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Objective

We introduce a Markowitz's mean-variance optimal portfolio
estimator from d X n data matrix under high dimensional set-
ting where d is the number of assets and n is the sample size.
When d/n converges in (0,1), we show inconsistency of the

traditional estimator and propose a consistent estimator.

Background

When an investor invest in d financial products, he consider

how maximize the portfolio return for a given level of risk,

defined as variance. Define optimal portfolio as follows.

Let X be a asset returns (r.v.), and w be portfolio weights.
Then, optimal portfolio weights are the solution of following
optimization problem.
_ Tyl _ 1 T
max uw(w) = Elw' X| — z-Var(w ' X)
subject tow "1, =1

Here, 7y Is a positive constant depending on individual investor.

And then, using expressions E[X]| = p and Var(X) = X,
expected value and variance of optimal portfolio are expressed

as follows.

Because E| X| = p and Var(X ) = X is generally unknown, it
is considered that optimal portofolio should be estimated by
d X n data matrix (X1,...,X,,). We estimate p by sample
mean vector X, and X by sample covariance matrix S.

1 n

X = %znjxt, S=-37(X - X)(X, - X)T

n

In these days, because of expansion of market scale, the num-
ber of assets d grows bigger. But, it is known that the bigger

dimension size d grows, the worse estimator S—! becomes.

o d:fix n— oco= S!is consistent

e n,d — 0o = S ! is inconsistent

So, we would like to derive asymptotic property of optimal

portfolio on the following assumption.

d
n—oo, d—oo, ——=p€e(0,1)
n

We introduce (n, d)-asymptotic properties of estimators of op-
timal portfolio parametor 8. It is known that when
X1,...,X, bih (e, 32) and satisfy previous assumption 1~4,

0 converges following value as n goes to infinity.

Q
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This shows that estimator using X and S is overestimated.
So, we need to correct estimators. We propose the following

estimator 6.

A

Resultl  Define estimator 8 = (01,65,05)" as following

expressions.
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Then, 0 is consistent estimator of 6.

A

This estimator @ has asymptotic normality.

|Purpose : estimate efficient frontier in high dimension|

2

spt Of optimal portfolio

Expected value p,pt and variance o

return are expressed as follows.
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oopt(1:0) = (9 - é) t o

A set of (oopt, Hopt) is called " efficient frontier”. Here, 6 is
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Fig.1 Efficient frontier : Following figurel shows portfolio plot. Black points () are the portofolios in feasible area which can obtain by
changing value of w. And red circles (o) shows optimal portfolios which can obtain by changing value of ~. This figure shows that rational

investor prefer lower risk when mean is same value, and higher return when risk is same value.

To estimate optimal portfolio, we should estimate optimal

portfolio parametor 0. It is assumed that n data vectors
Xq,...,X, is following unknown distribution which has mean
vector u, and covariance matrix ..

~

Then, 0, estimator of parmetor 0, is defined as follows.

i) (XTSXN
ég = 1dTS_1X
\ég) \1dTS_11d/

For some mathematical argument, we put some assumptions.

.
|

Result2 X;,..., X, bk (e, X2) satisfy previous assump-

tion 1~4. Then, \/n(6 — 6) converges to normal distribution

as n goes to infinity.
V(0 — 0) > N3(0,9Q) ((n, d)-asymptotic)
In this, €2 is following matrix.

/204%4—40414—2,0 X *\
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1 —0p \
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Assumptionl Let Zq,...,Z, b (0, I;). Assume that entries of Z; are independent with 4 + ¢ moment.
Assumption2 Then, data vectors X, can be expressed as X; = 22 Z, + . (peRLE > 0)

Assumption3 d is expressed with n, and d/n — p € (0,1) (n — o0) is satisfied.
We call this limit operation " (n, d)-asymptotic”.

Assumption4 Assume that @ converge the following constants aq, s, as.
91—>041, 82—>oz2, 93—)043 (d—)OO)

However, it is satisfied that a1, a3 > 0, a9 € R, aja3 — as? > 0.

A

Using this estimator @, we make efficient frontier estimators

flopt and ‘A’opt as follows.

A ~ é% é2 A2 2 N é% ]_
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2

opt has consis-

These efficient frontier estimators figpt and &

tency.

Result3  jiopt and &gpt satisfy previous assumption 1~4.

2

Then, //,\Lopt and &Op

¢ converge to following values as n goes

to infinity.

.S. ~ D a.s. 9

flopt = Hopts Oopt — Oopt (1, d)-asymptotic)

Simulation Study

o fixd/n=0..8
e increase n = 100, 500, 1000, and assume X, b Na(p, X)
e components of p are devided [—1, 1] into d equal parts

e 3. has diagonal components 1, and the others 0.5

In this condition, generate ; and 91 in 10000 times and confirm theoretical results.
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Fig.2 Consistency of estimators : Fig.2 shows histgrams of generated #; and 0;. Red part is histgram
of A1, and blue part is histgram of 6,. In order of n. = 100,500, 1000 from the left, and this shows that

61 converge to true value 64
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Fig.3 Asymptotic normality of \/n(6; — 61) : Fig.3 shows histgram of \/n(f; — 61) and blue curve line
of asymptotic normal distribution. In order of n = 100, 500, 1000 from the left, and this shows that

V(0 — 01) converge to objective normal distribution.

2
opt

e To derive asymptotic nomality of figpt and &
e [o derive confidential interval and test of efficient frontier

e To analyze efficient frontier from actual stock price data
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