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Hourly observations of CO2 concentration at Syowa
station in Antarctica (1984/ 2/ 3 - 2009/12/31)
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Hourly observations of CO2 concentration at Syowa
station in Antarctica

The data clearly show

strong temporal trend

strong seasonal variation

We are also interested to know if there is

a daily pattern ? If so, does it vary seasonally ?

an effect due to wind speed? If so, does it vary seasonally ?

an effect due to wind direction?

In this talk, we introduce the method to analyze a seasonal daily pattern,
doubly cyclic smoothing splines, and show the results of analysis that
give answers to the above questions.
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1. Cyclic cubic smoothing splines
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Cyclic cubic smoothing splines

The cyclic cubic smoothing spline is a smoothing method to
estimate periodic variation such as daily or annual pattern of time
series observations.

Day 1 Day2 Day 3 Day 4

It fits a cyclic cubic spline function which is a periodic piece-wise
cubic function with continuity up to the second derivative.
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A cyclic cubic spline function

A cyclic cubic spline function g(t) is

periodic When the period is T ,

g(t+ kT ) = g(t) for k = 0,±1,±2, · · ·

piece-wise cubic polynomial
Given knots t(0) < t(1) < · · · < t(K−1) < t(K) with t(K) − t(0) = T ,

g(t) = fj(t) for t ∈ [t(j−1), t(j)), j = 1, 2, · · · ,K

where fj(t)s are cubic polynomial functions.

That is, for t ∈ [t(0), t(K)], it can be expressed as

g(t) =

K∑
j=1

I[t(j−1),t(j))fj(t)
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A cyclic cubic spline function

A cyclic cubic spline function

g(t) =

K∑
j=1

I[t(j−1),t(j))fj(t)

is also continuous up to the second derivative
For j = 1, 2, · · · ,K − 1,

fj(t
(j)) = fj+1(t

(j)), f ′
j(t

(j)) = f ′
j+1(t

(j)), f ′′
j (t

(j)) = f ′′
j+1(t

(j))

The values at the both endpoints t(0) and t(K) are equal up to
the second derivative.

f1(t
(0)) = fK(t(K)), f ′

1(t
(0)) = f ′

K(t(K)), f ′′
1 (t

(0)) = f ′′
K(t(K))
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Cyclic cubic smoothing splines

A cyclic cubic spline function is flexible.
To avoid overfitting, we impose a roughness penalty.

In a most simplified case, the model and object function are defined as:

Model� �
yi = g(ti) + ϵi, ϵi ∼ N(0, σ2), i = 1, · · · , n, i .i .d .

where g(t) is a cyclic cubic spline function．� �
Penalized squared errors� �

Ωλ(g) =

n∑
i=1

{yi − g(ti)}2 + λ

∫ t(K)

t(0)
g′′(t)2dt, λ > 0 (1)

� �
λ is called a smoothing parameter.
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Example: Daily pattern of PM2.5 1/3

Hourly observations of PM2.5 1/3 in air for 28 days at Fukuoka
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lambda/m = 8
lambda/m=1.2

In the left plot,

black dots with solid lines depict
hourly averages of PM2.5 1/3

the red dashed curve is the
fitted cyclic cubic spline
function with λ = 8× 28

the green dotted curve is the
fitted cyclic cubic spline
function with λ = 1.2× 28
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Smoothing mechanism of cyclic cubic smoothing splines

In the following, we assume knots are evenly spaced with

t(j) − t(j−1) = h for j = 1, 2, · · · ,K

Function value parameterization

We employ the function value parameterization to express cyclic cubic
functions. For j = 1, 2, · · · ,K, let

βj be the function value of g(t) at t(j), that is, βj = g(t(j)), and

bj(t) be the corresponding cyclic cubic spline basis function with
bj(t

(i)) = δij for i = 1, 2, · · · ,K,

so that a cyclic cubic spline function g(t) can be expressed as

g(t) =
K∑
j=1

βjbj(t) (2)
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Penalty term with function value parameterization

The penalty term can be expressed as∫ t(K)

t(0)
g′′(t)2dx = βTDTB−1Dβ (3)

where

β = (β1, β2, · · · , βK)T

B and D are cyclic band matrices,

B =
h

6
G(4, 1) and D =

1

h
G(−2, 1)

where G(a, b) denotes a cyclic band matrix

G(a, b) =


a b b
b a b

. . .
. . .

. . .

b a b
b b a


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Least penalized squared error estimate β̂

Suppose now that

all observations were made at knots

at each knot, m observations were obtained.

Let y denote the sample average vector at the knots. Then, we have

n∑
i=1

{yi − g(ti)}2 = ∥y − 1m ⊗ y∥2 +m∥y − β∥2

so that the minimization of penalized squared errors is equivalent to the
minimization of

S(β) = m∥y − β∥2 + λβTDTB−1Dβ (4)

Least penalized squared error estimate� �
β̂ = Hy where H =

(
IK +

λ

m
DTB−1D

)−1

� �
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Eigenvalues and eigenvectors of G(a, b)

For the even number of knots (K = 2q), eigenvalues of a cyclic band
matrix G(a, b) with b > 0 are in descending order

l1 = a+ 2b, l2j = l2j+1 = a+ 2b cos 2πj
k , l2q = a− 2b

(j = 1, · · · , q − 1)

and the corresponding eigenvectors are

u1 =
1√
k
(1, 1, · · · , 1, 1)T ,

u2j =

√
2

k


cos
(
2πj 1

k

)
...

cos
(
2πj i

k

)
...

cos (2πj)

 ,u2j+1 =

√
2

k


sin
(
2πj 1

k

)
...

sin
(
2πj i

k

)
...

sin (2πj)

 , j = 1, 2, · · · , q − 1

u2q =
1√
k
(1,−1, · · · , 1,−1)

T
.
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Eigenvalues and eigenvectors of influence matrix H

Recall that the estimate β̂ of the function values at knots is given by

β̂ = Hy where

(
IK +

λ

m
DTB−1D

)−1

Matrices D,B and IK share the same eigenvectors, so does H.

The eigenvalues of the influence matrix H are given in descending order by

γ1 = 1, γ2j = γ2j+1 =

1 +
λ

m
· 12
h3

·

(
1− cos

2πj

k

)2

(
2 + cos

2πj

k

)


−1

j = 1, · · · , q − 1,

and γ2q =

(
1 +

λ

m
· 48
h3

)−1
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Eigenvalues and eigenvectors of influence matrix H
γj
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The black solid curves
are cyclic cubic spline
basis functions
corresponding to uj .

The red dashed curves
are cyclic cubic spline
basis functions
multiplied by γj (=γjuj ).
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Smoothing mechanism of cyclic cubic smoothing splines
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β̂ =

 k∑
j=1

γjuju
T
j

y

=
k∑

j=1

γj(uj ,y) uj

y =
k∑

j=1

(uj ,y) uj

The smoothing mechanism can be understood as follows
It decomposes the average observation vector y into

the constant component (overall mean), and
sin and cos components with frequencies 1 to q(= m/2).

sin and cos components are shrunk. The higher the frequency is, the
more the component is shrunk.
The overall mean and shrunk components are summed up to
produce β̂
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2. A tensor product method:

an extenstion to
a multivariate smoothing method
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A tensor product method :
an extenstion to a bivariate smoothing method

Suppose we have

basis functions for a function space Ω1：　a1(s), a2(s), · · · , aK1(s)

basis functions for a function space Ω2：　b1(t), b2(t), · · · , bK2(t).

A tensor product method uses products of basis functions on Ω1 × Ω2

ai(s)bj(t), i = 1, 2, · · · ,K1, j = 1, 2, · · · ,K2

as its basis functions. Thus, a bivariate function for the tensor product
method can be expressed as

fst(s, t) =

K1∑
i=1

K2∑
j=1

βijai(s)bj(t) (5)
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Roughness penalty for the tensor product method

Roughness penality for a tensor product smoothing function is defined as

J(fst) =

∫
Ωs×Ωt

λs

(
∂2fst
∂s2

)2

+ λt

(
∂2fst
∂t2

)2

ds dt.

When knots are evenly spaced, the penalty term can be approximated as

Penalty term for a tensor product smoothing function� �
J(fst) ≈ λsβ

T (Ss ⊗ IKt)β + λtβ
T (IKs ⊗ St)β (6)

where β is a vector of appropriately rearranged function values at grids.� �
(Wood, 2006)
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3. Doubly cyclic cubic smoothing splines
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Doubly cyclic cubic smoothing splines

Doubly cyclic cubic smoothing splines are generated using a tensor product
method with:

- basis functions for a function space with a yearly period：fa
1 , f

a
2 ,· · · , fa

Ka

- basis functions for a function space with a daily period：fd
1 , f

d
2 ,· · · , fd

Kd
.

We start with a univariate function of time t,
defined on a coil, that winds around a torus:

f(t) =

Ka∑
i=1

Kd∑
j=1

βijf
a
i (t)f

d
j (t)

Then, to have a function that is smooth in
two directions, we re-express this as:

f̃(s, t) =

Ka∑
i=1

Kd∑
j=1

βijf
a
i (s)f

d
j (t)

and consider penalty to this function.
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What does doubly cyclic cubic smoothing spline do?

When

knots are evenly spaced, and

the numbers of observations are equal for all knots,

then, original basis functions can be linearly transformed into

Oorthogonal basis functions

f cos
ij : cyclic cubic spline function whose values at knots are equal to

cos (2πt(iha + jhd)) for i = 0, · · · q∗a, j = 0,±1, · · · ± q∗d

fsin
ij : cyclic cubic spline function whose values at knots are equal to

sin (2πt(iha + jhd)) for i = 0, · · · q∗a, j = 0,±1, · · · ± q∗d

where q∗d ≤ Kd/2− 1, q∗a ≪ Ka/2− 1 and for ha = 1/Ka, hd = 1/Kd,

These are the eigenvectors of the influence matrix for doubly cyclic cubic
smoothing splines.
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What do doubly cyclic cubic smoothing splines do?

Estimated function� �
f̂(t) =

q∗a∑
i=0

q∗d∑
j=−q∗d

(
1 + λa

(1− cos 2πiha)
2

2 + cos 2πiha
+ λd

(1− cos 2πjhd)
2

2 + cos 2πjhd

)−1

×

(
< ucos

ij ,y >

|ucos
ij |2

f cos
ij +

< usin
ij ,y >

|usin
ij |2

f sin
ij

)
� �
where q∗d ≤ Kd/2− 1, q∗a ≪ Ka/2− 1 and for ha = 1/Ka, hd = 1/Kd,

ucos
ij : vectors of values of cos (2πt(iha + jhd)) at knots

usin
ij : vectors of values of sin (2πt(iha + jhd)) at knots

f cos
ij : cyclic cubic spline function with cos (2πt(iha + jhd)) as values at knots

f sin
ij : cyclic cubic spline function with sin (2πt(iha + jhd)) as values at knots

y : vector of the averages at knots
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Wiggly components are shrunk more

The doubly cyclic cubic smoothing spline shrinks the components of

basis function with values at knots cos (2πt(iha ± jhd)), and
basis function with values at knots sin (2πt(iha ± jhd))

by multiplying them by the shrinkage rate(
1 + λa

(1− cos 2πiha)
2

2 + cos 2πiha
+ λd

(1− cos 2πjhd)
2

2 + cos 2πjhd

)−1

and sum them up.
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4. Analysis of CO2 concentration
at Syowa station in Antarctica
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A model with temporal trend and seasonal daily pattern

We start with a linear additive model for CO2 concentration with temporal
trend and seasonal daily pattern as explanatory terms.� �

Model 1: Y = ftr(t) + fday,year(t) + ϵ� �
where

Y : CO2 concentration

ftr(t) : a cubic spline function of time t for temporal trend

fday,year(t) : a doubly cyclic cubic spline function of time t with daily

and annual cycles
ϵ : random error with variance σ2

We used R package mgcv by Simon Wood for analysis.
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Temporal trend and annual variation

Temporal trend is almost
linear

CO2 concentration has
increased 40ppm in 25 years

The range of annual
variation is 1.1ppm

CO2 concentration is low in
summer and high in winter

28 / 37



Seasonal variation of daily Pattern in CO2 concentration

Daily pattern of CO2 concentration has a seasonal variation
It has the largest daily variation (0.017ppm) in summer (January 4th)
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Confidence interval curves for daily pattern

95% confidence interval curves for January 4th and July 4th.
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Hourly variation is significant in summer (January 4th),
but not significant in winter (July 4th).
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Effects of wind speed and direction

Wind speed might have an effect on CO2 concentration.
The effect of wind speed might depend on the wind direction.� �

Model 2: y = ftr(t) + fday,year(t) + fws,wd(s, d) + ϵ� �
where

Y : Co2 concentration

ftr(t) : a cubic spline function of time t for temporal trend

fday,year(t) : a doubly cyclic cubic spline function of time t with daily

and annual cycles
fws,wd(s, d) : tensor product of a cubic spline function of wind speed s

and a cyclic spline function of wind direction d
ϵ : random error with variance σ2
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Seasonal effect of wind speed

The effect of wind speed might differ by season.� �
Model 3: y = ftr(t) + fday,year(t) + fws,year(s, t) + ϵ� �

where

Y : Co2 concentration

ftr(t) : a cubic spline function of time t for temporal trend

fday,year(t) : a doubly cyclic cubic spline function of time t with daily

and annual cycles
fws,year(s, t) : tensor product of a cubic spline function of wind speed s

and a cyclic cubic spline function with annual cycle of t
ϵ : random error with variance σ2
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Model selection for CO2 concentration

We fitted the following three models and compared AIC

model formula AIC

model 1 y = ftr(t) + fday,year(t) + ϵ 19942.5

model 2 y = ftr(t) + fday,year(t) + fws,wd(s, d) + ϵ 18725.6

model 3 y = ftr(t) + fday,year(t) + fws,year(s, t) + ϵ 16189.5

where

ftr(t) : a cubic spline function of time t
fday,year(t) : a doubly cyclic cubic spline function of time t with daily

and annual cycles
fws,wd(s, d) : tensor product of a cubic spline function of wind speed s

and a cyclic spline function of wind direction d
fws,year(s, t) : tensor product of a cubic spline function of wind speed s

and a cyclic cubic spline function with annual cycle of t
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Seasonal change of
wind speed effect
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Conclusions

We proposed the doubly cyclic cubic smoothing spline method.

For a simple model, the eigenvalues and eigenvectors of the influence
matrix can be explicitly expressed with the values of trigonometric
functions with different frequencies.

This expression shows that the more wiggly the basis function is, the
more its coefficient is shrunk.

We analyzed CO2 concentration at Syowa station in Antarctica using
this method. CO2 concentration has a strong temporal trend and
annual variation.

Daily pattern of CO2 concentration has a seasonal variation. Hourly
variation is significant in summer (January), but not significant in
winter (July).

The effect of wind speed also has annual variation.

Flexible regression models using nonparametric smoothing methods
enable us to analyze the data of interest more precisely.
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Thank you for your attention!

37 / 37


	Outline
	Cyclic cubic smoothing splines
	A cyclic cubic spline function
	Cyclic cubic smoothing splines
	Smoothing mechanism of cyclic cubic smoothing splines 

	A tensor product method: an extenstion to a multivariate smoothing method
	Roughness penalty for the tensor product method

	Doubly cyclic cubic smoothing splines
	What do doubly cyclic cubic smoothing splines do?
	Wiggly components are shrunk more

	Analysis of CO2 concentration at Syowa station in Antarctica
	Seasonal variation of daily Pattern
	Confidence interval curves for daily pattern
	Model selection
	Seasonal change of wind speed effect

	Conclusions

