Nonparametric Estimation for Optimal Dividend Barrier based on Empirical Process Atsunobu Oishi, Graduate School of Science and Technology, Keio University Hiroshi Shiraishi, Department of Mathematics, Keio University

Introduction

Insurance company is exposed to uncertainties — when insured event occurs and how much the claim amount is. Lundberg (1903) modelled the fluctuation of the surplus of own company as

 $U(t) = u + ct - S(t), \ S(t) = \sum_{i=1}^{N(t)} X_i.$

We suppose that the insurance company will refund an excess of the surplus (U(t)) over a previously determined barrier (b), as the dividends. We define the surplus process $(U_b(t))$ as follows:

$$U_b(t) = u + c \int_0^t \mathbb{I}\{U_b(s) < b\} ds - S(t)$$

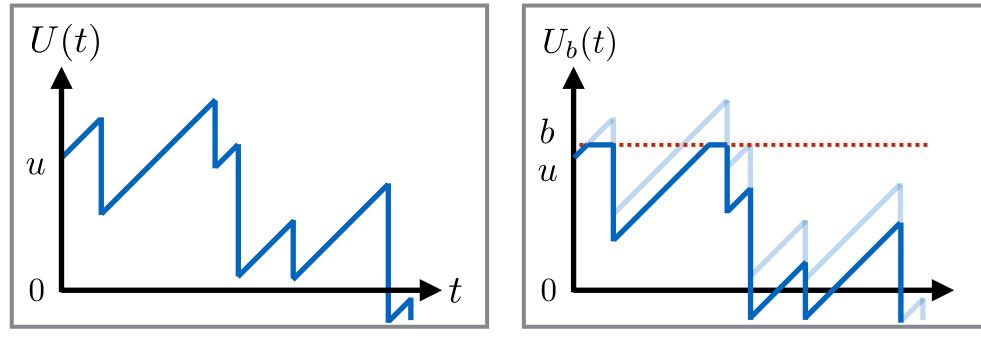


Fig.1 Sample paths of U(t) and $U_b(t)$

What is the Optimal Dividend Barrier?

To define Optimal Dividend Barrier, we define V(u, b)as the function aggregated expectation of present value of the dividends until ruin time:

$$V(u,b) = E\left[\int_{0}^{T_{b}} e^{-\delta t} dD_{b}(t)\right]$$

We define the Optimal Dividend Barrier by maximizing V(u,b):

$$b^* := \underset{b \in \mathbb{R}^+}{\operatorname{argmax}} V(u, b)$$

Objectives

Our objectives in this research are as follows.

- To propose estimators
- To derive asymptotic properties (Consistency, Asymptotic normality, ...)
- To perform simulation
- To analyze real data

In this poster, we focus on the consistency and simulation.

Firstly, we propose an estimator of V(u, b), and define the estimator of b^* as its maximizer.

Secondly, we prove an asymptotic properties of estimators. Lastly, we examine the convergence of estimators by simulation.

Estimator

Assume that we observe the data:

 $\{(X_i, \Delta_i T), i = 1, \dots, n\}$

where X_i and $\Delta_i T$ are *i* th claim amount and inter-claim between i th claim and i - 1 th claim, respectively. We obtain sample paths by resampling from the data, and define the estimators of V(u, b) and b^* as follows.

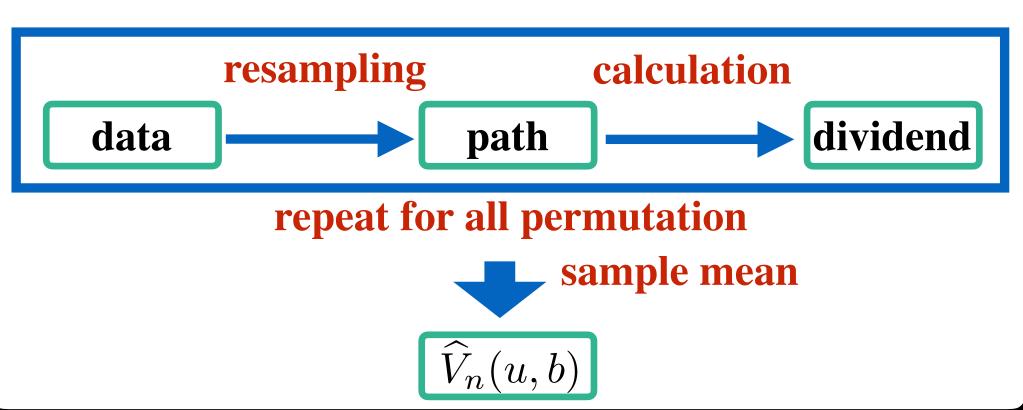
Definition

$$\widehat{V}_{n}(u,b) := E_{n} \left[\int_{0}^{T_{b}} e^{-\delta t} dD_{b,n}(t) \right],$$
$$\widehat{b}_{n}^{*} := \underset{b \in \mathbb{R}^{+}}{\operatorname{argmax}} \widehat{V}_{n}(u,b).$$

where $dD_{b,n}(t)$ denotes dividend amount for (t, t + dt]under one of the sample paths:

$$\left[(X_{i_j}, \Delta_{i_{j'}}T) ; i_j, i_{j'} \in \{1, \dots, n\} \right]$$

 E_n denotes sample mean for all permutations of $\{1, 2, \ldots, n\}.$



Consistency

Under the regularity conditions, we prove uniform convergence of $\hat{V}_n(u, b)$ and consistency of \hat{b}_n^* . To prove consistency of b_n^* , we use the following theorem.

Theorem (Consistency of M-estimator) Assume the following three conditions,

•
$$\forall \{b_n\} \in \mathbb{R}^+, \lim_{n \to \infty} \inf V(u, b_n) \ge V(u, b^*)$$

 $\Rightarrow d(b_n, b^*) \to 0,$

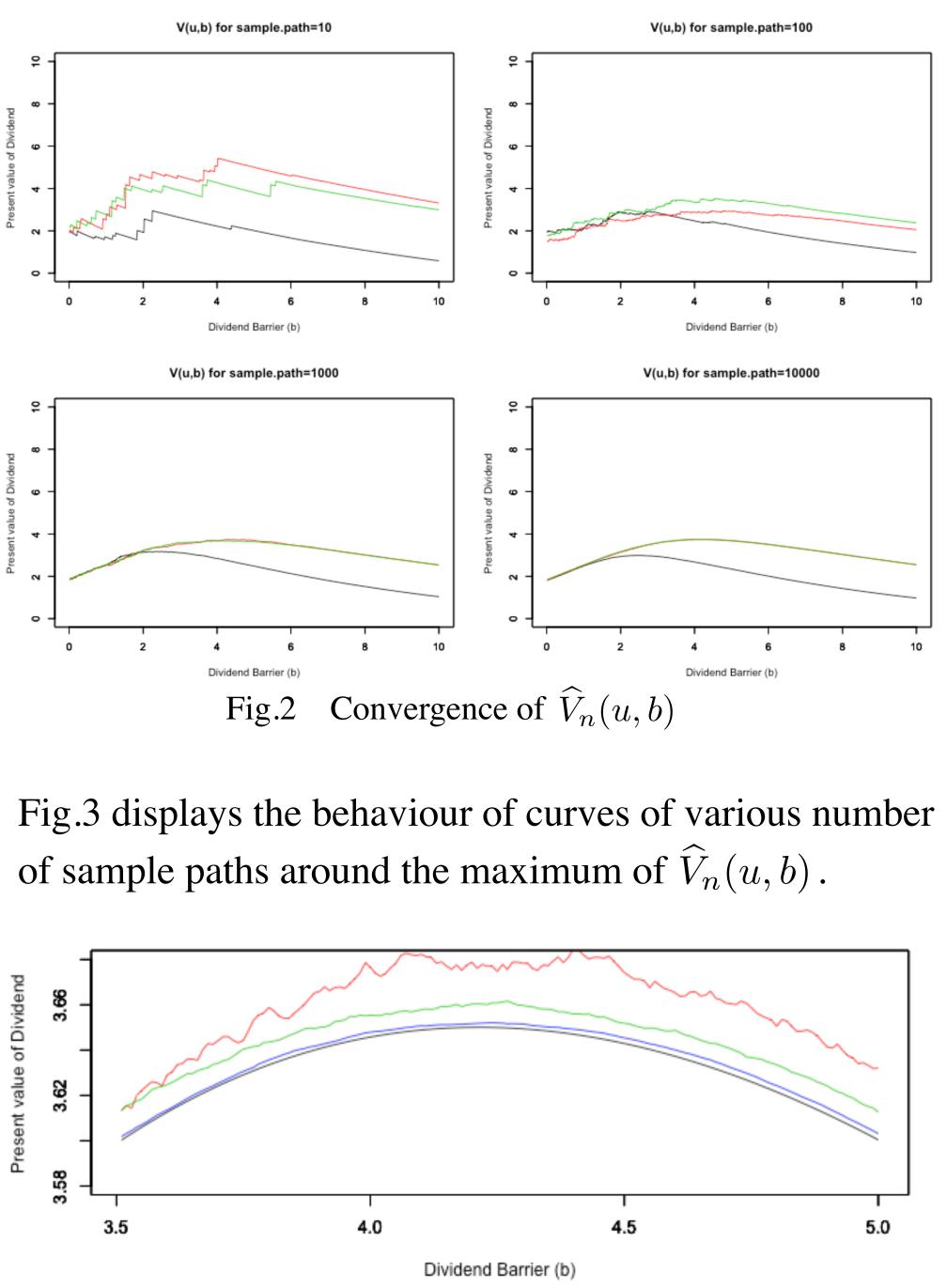
•
$$\widehat{V}_n(u, \widehat{b}_n^*) = \sup_{b \in \mathbb{R}^+} \widehat{V}_n(u, b) - o_P(1),$$

• $\sup_{b\in\mathbb{R}^+} |\widehat{V}_n(u,b) - V(u,b)| \xrightarrow{P} 0.$ Then, $d(\hat{b}_n^*, b^*) \xrightarrow{P} 0.$

Proposition -

$$\sup_{b \in \mathbb{R}^+} |\widehat{V}_n(u,b) - V(u,b)| \xrightarrow{P} 0$$
$$\widehat{b}_n^* \xrightarrow{P} b^*$$

Convergence of $\widehat{V}_n(u, b)$

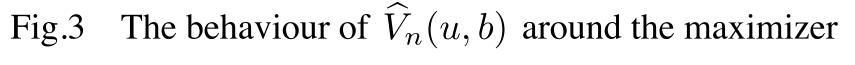


Simulation

Setting

observation : $\{(X_i, \Delta_i T), i = 1, \dots, n\}$ fix $N \le n$, generating M paths resampling : $\{(X_{i_j}, \Delta_{i_{j'}}T) ; i_j, i_{j'} \in \{1, ..., N\}\}$ claim amount : $X_i \stackrel{i.i.d.}{\sim} Ex(1)$ inter-claim : $\Delta_i T \stackrel{i.i.d.}{\sim} Ex(1)$ premium rate : c = 2interest rate : $\delta = 0.1$

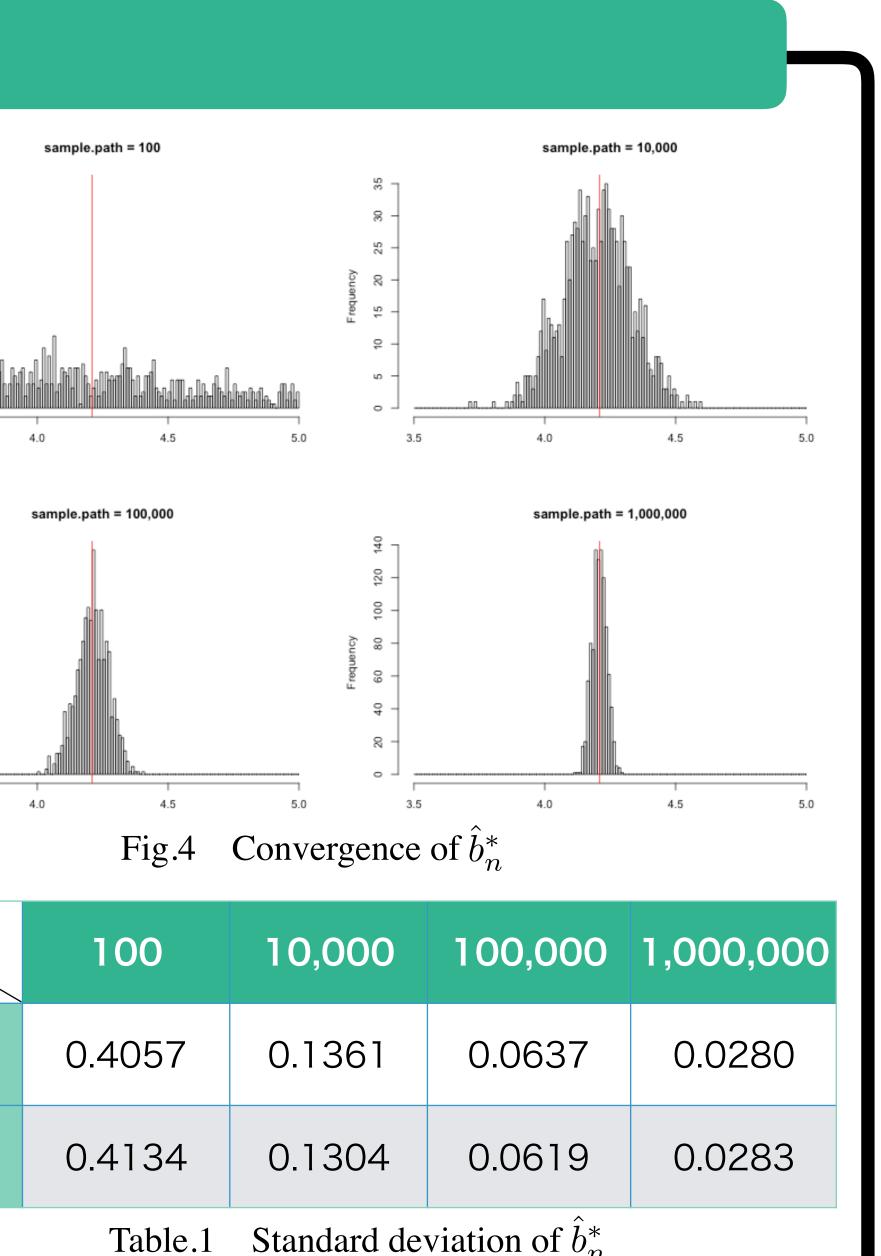
Fig.2 shows that $\widehat{V}_n(u, b)$ converges to a unique smooth function of b as resampling size and number of sample paths go to infinity.



Convergence of b_n^*

In Fig.4, we can observe the consistency of \hat{b}_n^* . Table.1 lists standard deviation of \hat{b}_{n}^{*} for each sample size and number of sample paths.

100 1000 simulation.



Conclusion

- We proved consistency of \hat{b}_n^* .
- We showed the convergence of estimators by

Future work

- We derive asymptotic normality of b_n^* .
- We try to perform simulation of the convergence of
- estimators with various cases.
- We analyze real data.

References

• Frees, E. W. (1986). Nonparametric estimation of the probability of ruin. Astin Bulletin, 16(S1), S81-S90. • Gerber, H. U., & Shiu, E. S. (1998). On the time value of ruin. North American Actuarial Journal, 2(1), 48-72. • Gerber, H. U., & Shiu, E. S. (2006). On optimal dividend strategies in the compound Poisson model. North American Actuarial Journal, 10(2), 76-93. • Kosorok, M. R. Introduction to empirical processes and semiparametric inference. 2008.