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Background and Motivation

There is a trend to analyze large collections of networks. In recent
work by our group1, a formal notion of a space of unilayer network
Graph Laplacians has been introduced and a central limit theorem
has been developed based on it.

In many natural and engineered systems, collections of multiple
networks best describe them, and multilayer network
representations arise naturally.

1Ginestet, C. E., Balanchandran, P., Rosenberg, S., & Kolaczyk, E. D. (2014). Hypothesis Testing For Network
Data in Functional Neuroimaging. arXiv preprint



Background and Motivation: A Motivating Example

month 1              2                        3                        4

month 1              2                        3                        4

month 1              2                        3                        4

n patients; d Regions of interest
(ROI)

. Assume patients received
treatment between the 2nd
and the 3rd month: if the
treatment has an effect.

. Assume we measured two
samples from different
populations: if there exists a
difference between the two
populations.
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Geometric Structure of Multilayer Networks

Laplacian matrix and Supra-Laplacian
The Laplacian matrix of a network G is defined by L = D − A

For a multilayer network M, we can list all its nodes and treat it
as a network GM. Then the Supra-Laplacian for M is defined the
same as the Laplacian matrix for GM.



Geometric Structure of Multilayer Networks (cont.)

Geometric structure of unilayer networks’ Graph Laplacians2:

Theorem 1 Let Ld be d × d matrices L satisfying:

. (1) Symmetry, L
′

= L

. (2) The entries in each row sum to 0

. (3) The off-diagonal entries are non-positive, eij ≤ 0

. (4) Rank(L) = d − 1

Then the matrix L should also satisfy:

. (5) Positive semi-definiteness, L ≥ 0

The matrices with these properties form a submanifold of Rd2
of

dimension d(d−1)
2 with corners. In addition, Ld is a convex subset

in Rd2
.

2Ginestet, C. E., Balanchandran, P., Rosenberg, S., & Kolaczyk, E. D. (2014). Hypothesis Testing For Network
Data in Functional Neuroimaging. arXiv preprint



Geometric Structure of Multilayer Networks (cont.)

Two classes of multilayer network Supra-Laplacian

Class 1:

Class 2: Extend Class 1 Case by letting inter-layer links be any positive

weights.



Geometric Structure of Multilayer Networks (cont.)

Geometric structure of Two classes of multilayer network
Supra-Laplacian

Theorem 2 Class 1 Supra-Laplacians form a submanifold of R(nd)2

of

dimension nd(d−1)
2 .

Class 1 Class 2

Class 2 Supra-Laplacians form a submanifold of R(nd)2

of dimension
nd(d−1)

2 + (n − 1)d .

Both of the submanifolds are convex subsets in R(nd)2

.
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Frechet Mean and its General Central Limit Theorem

Definition of Frechet mean

On a metric space (S , ρ) there is a notion of the mean µ of a
distribution Q, as the minimizer of the expected squared distance
from a point,

µ = argmin
p

∫
ρ2(p, q)Q(dq)

assuming the integral is finite (for some p) and the minimizer is
unique, in which case one says that the Frechet mean of Q exists.



Frechet Mean and its General Central Limit Theorem
(cont.)

Theorem 3 On the metric space S , under some regularity
conditions3, we have the general CLT for Frechet mean:

n1/2[J(µn)− J(µ)]→ N(0,Λ−1CΛ−1), as n→∞

Notations:

h x → h(x ; q) := ρ2(J−1(x), q)

µn the Frechet sample mean of the empirical distribution

J a homeomorphism from a measurable subset of S to an
open subset of Rs

C the covariance matrix of {Drh(J(µ);Y1), r = 1, ..., s}

Λ [EDr ,r ′h(J(µ);Y1)]r ,r ′=1,...,s

Yi ’s i.i.d. S-valued random variables

3Bhattacharya, R., & Lin, L. (2013). An omnibus CLT for Fréchet means and nonparametric inference on
non-Euclidean spaces. arXiv preprint
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Central Limit Theorem for Multilayer Network

Theorem 4 Let M1, ..., Mn denote n multilayer networks and let
L1, ..., Ln be the corresponding Supra-Laplacians. L̂n is their
empirical mean. The Li ’s are assumed to be independent and
identically distributed according to a distribution Q.

If the expectation, Λ := E[L], does not lie on the boundary of Ld ,
and P[U] > 0, where U is an open subset of Ld with Λ ∈ U, and
under the condition that each element of Li , i = 1, ...n has finite
variance; we obtain the following convergence in distribution,

n1/2(J(L̂n)− J(Λ))→ N(0,Σ)

where Σ := Cov [J(L)] and J(·) denotes the
supra-half-vectorization of its matrix argument, that is, J aligns
the upper diagonal of a symmetric matrix to vectorize it.
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Simulation Study: Motivating Example Review

month 1              2                        3                        4

month 1              2                        3                        4

month 1              2                        3                        4

n patients; d Regions of interest
(ROI)

. Assume patients received
treatment between the 2nd
and the 3rd treatment: if
the treatment has an effect.

. Assume we measured two
samples from different
populations: if there exists a
difference between the two
populations.



Simulation Study: Methods

1. Hypothesis Testing procedure based on central limit
theorem only

. One-sample case: Each multilayer network (patient) could be

spreaded into a d(d−1)
2 ∗ T dimensional vector through the

supra-half-vectorization J. Suppose the vectors are Y1, ..., Yn. Let
a = (1, 1, ..., 1,−1, ...,−1,−1) and Xi = a · Yi . H0: X ’s distribution
has 0 mean ↔ H1: X ’s distribution doesn’t have 0 mean.

. Two-sample case: In this case, we have two sample of such vectors
to represent patients: Y11, ..., Y1n and Y21, ..., Y2n. H0:The two
population have the same mean ↔ H1: The two population have
different means.

We can construct T = (J(Ŷ1)− J(Ŷ2))T Σ̂−1(J(Ŷ1)− J(Ŷ2)) which
has an asymptotic χ2

m distribution under the null hypothesis, where
m =

(
d
2

)
∗ T 4

4Ginestet, C. E., Balanchandran, P., Rosenberg, S., & Kolaczyk, E. D. (2014). Hypothesis Testing For Network
Data in Functional Neuroimaging. arXiv preprint



Simulation Study: Methods

2. Hypothesis Testing procedure based on the bootstrap
In many situations, the bootstrap can be used to perform
hypothesis tests that are more reliable in finite samples than tests
based on asymptotic theory. If the bootstrap is to work well, the
original test statistic must be asymptotically pivotal.5

In the one dimensional case, a two-sided test based on normal
approximation has level error of order n−1, which is reduced to
order n−2 by using bootstrap with asymptotic pivotal statistic.6

Fot the multi dimensional case, the level of error should be related
to n and d . As shown in our simulation, the bootstrap leads to a
higher power.

5Davidson, R., & MacKinnon, J. G. (1996). The power of bootstrap tests. Queens Institute for Economic
Research Discussion Paper

6Hall, P. (2013). The bootstrap and Edgeworth expansion. Springer Science & Business Media.



Simulation Study: Methods

2. Hypothesis Testing procedure based on bootstrap

. One-sample case: Test statistic is defined as Tn =‖
√
n X̄n
σ̂ ‖.

Bootstrap is from empirical distribution Gn based on
{Xi − X̄n, i = 1, ..., n}. Here X ’s are scalars.

. Two-sample case: Gn is the same as that in the one sample
case. The test statistic is defined as
Tn =‖

√
nΣ̂−

1
2 (X̄

(1)
n − X̄

(2)
n ) ‖, where X̄

(1)
n and X̄

(2)
n indicate

two sample mean. Here X ’s are vectors, Σ̂ is the pooled
sample covariance matrix.



Simulation Study: Results
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Potential Directions

. Estimate rate of convergence of our central limit theorem for
multilayer network as function of d and n.

. Power analysis: to know how many patients we need to
measure, if we want to ensure power at a certain level. Needs
the above convergence rate in the multivariate case.

. More applications based on this CLT on multilayer network,
e.g. the regression on network.


