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Differentiability of flows and sensitivity analysis

Differentiability of flows and sensitivity analysis for diffusions is a
classical topic in stochastic analysis. Consider the parameterized
SDE:

Xα(t) = x0(α) +

∫ t

0
b(α,Xα(s))ds +

∫ t

0
σ(α,Xα(s))dW (s).

A natural question is: what are the pathwise effects of
perturbations to the parameter α? Also of interest in applications,
including in mathematical finance.

This question was studied by Elworthy, Bismut, Ikeda and
Watanabe, Kunita and others in the late 1970s and early 1980s.

One can ask these same questions for stochastic processes that are
constrained to lie in some region. In this talk I focus on reflected
Brownian motions (RBMs) constrained to lie in a polyhedral cone.
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Reflected Brownian motions (RBMs)

RBMs in convex polyhedral cones (e.g., nonnegative orthant) arise
in a variety of applications, including

As “heavy-traffic” limits in queueing networks

Math finance (e.g., Atlas model)

Focus of this talk
Understand the pathwise effects of perturbations to parameters
(e.g., initial condition, drift, covariance, directions of reflection)

that describe an RBM and study implications for computations of
sensitivities of functions of RBMs
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RBM: Description

Roughly speaking: An RBM Z in a polyhedral cone G :

Behaves like a Brownian motion (BM) in the interior G ◦.

Is constrained to remain in G by a regulator process that acts
when Z is at the boundary ∂G in specified directions that are
constant along each face of G .

Example: Nonnegative quadrant

David Lipshutz (joint work with Kavita Ramanan) Pathwise differentiability of RBMs



RBM: Definition

An RBM in a polyhedral cone G with faces F1, . . . ,FJ ,

initial condition z0 in G ,

drift vector b,

positive definite covariance matrix σσT , and

invertible reflection matrix R
.

=
(
d1 · · · dJ

)
,

is a process Z = {Z (t), t ≥ 0} that satisfies

Z (t) = z0 + bt + σW (t) + RY (t) ∈ G ,

where W = {W (t), t ≥ 0} is a BM and Y = {Y (t), t ≥ 0} is a
regulator process that satisfies, for each i ,

Yi (0) = 0 and Yi is nondecreasing,

Yi can only increase when Z lies in face Fi .

Dupuis and Ishii ’91 provide broad geometric conditions on {di}
under which there is a pathwise unique RBM with driving BM W .
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Pathwise derivatives of RBMs

Fix a BM W . For each

initial condition z0 in G ,

drift vector b,

dispersion matrix σ (s.t. σσT is positive definite),

invertible reflection matrix R (satisfying geometric conditions),

let Z z0,b,σ,R denote the associated RBM in G with driving BM W .

For t ≥ 0, we seek to compute and characterize pathwise
derivatives of Z z0,b,σ,R(t) with respect to z0, b, σ and R.

Implications for derivatives of stochastic flows and sensitivities of
expectations of certain functions f of RBMs, e.g.:

d

db
E
[
f (Z z0,b,σ,R(t))

]
= E

[
Df (Z z0,b,σ,R(t))

d

db
Z z0,b,σ,R(t)

]
.
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Prior results

Deuschel and Zambotti (’03) characterized derivatives of
flows of RBMs with state-dependent drift in the orthant with
normal reflection.

Andres (’09) characterized derivatives of flows of RBMs with
state-dependent drift in a broad class of polyhedral domains
with oblique reflection, but only up to the first hitting time of
the nonsmooth part of the boundary.

Dieker and Gao (’14) characterized sensitivities of reflected
diffusions in the orthant with certain reflection matrices
(M-matrices) to perturbations of the drift in the direction
− 1.

Our goal is to unify and extend these results.
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RBMs defined via the Skorokhod map

Under our geometric conditions, given x in C = C ([0,∞),RJ)
with x(0) ∈ G , there is a unique pair (z , y) in C× C such that

z(t) = x(t) + Ry(t) ∈ G ,

and for each i ,

yi (0) = 0 and yi is nondecreasing,

yi can only increase when z lies in face Fi .

We refer to the mapping Γ : x 7→ z as the Skorokhod map (SM).
In addition, the SM satisfies a certain Lipschitz continuity property.

Define the process X = {X (t), t ≥ 0} by

X (t) = z0 + bt + σW (t).

Then Z = Γ(X ).
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Example: 1-d RBM via 1-d SM

The 1-d SM has the following well-known explicit form:

Γ1(x)(t) = x(t) + sup
0≤s≤t

(−x(s)) ∨ 0

Given an initial condition z0, drift b and variance σ2, define

X (t) = z0 + bt + σW (t)

Then a 1-d RBM Z can be defined pathwise by Z = Γ1(X ).
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Perturbed RBMs via the SM

For ε > 0 small, let Z ε denote the RBM with perturbed

initial condition z0 + εy0,

drift vector b + εa,

dispersion matrix σ + ερ,

reflection matrix R + εS .

Then

Z ε(t) = z0 + εy0 + (b + εa)t + (σ + ερ)W (t) + (R + εS)Y ε(t)

= X (t) + εψε(t) + RY ε(t)

= Γ(X + εψε)(t)

where X is defined as before and

ψε(t) = y0 + at + ρW (t) + SY ε(t).

Due to Lipschitz continuity of the SM, ψε → ψ uoc where

ψ(t) = y0 + at + ρW (t) + SY (t).
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Pathwise derivatives of RBMs

For ε > 0 and t ≥ 0, we have (assuming the limit exists)

lim
ε↓0

Z ε(t)− Z (t)

ε
= lim

ε↓0

Γ(X + εψε)(t)− Γ(X )(t)

ε
.

Since ψε → ψ uoc and Γ is Lipschitz continuous, we have

lim
ε↓0

Z ε(t)− Z (t)

ε
= lim

ε↓0

Γ(X + εψ)(t)− Γ(X )(t)

ε
.

Given x , ψ ∈ C with x(0) ∈ G , define ∇ψΓ(x) : [0,∞) 7→ RJ by

∇ψΓ(x)(t) = lim
ε↓0

Γ(x + εψ)(t)− Γ(x)(t)

ε
, t ≥ 0,

provided the limits exist. We refer to ∇ψΓ(x) as the directional
derivative of Γ at x in the direction ψ.
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Directional derivatives of SMs

Directional derivatives of SMs have been studied in the:

One-dimensional setting: Mandelbaum and Massey (’95) and
Whitt (’02)

Multidimensional setting: Mandelbaum and Ramanan (’10)
for a large class of SMs

The class considered by Mandelbaum and Ramanan excludes some
important cases (and their techniques cannot be extended):
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How to go beyond?
A new approach is needed...
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1-d directional derivatives

Suppose x is such that whenever z(t) = Γ1(x)(t) = 0, the
regulator term y is non-constant at t (holds when X is a BM).
Then whenever z(t) = 0, ∇ψΓ1(x) is projected to zero. This uses
results on the directional derivatives of the 1-d SM.

Here Z is an RBM with drift b, Z ε is an RBM with drift b + ε.
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Projections in multidimensional setting

In the multidimensional setting, whenever z “hits” the relative
interior of face Fi , ∇ψΓ(x) is projected to the hyperplane
Hi = span(Fi ) along the direction span(di ).
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What happens at edges and corners?
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Boundary jitter property

We assume the paths z satisfy the following boundary jitter
property: If the z(t) ∈ Fi ∩ Fj for some i 6= j , then for each
δ ∈ (0, t), there exists s ∈ (t − δ, t) such that z(s) lies in the
relative interior of face Fi .

Lemma (L. and Ramanan, 2016): An RBM Z a.s. satisfies the
boundary jitter property.

David Lipshutz (joint work with Kavita Ramanan) Pathwise differentiability of RBMs



Directional derivatives at nonsmooth parts of ∂G

The projection property along with geometric properties on the
directions of reflection {di} ensures that if z(t) ∈ Fi ∩ Fj , then
φ(t)

.
= ∇ψΓ(x)(t+) ∈ Hi ∩ Hj .
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Directional derivatives of multidimensional SMs

For x0 ∈ G , let I (x0) = {i : x0 ∈ Fi} and Hx0

.
=
⋂

i∈I (x0) Hi .

Theorem (L. and Ramanan, ’16) Let x ∈ C satisfy x(0) ∈ G and
z
.

= Γ(x) satisfy the boundary jitter property. Then for all ψ ∈ C,

∇ψΓ(x)(t) = lim
ε↓0

Γ(x + εψ)(t)− Γ(x)(t)

ε

exists for all t ≥ 0 and is left and/or right continuous at each
t > 0. If φ(t) = ∇ψΓ(x)(t+) for all t ≥ 0, then φ is the unique
function that satisfies:

φ(t) = ψ(t) + Rη(t) ∈ Hz(t),

where η is a right continuous function such that ηi is constant on
intervals where z does not lie in face Fi , i.e.,

ηi (t)− ηi (s) = 0 if z(u) 6∈ Fi for all u ∈ (s, t].

Furthermore, for fixed z , the mapping ψ 7→ φ is linear.
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Pathwise derivatives of RBMs

Corollary (L. and Ramanan, ’16) Almost surely

lim
ε↓0

Z ε(t)− Z (t)

ε
= ∇ψΓ(X )(t)

for all t ≥ 0. If φ(t) = ∇ψΓ(X )(t+) for all t ≥ 0, then φ is the
unique right continuous process satisfying

φ(t) = y0 + at + ρW (t) + SY (t) + Rη(t) ∈ HZ(t),

where η is a right continuous process such that ηi is constant on
intervals where Z does not lie in face Fi , i.e.,

ηi (t)− ηi (s) = 0 if Z (u) 6∈ Fi for all u ∈ (s, t].
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Summary and comments

Proved the boundary jitter property for RBMs in a large class
of polyhedral cones.

Characterized pathwise derivatives of these RBMs.

Method is readily adapted for state-dependent drift.
State-dependent covariance presents unresolved technical
challenges.

Can compute certain pathwise derivatives for other reflected
processes that satisfy the boundary jitter property.

Current work: steady state analysis of the joint Markov
process (Z , φ) and numerical methods for sensitivities.
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Thank you
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