BOSTON UNIVERSITY/KEIO UNIVERSITY WORKSHOP 2016

The Evaluation of Catcher "Framing" using PITCHf/x data

Daiki Nagata Keio University

Mihoko Minami and DataStadium Inc.

What is "Framing"?

Framing is the technique that a catcher uses when receiving a pitch.

wikipedia

^rThe catcher can help his pitcher get more strike calls

from the umpire by using a technique called "framing" ${\tt I}$

In other words, framing is the ability to receive a pitch such that the probability of called strike is increased.

Let's look at "Framing"

http://grantland.com/features/studying-art-pitch-framing-catchers-suchfrancisco-cervelli-chris-stewart-jose-molina-others/

З

Let's look at "Framing"

http://grantland.com/features/studying-art-pitch-framing-catchers-suchfrancisco-cervelli-chris-stewart-jose-molina-others/

PITCHf/x

 The PITCHf/x[®] service tracks the full trajectory of live baseball pitches, and gets an information of speed or location.

 It has been installed in all 30 stadiums, and currently tracks pitches for every MLB game.

http://www.sportvision.combaseball/pitchfx®

5

Strike or Ball

Generalized Additive Model (GAM)

(Pavilidis, H., and Brooks, D. (2014))

 $plate.x_i, plate.z_i$: Plate location for i th pitch

f: Thin plate regression spline

Visualization of Estimated Probability

8

(Ordinary) Run Value

 Run Value is calculated by averaging the difference of Run Expectancy and Runs before and after a certain play event.

Play Event	Run Value
Single	0.47
Double	0.77
Triple	1.09
Home Run	1.39
Ground Out	-0.24
Fly Out	-0.28
Double Play	-1.06
Strikeout	-0.30
Sac Bunt	-0.13
•••	•••

Run Value of Strike and Ball

Count	Ball	Strike
0-0	0.00	-0.02
0-1	0.01	-0.15
0-2	0.01	-0.16
1-0	0.03	-0.02
1-1	0.01	-0.14
1-2	0.02	-0.17
2-0	0.23	-0.04
2-1	0.16	-0.14
2-2	0.15	-0.19
3-0	0.03	-0.10
3-1	0.13	-0.15
3-2	0.28	-0.34

(Framing Run Value) = -(

Framing Run Value

Count	Maximum Framing Run Value
0-0	0.080
O-1	0.092
0-2	0.199
1-0	0.112
1–1	0.117
1-2	0.241
2-0	0.156
2-1	0.098
2-2	0.339
3-0	0.173
3-1	0.251
3-2	0.590

Pavilidis, H., and Brooks, D. (2014)

Calculation Example

Assumption

throw to the location where called strike probability is 80%

2

0-2 count (Framing Run Value : 0.199)

estimated

by model !

- Catcher can get run value as follow,
 - If pitch is called strike, (1-0.80)×0.199 = +0.0398 runs

20% Available!

If pitch is called ball,
(0-0.80)×0.199 = -0.1592 runs

· Sum up these values through the season

Extension of Model

There are various factors related to a pitch result.

- Umpire ➡ strike-zone size
- Batter ➡ batter stance

Treat these factors as Random Effects

Estimate random effect by Mixed Model

Generalized Additive Mixed Model (GAMM)

$$\begin{aligned} \log \frac{p_i}{1 - p_i} &= \alpha + \frac{f(plate.x_i, plate.z_i) + \gamma_i^u + \gamma_i^p + \gamma_i^b}{\text{smooth term}} + \frac{\gamma_i^u + \gamma_i^p + \gamma_i^b}{\text{random effect}} \\ \gamma_i^u &\sim N(0, \sigma_u^2) \quad , \quad \gamma_i^p \sim N(0, \sigma_p^2) \quad , \quad \gamma_i^b \sim N(0, \sigma_b^2) \end{aligned}$$

Based on GAMM estimation, adjust other factors by removing dispersion of umpires and players.

$$\hat{\alpha} + \hat{f}(plate.x_i, plate.z_i)$$

use for evaluation

ANOVA Table

	edf	Chi-squared value	p-value
f(plate.x,plate.z) R-handed batter	35.26	33540.1	< 2.0×10 ⁻¹⁶
f(plate.x,plate.z) L-handed batter	35.03	27317.1	< 2.0×10 ⁻¹⁶
umpire_id	426.57	2247.4	< 2.0×10 ⁻¹⁶
batter_id	269.12	631.0	< 2.0×10 ⁻¹⁶
pitcher_id	77.65	907.2	< 2.0×10 ⁻¹⁶

*****Sample Size = 379,170

*edf = estimated degree of freedom

Total Framing Run Value in 2014 Season

6

Table : Frar	ning Run Value	Value Ranking	
Name	Total Run Value	Sample Size	
Janathan Lucroy	23.95	10,218	
Rene Rivera	23.24	6,142	
Miguel Montero	22.98	9,600	
Mike Zunino	21.94	9,203	
Buster Posey	18.37	7,542	
• • •	• • •	• • •	

Run Value per 10,000 Pitches

Name	Run Value per 10,000	Team
Rene Rivera	37.84	Padres
David Ross	37.24	Red Sox
Hank Conger	31.62	Angels
Christian Vazquez	30.23	Red Sox
Buster Posey	24.36	Giants
• • •	•	•

*only over 3,000 samples players

Reference

•

•

•

•

Wood,S.N.(2006). Generalized Additive Models : an introduction with R. Chapman and Hall/CRC. New York.

Wood,S.N.(2003). Thin plate regression splines. Journal of the Royal Statistical Society: Series B (Statistical Methodology) J Royal Statistical Soc B.

Pavilidis,H.,and Brooks,D.(2014). Framing and Blocking Pitches: A Regressed, Probabilistic Model. (<u>https://</u> <u>www.baseballprospectus.com/article.php?articleid=22934</u>).

John Walsh.(2008). Searching for the game's best pitch. (<u>http://www.hardballtimes.com/searching-for-the-games-best-pitch/</u>)