, was/is being thoroughly explored as well!
8Donoho, D.L. (1997). CART and Best-Ortho Basis: A Connection. AoS.
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Motivation and Background Multi-scale Modeling

Illustration: Multiscale GLMs

Hence, partition-based methods – which can be more amenable than
wavelets to adaptation in nontraditional settings – are nevertheless
effective structures upon which to build multi-scale models and methods.

A useful illustration of this principle is in the context of generalized linear
models (GLMs)9

Given independent observations y1, . . . , yn, where

pθ(yi |ti ) = exp

{
yi · θ(ti )− b[θ(ti )]

τ
+ c(y , τ)

}
,

estimate θ(·), a member of some inhomogeneous function class
(e.g., Besov ball).

9Kolaczyk, E.D, and Nowak, R.D (2005). Multiscale generalized linear models
for nonparametric function estimation. Biometrika.
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Motivation and Background Multi-scale Modeling

Multiscale GLMs (cont)

Estimate θ = (θ1, . . . , θn) as

θ̂ ≡ arg max
P�P∗Dy

max
θ′∈PP(P;D)

{
`(θ′)− 2λ#(P)

}
,

where

. P∗Dy is a complete recursive dyadic partition;

. P � P∗Dy denotes a sub-partition;

. PP(P;D) ≡ {Piece-wise polynomials, of order D on P}; and

. `(θ) is the log-likelihood
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Motivation and Background Multi-scale Modeling

Multiscale GLMs: Results Summary

. O(n) alg10 and near-optimal risk behavior

. Extension to recursive partitioning, with O(n3) alg

. Application to gamma-ray bursts & Internet packet loss.
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10Formally, O(n) model comparison steps, where complexity of comparison step depends on models being fit.
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Motivation and Background Multi-scale Modeling

Our Contribution

We propose

1 a multi-scale Granger-based dynamic network model, and

2 a corresponding method of network topology inference

that captures the dynamics of a system in a manner sensitive to changes at
multiple time scales, while encouraging sparsity of network connectivity.

Key elements of our framework:

. We partition the non-stationary time space into blocks at various
scales, with stationary assumed within each block;

. We do neighborhood selection with the group lasso, within each block.
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Multi-scale Dynamic Causal Networks Methodology

A Cartoon Version

We estimate network topology neighborhood by neighborhood.

WLOG, consider the local neighborhood of node/series u.

T0 = 0 T1 = 6 T2 = 8 Tmax = 16

u B

CD

E u B

CD

E u B

CD

E

What we do:

. Changepoint Detection: Estimate the times T that the changes happened.

. Neighborhood Selection: Given the estimated change points, infer the
neighborhood structure from time 0 to T̂1 and from time T̂1 + 1 to T̂2 and
so on.
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Multi-scale Dynamic Causal Networks Methodology

Parameterization of Changepoints

To capture potential change points, we partition time into candidate
stationary intervals using RDP11.

For appropriate choice of cost function, our problem can be solved in a
dynamic programming fashion, in strict analogy to, e.g., MS-GLMs.

11Extension to RPs straightforward, with increased computational cost.
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Multi-scale Dynamic Causal Networks Methodology

Recovery of Neighborhood Structure

Within a candidate stationary interval, WLOG with n time points, we do
neighborhood selection with group lasso, solving for

θ̂ = arg min
θ

1

n
‖Xu −

∑
v∈V\{u}

X(v)θ(v)‖2
2 + λ

∑
v∈V\{u}

‖θ(v)‖2.

Here

. Xu is the n × 1 time series observed at node u;

. X(v) is the n × p matrix formed from Xv at lags τ = 1, . . . p;

. θ(v) = θ(u, v) = (Θ1(u, v), . . . ,Θp(u, v))T ;

. λ is a smoothing parameter (TBD).

Write the group lasso penalized likelihood (glPL) as

ˆglPL =
1

n

∥∥∥Xv − Xθ̂
∥∥∥2

2
+ λ

∑
v∈V\{u}

∥∥∥θ̂(v)

∥∥∥
2
.
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Multi-scale Dynamic Causal Networks Methodology

Selecting a Multiscale Dynamic Granger Causal Model

Our overall problem can be set up as solving for

θ̂ ≡ arg max
P�P∗Dy

max
θ′∈PGC(P;p)

{
`(θ′)− Pen(θ′)

}
,

where PGC (P; p) is the collection of ‘piecewise Granger Causal’ models on
P of lag p.

Key Algorithmic Insight: This may be solved using dyanamic programming,
where at each potential break point, we solve the following problem:

ˆglPLp

? ?

ˆglPL` ˆglPLr

Split if:
ˆglPL` + ˆglPLr < ˆglPLp
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Properties Ability to Detect a Changepoint

Consistency of Splitting

Define the truth to be: Xu =

 X
(`)
u

X
(r)
u

 =

 X(`)θ(`) + ε(`)

X(r)θ(r) + ε(r)

, where

X
(`)
u are the first n/2 observations and X

(r)
u the last n/2 observations.

Theorem

Under appropriate assumptions, for any sequence λn such that λn → 0 and
λnn

1/2 → +∞,

Pθ(`)=θ(r)

(
ˆglPL` + ˆglPLr ≥ ˆglPLp

)
−→ 1 (1)

Pθ(`) 6=θ(r)

(
ˆglPL` + ˆglPLr ≤ ˆglPLp

)
−→ 1 (2)

Proof exploits consistency, within stationary intervals, established for group-lasso based neighborhood selection12.

12Bolstad, A., Van Veen, B. D., & Nowak, R. (2011). Basu, S., Shojaie A., & Michailidis, G. (2015).
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Properties Quality of Neighborhood Selection

Finite Sample Control of Type I Error Rate

Theorem

If the penalty parameter λ(α) is chosen such that

λ(α) = 2σ̂u

√
pQ
(

1− α

N2

)
where σ̂2

u =
‖Xu‖2

2
n , p the order of AR lags, N = |V |, and Q(·) the quantile

function of χ2(p), then

P(∃ u ∈ V : Ĉλu * Cu) ≤ α.

Here Cu is the connected component in G to which u belongs, and Ĉλu ,
its estimate.

Proof in the spirit of result of Meinshausen & Buhlmann (2006).
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Numerical Results Application to MEG Data

Brain Image Data

We have trial-by-trial visual search data13.

MEG data of 8 subjects who were asked to watch moving objects displayed
on a black screen.

Each subject received 160 trials and the MEG of their brain was taken
accordingly.

Each resulting time series truncated to 1190 sample points, with
intervention centered at time t = 1/2.

13Data courtesy of Lucia M. Vaina
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Numerical Results Application to MEG Data

1st Attempt @ Modeling: High-level Results

Optimal piecewise Granger causal model was fit (Using VAR(7); and
Recursive Dyadic Partition), yielding:

. a 3-node dynamic network.

. Changepoints detected only at dyadic positions {1/4, 1/2, 3/4}.

. Causal relations detected between pairs of nodes

BU-Keio Workshop, August 2016



Numerical Results Application to MEG Data

Aggregate Rates for Changepoints and Edges

Subject 1 2 3 4 5 6 7 8

Rate of split (0.32) (0.22) (0.23) (0.19) (0.19) (0.34) (0.46) (0.44)

Subject 1

First Half Second Half

IPS FEF V3a IPS FEF V3a

IPS 0 0.10 0.09 IPS 0 0.09 0.10

FEF 0.11 0 0.08 FEF 0.1 0 0.07

V3a 0.11 0.09 0 V3a 0.1 0.09 0

Subject 2

First Half Second Half

IPS FEF V3a IPS FEF V3a

IPS 0 0.08 0.11 IPS 0 0.05 0.09

FEF 0.08 0 0.03 FEF 0.04 0 0.03

V3a 0.11 0.04 0 V3a 0.09 0.02 0

Subject 3

First Half Second Half

IPS FEF V3a IPS FEF V3a

IPS 0 0.01 0.18 IPS 0 0.03 0.33

FEF 0.01 0 0.01 FEF 0.03 0 0.03

V3a 0.18 0.04 0 V3a 0.32 0.04 0

Subject 4

First Half Second Half

IPS FEF V3a IPS FEF V3a

IPS 0 0.09 0.01 IPS 0 0.08 0.03

FEF 0.10 0 0.04 FEF 0.09 0 0.06

V3a 0.01 0.04 0 V3a 0.02 0.03 0

Subject 5

First Half Second Half

IPS FEF V3a IPS FEF V3a

IPS 0 0.08 0.04 IPS 0 0.06 0.05

FEF 0.09 0 0.01 FEF 0.08 0 0.02

V3a 0.03 0.06 0 V3a 0.06 0.03 0

Subject 6

First Half Second Half

IPS FEF V3a IPS FEF V3a

IPS 0 0.09 0.08 IPS 0 0.09 0.06

FEF 0.08 0 0.12 FEF 0.09 0 0.11

V3a 0.07 0.12 0 V3a 0.08 0.10 0

Subject 7

First Half Second Half

IPS FEF V3a IPS FEF V3a

IPS 0 0.19 0.21 IPS 0 0.19 0.25

FEF 0.20 0 0.08 FEF 0.19 0 0.04

V3a 0.19 0.08 0 V3a 0.23 0.01 0

Subject 8

First Half Second Half

IPS FEF V3a IPS FEF V3a

IPS 0 0.25 0.18 IPS 0 0.14 0.21

FEF 0.25 0 0.09 FEF 0.15 0 0.09

V3a 0.17 0.09 0 V3a 0.21 0.10 0
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Discussion

Closing Thoughts

Dynamic network analysis is arguably one of the most active frontiers in
‘network science’.

Statisticians have (uncharacteristically!) jumped in early on the problem of
network topology inference.

Neuroscience and economics/finance has a great deal of interest in and
activity on this topic.

Still to do for piecewise Granger causal models:

. implement RP variant (more refined than RDP)

. theoretical characaterization of overall model selection

. a more careful empirical study with MEG data
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Discussion

Thank you
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