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Abstract
Community detection in network analysis has drawn more and more attention recently in many areas. We per-

form dynamic community detection using dependent latent position model by introducing the dependence among
latent positions across time. Clustering of nodes is done via clustering the corresponding latent positions in a model-
based framework. The link probability between each pair of nodes is calculated through a logit link and the latent
positions are modeled using a dependent Dirichlet Process mixture model. Efficient MCMC algorithms will be
developed and applications are considered for both simulated and real data sets.

Introduction
Networks are good data representation tools to show the relations between interacting nodes or pairs.
They are widely used in many fields, for example, in social networks, each nodes stands for a person
or a group, and each link between nodes stands for the connection between two them.

Social network data typically consist of a set of n nodes and a relational tie Aij, which acts as an
indicator and measured on each ordered pair of nodes i, j = 1, . . . , n. Here we mainly focus on the
latent space model. The latent space model introduced by [2] is a stochastic model of the network
in which each node has a latent position, the probability of a tie uniquely depends on the Euclidean
distance between latent positions zi and zj, that is, P (Aij) = f (zi, zj), where f is called transition
function, usually logit link function. [1] extends this latent space model to cluster the nodes in a
natural way in addition to take account of transitivity and homophily by using model-based clustering
idea.

Our model can be viewed as an extension of Handcock’s model in the sense of assuming the latent
positions comes from a dependent Dirichlet Process mixture model, which introduces dependence
across time points and does not prefix the number of groups .

Dependent Latent Position Model
Let A be an n by n observed adjacency matrix of the binary network data. Aij=1 if there is an edge
or link between nodes i and j, otherwise Aij = 0. Let πij be the probability of having an edge (link
or edge probability) between node i and j. We assume Aij follows an independent Bernoulli model
with link probability πij. That is,

Aij ∼ Ber(πij).

To deal with the problem of dynamic community detection, consider n nodes with labels in
[n] = {1, . . . , n} and T time points t = 1, . . . , T . We have

A
(t)
ij ∼ Ber(π(t)ij ),

for any t = 1, . . . , T . For each node i, at each time t, we assign one of the K communities for the
node. We label the latent position at each time t as z(t)i for i = 1, . . . , n and t = 1, . . . , T . Denote

z = {z(t)i , i = 1, . . . , n; t = 1, . . . , T} and A = {A(1), . . . , A(T )}. Thus,

π
(t)
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exp(βT0 xij − β1‖z
(t)
i − z

(t)
j ‖)

1 + exp(βT0 xij − β1‖z
(t)
i − z

(t)
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,

where X = xij is the covariate vector and β is the coefficient to be estimated. Clustering is done by

grouping the latent position sequence {z(t)i , i = 1, . . . , n; t = 1, . . . , T}. We also use model-based

method for clustering by modeling {z(t)i } using a dependent mixture model. The idea is to cluster
nodes by clustering their latent positions at each time while allowing dependency or borrowing infor-
mation across different time points.

We consider the following DDP type of mixture model, for i = 1, . . . , n,

z
(t)
i ∼ f (z | t) =

∫
N(µ, σ2Id)Gt(dµ)π(dσ2),

where N(µ, σ2Id) is the multivariate normal distribution (the mixing kernel) with mean µ ∈ Rd and a
diagonal covariance matrix σ2Id. HereGt(·) is the mixing distribution for µwhich in our case is a de-
pendent Dirichlet type of process, and π(dσ2) is the mixing distribution for the variance parameter σ2.

We are left with proposing a prior for {Gt(·), t = 1, . . . , T}. To elucidate the idea of incorporating
dependency across different time points, we adopt the following sticking-breaking representation:

Gt =

N(t)∑
h=1

wh(t)δθh(t)(·),

where N(t) stands for the number atoms of the mixing measure Gt, {wh(t), h = 1, . . . , N(t)} is the
weight sequence, and {θh(t), h = 1, . . . , N(t)} are the atoms of the mixing measure.

If one lets wl(t) = wl without time dependency, then this is called the fixed π or fixed weights
DDP model. Then one just draw {θh(t), h = 1, . . . , N(t)} from some stochastic process. Write
{θh(t), h = 1, . . . , N(t)} as {θ(1)1 , . . . , θ

(1)
H , . . .}, {θ(2)1 , . . . , θ

(2)
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(t)
H , . . .}. One can

introduce dependency by for each atom across different time points. Specially, one can assume that
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· · · · · ·
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· · · · · ·

GP(0,R(·, ·)) is some Gaussian process with mean 0 and covariance kernel R(·, ·). For example, one
can pick the standard squared exponential covariance kernel, that is,

R(θt1, θt2) = α exp(−β(t1 − t2)2).

Data Simulation

Given the link probability π
(t)
ij , one can simulate the dynamic binary matrices from the Bernoulli

model.
To simulate the latent position sequence that incorporates dependency across different time points,

we propose the following:

•At time t1, simulated z
(t1)
i ∼

∑5
i=1wiN(µi, σ

2
0), where the mean locations of the five normal

mixtures, namely µi (i = 1, . . . , t) are kept fixed. Note that the weights are going to vary at dif-
ferent time points at time t1, one can let w1 = w2 = . . . = w5 = 1/5, in this case we associate a
five-dimensional binary vector (1,1,1,1,1) to the weights vector (1/5, 1/5, 1/5, 1/5, 1/5).

•At time t2, we will keep the five normal mixture fixed but simulate a new weight vector by first
simulating a five-dimensional binary vector by flipping the corresponding entry from time t1 with
probability for example 0.8 to keep the same entry as in time t1. Suppose you simulation gives a
binary vector of (1,1,1,0,0), then the corresponding weight vector is (1/3, 1/3, 1/3, 0, 0) which in
fact only gives rises three mixture components.

•At time t3, repeat similarly the previous step.

Figure 1: The first row is nodes graph and the second row is the corresponding latent position plot for simulated data (20
nodes, t = 20, 21, 22)

Figure 2: The first row is nodes graph and the second row is the corresponding latent position plot for simulated data (50
nodes, t = 20, 21, 22)
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