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Background 

Future Work 

We introduce a Markowitz’s mean-variance optimal portfolio

estimator from d � n data matrix under high dimensional set-

ting where d is the number of assets and n is the sample size.

When d/n converges in (0, 1), we show inconsistency of the

traditional estimator and propose a consistent estimator.

Let X be a asset returns (r.v.), and w be portfolio weights.

Then, optimal portfolio weights are the solution of following

optimization problem.

�
�

�
max
w�Rd

u(w) = E[w�X] � 1
2� Var(w�X)

subject to w�1d = 1

Here, � is a positive constant depending on individual investor.

And then, using expressions E[X] = µ and Var(X) = �,

expected value and variance of optimal portfolio are expressed

as follows.

Expected value µopt and variance �2
opt of optimal portfolio

return are expressed as follows.
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Fig.1 E�cient frontier：Following figure1 shows portfolio plot. Black points (·) are the portofolios in feasible area which can obtain by

changing value of w. And red circles (�) shows optimal portfolios which can obtain by changing value of �. This figure shows that rational

investor prefer lower risk when mean is same value, and higher return when risk is same value.

Purpose：estimate e�cient frontier in high dimension

• d：fix, n � � � S�1 is consistent

• n, d � � � S�1 is inconsistent

To estimate optimal portfolio, we should estimate optimal

portfolio parametor �. It is assumed that n data vectors

X1, . . . , Xn is following unknown distribution which has mean

vector µ, and covariance matrix �.

Then, �̃, estimator of parmetor �, is defined as follows.
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For some mathematical argument, we put some assumptions.

So, we would like to derive asymptotic property of optimal

portfolio on the following assumption.

n � �, d � �,
d
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Fig.2 Consistency of estimators：Fig.2 shows histgrams of generated �̃1 and �̂1. Red part is histgram

of �̂1, and blue part is histgram of �̃1. In order of n = 100, 500, 1000 from the left, and this shows that

�̂1 converge to true value �1

Fig.3 Asymptotic normality of
�

n(�̂1 � �1)：Fig.3 shows histgram of
�

n(�̂1 � �1) and blue curve line

of asymptotic normal distribution. In order of n = 100, 500, 1000 from the left, and this shows that
�

n(�̂1 � �1) converge to objective normal distribution.

Simulation Study

• fix d/n = 0.8

• increase n = 100, 500, 1000, and assume Xt
i.i.d.� Nd(µ,�)

• components of µ are devided [�1, 1] into d equal parts

• � has diagonal components 1、and the others 0.5

In this condition, generate �̃1 and �̂1 in 10000 times and confirm theoretical results.

When an investor invest in d financial products, he consider

how maximize the portfolio return for a given level of risk,

defined as variance. Define optimal portfolio as follows.

Because E[X] = µ and Var(X) = � is generally unknown, it

is considered that optimal portofolio should be estimated by

d � n data matrix (X1, . . . , Xn). We estimate µ by sample

mean vector X̄, and � by sample covariance matrix S.

X̄ =
1

n

n�

t=1

Xt, S =
1

n

n�

t=1

(Xt � X̄)(Xt � X̄)�

In these days, because of expansion of market scale, the num-

ber of assets d grows bigger. But, it is known that the bigger

dimension size d grows, the worse estimator S�1 becomes.

We introduce (n, d)-asymptotic properties of estimators of op-

timal portfolio parametor �. It is known that when

X1, . . . , Xn
i.i.d.� (µ,�) and satisfy previous assumption 1�4,

�̃ converges following value as n goes to infinity.
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This shows that estimator using X̄ and S is overestimated.

So, we need to correct estimators. We propose the following

estimator �̂.

Result1 　 Define estimator �̂ = (�̂1, �̂2, �̂3)� as following

expressions.
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Then, �̂ is consistent estimator of �.

This estimator �̂ has asymptotic normality.

Result2　X1, . . . , Xn
i.i.d.� (µ,�) satisfy previous assump-

tion 1�4. Then,
�

n(�̂ � �) converges to normal distribution

as n goes to infinity.

�
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In this, � is following matrix.
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Using this estimator �̂, we make e�cient frontier estimators

µ̂opt and �̂2
opt as follows.

These e�cient frontier estimators µ̂opt and �̂2
opt has consis-

tency.

Result3　 µ̂opt and �̂2
opt satisfy previous assumption 1�4.

Then, µ̂opt and �̂2
opt converge to following values as n goes

to infinity.

µ̂opt
a.s.� µopt, �̂2

opt
a.s.� �2

opt ((n, d)-asymptotic)

• To derive asymptotic nomality of µ̂opt and �̂2
opt

• To derive confidential interval and test of e�cient frontier

• To analyze e�cient frontier from actual stock price data

Assumption1 Let Z1, . . . , Zn
i.i.d.� (0, Id). Assume that entries of Zt are independent with 4 + � moment.

Assumption2 Then, data vectors Xt can be expressed as Xt = �
1
2 Zt + µ. (µ � Rd,� > 0)

Assumption3 d is expressed with n, and d/n � � � (0, 1) (n � �) is satisfied.

We call this limit operation ”(n, d)-asymptotic”.

Assumption4 Assume that � converge the following constants �1, �2, �3.

�1 � �1, �2 � �2, �3 � �3 (d � �)

However, it is satisfied that �1, �3 > 0, �2 � R, �1�3 � �2
2 > 0.


