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Higher-Order Tensors

Tensors are generalizations of scalars, vectors and matrices:

Why tensors?

provides a natural representation for multiway data
allows more flexible and powerful statistical models
⇒ e.g. higher-order cumulants in latent variable models



Tensor Norm

The main differences between usual matrices and higher-order tensors
come from the transition from k = 2 to k = 3:

Computational complexity

Most higher-order tensor problems are NP-hard [Hillar & Lim 2013].

p-norm [Lim 2005]

Let A ∈ Rd1×···×dk be an order-k tensor. For any 1 ≤ p ≤ ∞, the lp norm
of the multilinear functional associated with A is defined as

‖A‖p = max
‖xn‖p=1,xn∈Rdn ,n=1,...,k

〈A, x1 ⊗ · · · ⊗ xk〉,

where ‖xn‖p denotes the vector lp-norm of xn. The special case of p = 2
is called the spectral norm.

Problem: Can we give a computable bound of ‖A‖p?



Matrixization

Tensor can be viewed as a collection of slices (matrices):



General Unfoldings

Matricization. Rearrange the slices of the tensor in different directions
(or modes) into a matrix.

Unfoldπ(A) Partition π ∈ P[3]

∈ Rd2×d1d3 π = {{2}, {1, 3}}

∈ Rd1×d2d3 π = {{1}, {2, 3}}

∈ Rd3×d1d2 π = {{3}, {1, 2}}

Unfolding. We generalize this notion by considering all possible un-
foldings of an order-k tensor, each of which can be viewed as being
induced by a certain partition of [k] := {1, . . . , k}.



Partition Lattice P[k]

For any k ∈ N+, a partition π of [k] is a collection {Bπ1 ,Bπ2 , . . . ,Bπ` }
of disjoint, nonempty subsets (or blocks) Bπi satisfying ∪`i=1B

π
i = [k].

The set of all partitions of [k] is denoted P[k].
A partition π1 ∈ P[k] is called a refinement of π2 ∈ P[k] if each block of
π1 is a subset of some block of π2. This relationship defines a partial
order, expressed as π1 ≤ π2.

Example on P[4]:



All possible tensor unfoldings
1-to-1←→ the set of partitions of [k], e.g.,

0[k] ↔ A, 1[k] ↔ Vec(A).

Unfoldπ(A) denotes the tensor unfolding induced by partition π ∈ P[k].
Some facts:

# of possible unfoldings: Bk (Bell number).
B1 = 1,B2 = 2,B3 = 5,B4 = 15,B5 = 52, . . .
# of possible order-` (1 ≤ ` ≤ k) unfoldings: S(k, `) (Stirling number
of the second kind).



How does the spectral norm change upon unfoldings?

Example (on P[4])

Given A ∈ Rd1×···×d4 , we consider π1 = {{1, 2}, {3, 4}} and π2 = {{1}, {2}, {3, 4}}.

Spectral norm preserves the partial order on partitions:
π2 ≤ π1, ‖Unfoldπ2(A)‖2 ≤ ‖Unfoldπ1(A)‖2.

One-step refinement: ‖Unfoldπ1(A)‖2 ≤ min(
√
d1,
√
d2) ‖Unfoldπ2(A)‖2.



Norm Inequalities Between Any Two Tensor Unfoldings

More generally, we can compare the spectral norms of tensor unfoldings
induced by any two partitions π1, π2 ∈ P[k].

Spectral norm inequalities

Let A ∈ Rd×···×d be an order-k tensor with the same dimension d in all
modes. Then

d−c1/2 ‖Unfoldπ1(A)‖2 ≤ ‖Unfoldπ2(A)‖2 ≤ dc2/2 ‖Unfoldπ1(A)‖2 ,

where c1 = (k −
∑
B∈π1

max
B′∈π2

|B ∩ B ′|), c2 = (k −
∑
B∈π2

max
B′∈π1

|B ∩ B ′|), and

|B ∩ B ′| denotes the number of elements in the block B ∩ B ′.

π1 and π2 need not be comparable.

Proof sketch: consider the sequences of partitions π1 ≥ · · · ≥ (π1∧π2)
and π2 ≥ · · · ≥ (π1 ∧ π2), where π1 ∧ π2 is the greatest lower bound
of π1 and π2, defined by π1 ∧ π2 := sup{π ∈ P[k] : π ≤ π1, π ≤ π2}.



See our paper for the general lp-norm inequalities that allow unequal
dimension in each mode:
Wang, M., Dao Duc, K., Fischer, J., and Song, Y. S. Operator Norm Inequalities

between Tensor Unfoldings on the Partition Lattice, Preprint. arXiv:1603.05621.

Application. Recall that computing ‖A‖2 is hard. What if we use the
matrix norm to approximate the tensor norm?
Taking π2 = 1[k] in the spectral norm inequalities gives:

Bottom-up inequality

Let A ∈ Rd×···×d be an order-k tensor with the same dimension d in all
modes, and let P`[k] ⊂ P[k] denote the set of partitions that have exactly `

blocks. Then, for all 1 ≤ ` ≤ k and partitions π ∈ P`[k],

d−(k−`)/2 max
π∈P`

[k]

‖Unfoldπ(A)‖2 ≤ ‖A‖2 ≤ min
π∈P`

[k]

‖Unfoldπ(A)‖2 .



Other Useful Corollaries

Top-down inequalities

1 d−(k−maxi∈[`] |B
π
i |)/2 ‖A‖F ≤ ‖Unfoldπ(A)‖2 ≤ ‖A‖F .

2 d−(k−dk/`e)/2 ‖A‖F ≤ min
π∈P`

[k]

‖Unfoldπ(A)‖2 ≤ max
π∈P`

[k]

‖Unfoldπ(A)‖2 ≤ ‖A‖F .

Frobenius norm vs. Spectral norm

All order-k tensors A ∈ Rd1×···×dk satisfy

‖A‖F ≤
[

dim(A)

maxn∈[k] dn

]1/2
‖A‖2 ,

where dim(A) =
∏

n∈[k] dn denotes the total dimension of the tensor.

This bound improves over the recent result found by Friedland and Lim
[Lemma 5.1, 2016], namely ‖A‖F ≤ dim(A)1/2 ‖A‖2.



Specially-Structured Tensors

Let A ∈ Rd1×···×dk be an order-k tensor and consider any partition
π ∈ P[k]. Then A is called π-orthogonal decomposable tensor, or π-OD,
over R if it admits the decomposition

A =
∑r

n=1 λna
(n)
1 ⊗ · · · ⊗ a

(n)
k ,

where λn ∈ R+, n ∈ [r ], and the set of vectors {a(n)i ∈ Rdi : i ∈ [k], n ∈ [r ]}
satisfies

〈⊗i∈Ba
(n)
i , ⊗i∈Ba

(m)
i 〉 = δnm,

for all B ∈ π and all n,m ∈ [r ].

Example: a symmetric tensor A ∈ Rd×d×d is called 0[k]-OD if it admits
the following decomposition:

where {u(1),u(2),u(3)} is a set of orthonormal vectors.



π-Orthogonal Decomposable Tensors

Norm equality on upper cones

If A is π-OD, then for any partition τ in the upper cone of π, i.e.
τ ∈ Uπ := {τ ∈ P[k] : π ≤ τ < 1[k]}, we have

‖Unfoldτ (A)‖2 = ‖Unfoldπ(A)‖2 .

Example: If A is π-OD tensor where π = {{1, 2}, {3}, {4}}, then the spectral
norm is invariant under the following tensor unfoldings: {{1, 2}, {3}, {4}},
{{1, 2, 3}, {4}}, {{1, 2, 4}, {3}}, and {{1, 2}, {3, 4}}.
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