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About This Research

• We consider the problem of estimating the effect of Particulate Matters to 
our health, when the number of monitoring stations is limited
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• Particulate Matter is Complex mixture of 
extremely small particles and liquid droplets, 
and are widely studied and concerned the 
relationship with various diseases. 

• Estimating the effect of Particulate Matter 
exposure to our health is one of the active 
research topic of environmental epidemiology. 

Particulate Matter
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About This Research

• When we estimate the effect of exposure, we often use the community 
health survey data, and need the information of exposure at survey areas. 

• Left figure shows the survey conducted at some area of Japan, we can see 
the number of monitoring stations in survey areas are limited.

3

0 50km

Monitoring 
Station

Survey 
Area

Outcome Exposure
Covariates 

for Outcome
Covariates 

for Exposure



BU Workshop 2016 @ Boston

The aim of this research

• In many of researches for particulate matter exposure, missing data 
problem are not paid enough attention, and simple regression model are 
used to fill the missing of exposure 

• Then, the effect of exposure is estimated as if they were observed
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Notation!
• The another reason why regression imputation is used is that “the analyst for 
exposure assessment and the analyst for estimating the effect exposure are not 
same one”. 

• So, the unified bayesian approach is not the realistic choice to analysis.
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Procedure using for estimating the effect of exposure in common research.
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Outcome ExposureCovariates 
(History of illness)

Covariates 
for Exposure

Observed

Missing

Each row correspond to  
the each of survey areas

• The procedure of estimating the effect of exposure using regression imputation 
can be decompose to 3 steps.

Fig: dataset obtained from the survey.
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Procedure using for estimating the effect of exposure in common research.
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Outcome ExposureCovariates 
(History of illness)

Covariates 
for Exposure

Observed

Missing

Linear regression 
(Imputation Model)

Each row correspond to  
the each of survey areas

• Step1 (constructiong the model for exposure) : fitting linear regression model to the 
data observed at monitoring stations, and construct the prediction model for 
exposure.
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Procedure using for estimating the effect of exposure in common research.
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Outcome ExposureCovariates 
(History of illness)

Observed

Missing

Each row correspond to  
the each of survey areas

Imputation

• Step2 (filling the missing) : using the model constructed at first step and covariates, 
we predict the exposure of sub-survey area which cannot be observed exposure. 

• Then fill the missing by predicted values of model.

Covariates 
for Exposure



BU Workshop 2016 @ Boston

Procedure using for estimating the effect of exposure in common research.
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Outcome ExposureCovariates 
(History of illness)

Observed

Imputed

Poisson Regression Model

Each row correspond to  
the each of survey areas

• Step3 (Estimating the effect) Then poisson regression model is fitted to regression 
imputed data, and estimate the effect of exposure

Covariates 
for Exposure
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The aim of this research

• If we treat the imputed values as if they are observed, the consistency of estimator 
may be violated, the variance of estimator will be underestimated !!
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A. We try to clarify the problem of using regression imputation from analytical 
and practical points of view, and organize the important points of matter 
when we use regression imputation in practical analysis. 

B. To develop the method to estimate the effect of exposure, avoiding the 
problem caused by the limited number of monitoring stations.

Purpose

From the missing data analysis context
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Today I’m going to talk…
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A. We try to clarify the problem of using regression imputation from analytical 
and practical points of view, and organize the important points of matter 
when we use regression imputation in practical analysis.

Focus on…

At first, let us consider the problem of regression imputation 
from analytical point of view under the simple setting.
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Analytical point of view - Setting
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we consider the case of using linear regression model for imputation 
and poisson regression model to estimate the effect …Setting

（1）Generating scheme of data （2）Model for analysis

under this setting,  
consider the properties of estimators

• This setting, can be formulated as the problem of estimating the regression 
coefficients β by fitting model-(2) to data generated by Model-(1).
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Analytical point of view - Consistency of regression coefficient estimator.
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We are interested in only,  
so the inconsistency of intercept is not a significant problem
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Analytical point of view - Result

• If we know the true mean of exposure, the 
estimator for effect of exposure will be 
consistent. 

• When we don’t know the true mean of 
exposure, the estimator of exposure will be 
inconsistent 

• In both cases, asymptotic variance will be 
smaller than when we treat imputed values 
properly.
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What is the practitioner want to know is

• Now we showed, the inference based on regression imputation method is invalid.  

• However, what is the practitioner want to know is..
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How much the bias will be occur 
when we use the regression imputation ?(A)

When the large bias will be occur ? (B)

To make clear these things,  

we perform the simulation of regression imputation under previous settings
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Practical point of view - simulation setting
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1.Generate 160 size data containing 70% missing exposure. 

2.Construct the Linear regression model for imputation using data obtained at monitoring station. 

3.Impute the missing values of exposure by linear predictor. 

4.Fit poisson regression model to regression imputed data, and estimate the coefficients. 

5.iterate 1-3 procedure , 1000 times

Procedure of Simulation

• We visualize the inconsistency of estimator and underestimation of asymptotic 
variance.



Boston-Keio Workshop 2016 @ Boston Univ.

Practical point of view - simulation setting (procedure)
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Outcome ExposureCovariates 
(History of illness)

GIS DATA

Step(2) Construct the  
imputation modelStep(1) : Generating the data

Yi|Xi �Possion(�i)

log(�i) =��
0 + Xi�

�
1

Xi|µi �Normal(µi, �
2)

µi �some distribution P

with EP [eµi ] < �
: fixed

generate!

Step(4): Fitting the  
Poisson Regression Model

Step(3) : Filling the  
missing values

Step(5): Estimate the Coefficient of  
Exposure and its 95% CI

iterate 1000 times

size : 160
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Result - Fitting Poisson Regression Model to Regression Imputed Data.

• Compute 95% Confidence interval for coefficient of 
poisson regression model, 1000 times. (sort by coef) 

• Black Solid Line : Estimated coefficients 

• Red Band : 95%CIs based on Fisher Information 
(85,2% contain the true value) 

• Green Band : 95%CIs based on Sandwich Estimator 
(88.6% contain the true value) 

• Mean of Estimated value does not consistent to true 
value. 95% CIs based on fisher information and 
Sandwich Estimator is shorter but not too much.
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Result - analytical & practical point of view (simple setting).
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By Analysis
• The estimator of the effect of exposure is inconsistent 
• Asymptotic variance is underestimated

By Simulation
• If we can specify the mean model for exposure properly 
• Average of estimates is approximately equal to the true parameter value. 
• Underestimation of asymp. variance matters little

Using the regression imputation is  not appropriate in analytically,  
but is not unacceptable in practice

Result
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Result - analytical & practical point of view.

19

By Analysis
• The estimator of the effect of exposure is inconsistent 
• Asymptotic variance is underestimated

By Simulation
• If we can specify the mean model for exposure properly 
• Average of estimates is approximately equal to the true parameter value. 
• Underestimation of asymp. variance matters little, when R > 0.6

2

Using the regression imputation is  not appropriate in analytically,  
but is not unacceptable in practice

Result
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Simulation (practical settings) - Procedure
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Yi|Xi � Poisson(�i)

log �i = �0 + xi�1 +
4�

k=2

zik�k

Model for Outcome

Model for Exposure

Let me consider the data generated from following model.

One of the realization 
from model for exposure

i = 1,2, …, 160

Xi|µi � Normal(µi, �
2)

µi = �0 + exp

�

�
4�

j=1

wij�j + �i0 +
4�

j=1

wij�ij + �i

�

�

where, �j are fixed e�ect, and �ij are the random e�ect at each site, and

�i is spatial component.
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Simulation (practical settings) - Procedure
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• In general, monitoring stations are not 
established with low particulate matter 
concentration. 

• At areas surrounded by black solid line, we 
assume that we cannot observe the 
exposure information. 

• Then, we use regression imputation and 
estimate the effect of exposure β(same 
as previous simulation).

Iterate these procedure 1000 times.
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• Compute 95% Confidence interval for coefficient of 
poisson regression model, 1000 times. (sort by coef) 

• Red Band : 95%CIs based on Fisher Information (25,9% 
contain the true value) 

• Green Band : 95%CIs based on Sandwich Estimator 
(29.7% contain the true value) 

• Black Line : Estimated coefficients 

• This figure shows, the consistency of estimator is 
violated, highly biased, and when there is a spatial 
correlation, the estimated value of exposure will be 
smaller than true value.

Simulation (practical settings) - Result
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Conclusion
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Simple Settings

Realistic Settings

using regression imputation to fill the missing  
does not cause the serious problem

if we ignore the effect of spatial structure and random effect of 
each sites, the effect of exposure will be underestimated!!

In real, for harmful effect, the negative impact of misjudgment

There is a effect There is no effect

There is no effect There is a effect

conclusion

In real 

safe! dangerous!

<<
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Conclusion and Discussion
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we develop the method alternative to regression imputation that can make 
robust inference under the mild model misspecification for exposure.

Ongoing work

Using regression imputation to estimate the effect of exposure causes very serious 
problem, so it is unacceptable in practice !!!!

Conclusion

We now show the underestimation of the effect only by simulation, so next 
we show them by analytically
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